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Motivation

Many economic questions involve the explanation of binary
variables, e.g.:

explaining the participation of women in the labor market

explaining retirement decisions

studying the effect of unemployment on the level of
satisfaction (see Winkelmann & Winkelmann (1998))

⇒ Limited Dependent Variables are mainly used in cross-sectional
panels (large N, small T ), i.e. for microeconometric questions.
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Introduction

Binary choice models are formulated in terms of a latent variable:

e.g. the choice of participating in the labor market (the
variable of interest) depends on whether the offered wage is
greater than the unobserved reservation wage of the given
person (the latent variable)

Formally,

yit =

{
1 if y∗it = x ′itβ + uit > 0

0 if y∗it = x ′itβ + uit ≤ 0

where xit is a vector of explanatory variables for person i at time t,
where β is a vector of coefficients to be estimated and where uit is
a error which will be specified below.
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Assumptions and Problems of the Fixed Effects Estimator

Assume that uit = µi + νit , where:

µi is an unknown parameter to be estimated

νit is a remainder error which is assumed to be i.i.d. across
individuals and time with a symmetric cumulative distribution
function F (·)

The incidental parameters problem:

In the linear case, the estimators for µi are not consistent if
N →∞ but T remains fixed. Nevertheless, β can be
estimated consistently.

With qualitative data, the estimators for β and µi are however
not independent ⇒ both µi and β are inconsistent in
cross-sectional panels
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Maximum Likelihood Estimation

The log-likelihood function is given by:

log L (β, µ1, . . . , µN) =
∑
i ,t

yit log [Pr {yit = 1}] +

+
∑
i ,t

(1− yit) log [Pr {yit = 0}]

where

Pr {yit = 1} = Pr {y∗it > 0}
= Pr

{
µi + x ′itβ + νit > 0

}
= Pr

{
−νit < µi + x ′itβ

}
= F

(
µi + x ′itβ

)
For small T and large N, maximizing the log-likelihood function
yields however inconsistent estimators!
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Conditional Maximum Likelihood Estimation

In order to obtain a consistent estimator also for small T , a
sufficient statistic ti for µi is needed:

Conditional on ti , the likelihood contribution of individual i
does not depend any longer on µi , but only on β, i.e. the
density is such that
f (yi1, . . . , yiT |ti , µi , β) = f (yi1, . . . , yiT |ti , β)

Maximizing the conditional log-likelihood function based on
f (yi1, . . . , yiT |ti , β) with respect to β yields a consistent
estimator for β.

However: For the probit model (remainder error normally
distributed), there is no sufficient statistic for µi !!! ⇒ It is not
possible to estimate β consistently in cross-sectional panels!
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The Fixed Effects Logit Model - An Example

For the fixed effects logit model, a sufficient statistic for µi is
ti =

∑
t yit . (Chamberlain (1980)) Let T = 2:

If ti = 0, there is only one possible event, namely yi1 = 0 and
yi2 = 0. (Similarly, for ti = 2) Hence, individuals who do not
change status over the time horizon do not enter the
conditional log-likelihood function.

It is sufficient to consider individuals with ti = 1 with the
possible events (yi1, yi2) = (0, 1) and (yi1, yi2) = (1, 0):

Using Bayes rule, it holds that:

Pr {(0, 1) |t1 = 1, µi , β} =
Pr {(0, 1) |µi , β}

Pr {(0, 1) |µi , β}+ Pr {(1, 0) |µi , β}

Moreover,
Pr {(0, 1) |µi , β} = Pr {yi1 = 0|µi , β}Pr {yi2 = 1|µi , β}
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The Fixed Effects Logit Model - An Example

In the logit model it holds that

Pr {yit = 1|µi , β} =
exp {µi + x ′itβ}

1 + exp
{
µi + x ′itβ

}
and correspondingly:

Pr {yit = 0|µi , β} = 1−
exp {µi + x ′itβ}

1 + exp
{
µi + x ′itβ

} =
1

1 + exp
{
µi + x ′itβ

}
Inserting this into the expression for Pr {(0, 1) |ti = 1, µi , β} yields:

Pr {(0, 1) |ti = 1, µi , β} =
exp

{
(xi2 − xi1)′ β

}
1 + exp

{
(xi2 − xi1)′ β

}
and correspondingly:

Pr {(1, 0) |ti = 1, µi , β} = 1− Pr {(0, 1) |ti = 1, µi , β}
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The Fixed Effects Logit Model - An Example

Hence, in the case of T = 2 the fixed effects logit model is
equivalent to a simple cross-sectional logit model using

an endogenous variable ỹi which is one if yit changes from 0 to
1 between t = 1 and t = 2 and zero if yit changes from 1 to 0

and the difference xi2 − xi1 as the explanatory variable
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Testing for Fixed Effects

Testing fixed individual effects versus no fixed individual effects can
be done using a Hausmann test:

The logit estimator ignoring individual effects is consistent
and efficient under the null hypothesis of no individual effects
and inconsistent under the alternative

The fixed effects logit estimator is consistent under both
hypotheses, but inefficient if there are no individual effects

Under the null hypothesis the test statistic is χ2
K distributed
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Assumptions and Problems of the Random Effects
Estimator

Usually, a probit specification is used for the random effects
estimator, i.e. it is assumed that uit = µi + νit , where µi is i.i.d.
with N

(
0, σ2

µ

)
and where νit is i.i.d. with N

(
0, σ2

ν

)
.

Computational Problems:

Because of the individual random effect, the observations
from individual i are correlated over time, i.e. E (uituis) = σ2

µ

for t 6= s

In order to obtain the probability contribution of any
individual i , T -dimensional integrals are necessary ⇒ this is
not feasible if T is large
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Assumptions and Problems of the Random Effects
Estimator

Conditioning on the individual effects, this reduces to a one
dimensional integral:

f (yi1, . . . , yiT |xi1, . . . , xiT , β)

=

∫ ∞
−∞

f (yi1, . . . , yiT |xi1, . . . , xiT , µi , β) f (µi ) dµi

=

∫ ∞
−∞

[∏
t

f (yit |xit , µi , β)

]
f (µi ) dµi

which can be approximated through numerical integration (e.g.
Gaussian quadrature procedure)
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Simulation Estimation

Unfeasible integrals can be replaced by unbiased Monte Carlo
probability simulators (method of simulated moments (MSM)
estimator)

Therefore, it is necessary to simulate MT potential choice
sequences for each individual, where M is the number of
possible choices each individual faces in any period ⇒ also
not feasible if T is large

The MSM estimator is asymptotically as efficient as maximum
likelihood
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State Dependence or Unobserved Heterogeneity

Frequently, it is observed that people with a long history of
unemployment are less likely to find a job. This might have two
reasons:

State Dependence: People who are unemployed for a long
time loose their skills or become discouraged from searching a
job

Unobserved Heterogeneity: There is a selection mechanism
present, meaning that people who share certain characteristics
are those who are long-term unemployed
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Testing for State Dependence

Test for γ = 0 in the model y∗it = x ′itβ + γyit−1 + µi + ν̃it

If γ = 0 is rejected, this can either be due to true state
dependence or serially correlated remainder errors νit

In order to find out whether true state dependence is present,
it is possible to condition on lagged values of the explanatory
variables without conditioning on the lagged state

If conditioning on the lagged explanatory variables does not
change the probability of yit = 1, there is no true state
dependence in the data

If conditioning on the lagged explanatory variables changes
the probability of yit = 1, there is true state dependence in
the data
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