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Overview

univariate forecasting 

model-free:

smoothing
filtering

models:

ARIMA, 
GARCH

multivariate forecasting 

open loop system
(single equation)

multiple regression
transfer function

feedback?
no             yes

closed loop system
(multiple equation) 

stationary: 
VAR,SVAR
nonstationary: 
VEC,SVEC
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Definition of VAR(p)
Stationary vector autoregressive process

A VAR consists of a set of K-endogenous variables
yt = (y1t , . . . ,ykt , . . . ,yKt) for k = 1, . . . ,K

A VAR(p) process is defined as

yt = Φ1yt−1 + . . .+ Φpyt−p +ut

where Φi are (KxK ) coefficient matrices for i = 1, . . . ,p and ut is
K -dimensional white noise.

The VAR(p) process is stable (stationary series), if

det(IK −Φ1z− . . .−Φpzp) 6= 0 for |z|≤1 (1)
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Definition of bivariate VAR(1)
Stationary bivariate vector autoregressive process

Bivariate VAR(1) process yt = Φ1yt−1 +ut

with uT
t = (u1t ,u2t) and Φ1 =

[
φ11 φ12
φ21 φ22

]
consists of two equations:

y1t = φ11y1,t−1 + φ12y2,t−1 +u1t

y2t = φ21y1,t−1 + φ22y2,t−1 +u2t

...

...

Y1,t-1

!
21

!11

!12

!22

Y2,t-1

Y1,t

Y2,t

→ Concept of Granger causality
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Specification, estimation and structural analysis

Finding optimal time lag p → information criterion

Model specification pitfall
Number of parameters increases tremendously with more lags

Coefficients are estimated by OLS on each equation

Structural analyses
1 Granger causality
2 Impulse response analysis
3 Forecast error variance decomposition
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Forecasting

naive forecast: Minimum mean square error (MMSE)

For a VAR(1) process

yt = Φ1yt−1 +ut

one-step-ahead forecast: ŷN(1) = Φ̂1yN
two-step ahead forecast: ŷN(2) = Φ̂1ŷN(1) = Φ̂2

1yN

Forecasts for horizons h are therefore obtained with

ŷN(h) = Φ̂h
1yN
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Extensions

VARMA, VMA
VARX, VARMAX (including exogenous variables)

imposing more restrictions: (model reduction)
Structural VAR (SVAR)
Bayesian VAR (BVAR)
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VAR model and Cointegration

before: stationary time series (→ stability condition)
now: nonstationary data

one could difference the data, but not adequate in the presence of
cointegration.

Cointegration

yt ∼ I (d) is cointegrated, if there exists
a kx1 fixed vector β 6= 0, so that β́yt is integrated of order < d .

→ Assume: y1t and y2t are I (1). They are cointegrated when a
linear combination of y1t and y2t exists with (y1t −βy2t)∼ I (0)
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Bivariate cointegrated VAR(2)

Consider the bivariate VAR(2)

yt = Φ1yt−1 + Φ2yt−2 +ut

with the matrix polynomial for z=1 (→ stability condition (1))

Φ(1) = (I −Φ1−Φ2) = Π

rank(Π) equals the cointegration rank of the system yt
0 ... no cointegration (→ difference VAR)
1 ... one cointegrating vector (→ VECM)
2 ... process is stable (→ VAR)
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Vector error correction model (VECM)

Implementing cointegration in a VAR(2) using the VECM form:

4yt = yt − yt−1 = Πyt−1 + Γ14yt−1 +ut

where Γ1 =−Φ2 is the transition matrix and Π = αβ́ holds

α as the »loading matrix« (speed of adjustment)
β́ consisting the independent cointegrating vector
β́Yt−1 as the lagged disequilibrium error
Πyt−1 as the error correction term (long-run part)

(to catch the idea: consider bivariate VAR(1) equation:
4y1t = α1(y1,t−1−βy2,t−1) +u1t with long-run equilibrium y1t = βy2t)

estimation by reduced rank regression and forecast as in VAR
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Applications of VAR/VEC

VAR
economics and finance
growth rates of macroeconomic time series and some asset
returns

VEC
economics
- Money demand: money, income, prices and interest rates
- Growth theory: income, consumption and investment
- Fisher equation: nominal interest rates and inflation
finance
cointegration between prices of the same asset trading on
different markets due to arbitrage
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