Unbalanced Panel Data Models

Chapter 9 from Baltagi: Econometric Analysis of Panel Data (2005)
by András Malasics (0404248)

Introduction

- 'balanced' or ‘complete’ panels:
- a panel data set where data/observations are available for all crosssectional units in the entire sample period
- 'unbalanced' or 'incomplete' panels:
- a panel data set where some data/observations are missing for some cross-sectional units in the sample period
- Randomly missing observations

Complete panel

person	year	income	age	sex
1	2003	1500	27	1
1	2004	1700	28	1
1	2005	2000	29	1
2	2003	2100	35	2
2	2004	2200	36	2
2	2005	2000	37	2

Incomplete panel

person	year	income	age	sex
1	2003	1500	27	1
1	2004	1700	28	1
2	2003	2000	31	2
2	2004	2100	32	2
2	2005	2200	33	2
3	2004	2000	30	1

The unbalanced one-way error component model

- The model: $y_{i t}=\alpha+X_{i t}^{\prime} \beta+u_{i t} \quad$ where $\mu_{i} \sim \operatorname{IIN}\left(0, \sigma_{\mu}^{2}\right)$

$$
u_{i t}=\mu_{i}+v_{i t}
$$

$$
v_{i t} \sim \operatorname{IIN}\left(0, \sigma_{v}^{2}\right)
$$

- Vector form: $\underset{\substack{p+1 \\ n \times 1}}{p}=\alpha l_{n}+X \beta+u=\underset{n x K}{Z} \delta+u$ where $\begin{aligned} & Z=\left(t_{n}, X\right) \\ & \delta_{n}^{\prime}=\left(\alpha^{\prime}, \beta^{\prime}\right)\end{aligned}$

$$
\begin{array}{ll}
u=Z_{\mu} \mu+v & n=\sum T_{i} \\
& Z_{\mu}=\operatorname{diag}\left(t_{T_{i}}\right)
\end{array}
$$

- The OLS on the unbalanced data is given by: $\hat{\delta}_{O L S}=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} y$
- This is BLUE when $\sigma_{\mu}^{2}=0$.
- If $\sigma_{\mu}^{2}>0$ then OLS is still unbiased and consistent, but its standard errors are biased.

Complete panel case

$$
\left.Z_{\mu}=I_{N} \otimes l_{T}=\left(\begin{array}{ccccc}
1 \\
M T & 0 \\
\mathrm{M} \\
1
\end{array}\right) \quad \begin{array}{c}
0
\end{array}\right)
$$

Incomplete panel case

- Within estimator: $\tilde{\beta}=\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1} \tilde{X} ' \tilde{y}=\left(X^{\prime} Q X\right)^{-1} X^{\prime} Q y$ where $E_{T_{i}}=I_{T_{i}}-\bar{J}_{T_{i}}$

$$
\begin{aligned}
& \tilde{X}=Q X \\
& \tilde{y}=Q y \\
& Q=\operatorname{diag}\left(E_{T_{i}}\right)
\end{aligned}
$$

$$
\bar{J}_{T_{i}}=\frac{J_{T_{i}}}{T_{i}}
$$

Incomplete panel $\rightarrow\left(\begin{array}{cccc}1-\frac{1}{T_{T}} & -\frac{1}{T_{2}} & \wedge & -\frac{1}{T_{1}} \\ -\frac{1}{T_{1}} & 1-\frac{1}{T_{1}} & & M \\ 1 & T_{1} T_{1} T_{1} \\ -\frac{1}{T_{1}} & \wedge & & 1-\frac{1}{T_{1}}\end{array}\right)$

$$
\left.\begin{array}{cccc}
1-\frac{1}{T_{2}} & & & -\frac{1}{T_{2}} \\
& 1-\frac{1}{T_{2}} & & \\
-\frac{1}{T_{2}} & & & \\
& & & 1-\frac{1}{T_{2}}
\end{array}\right\} T_{2} x T_{2}
$$

$$
\mathrm{O}
$$

$$
\left.\begin{array}{cccc}
1-\frac{1}{T_{N}} & & & -\frac{1}{T_{N}} \\
& 1-\frac{1}{T_{N}} & & \\
-\frac{1}{T_{N}} & & & \\
& & & 1-\frac{1}{T_{N}}
\end{array}\right\} T_{N} x T_{N}
$$

\longleftarrow Complete panel

- Within residuals \tilde{u} for the unbalanced panels are given by:

$$
\begin{aligned}
& \tilde{u}=y-\tilde{\alpha}_{l_{N}}-X \tilde{\beta} \\
& \tilde{\alpha}=\left(\bar{y}_{. .}-\bar{x} . \tilde{\beta}^{2}\right) \\
& \bar{y}_{. .}=\frac{\sum \sum y_{i t}}{n}
\end{aligned}
$$

- The Between estimator and the Between residuals are obtained as follows:

$$
\begin{aligned}
& \hat{\delta}_{\text {Between }}=\left(Z^{\prime} P Z\right)^{-1} Z^{\prime} P y \\
& P=\operatorname{diag}\left[\bar{J}_{T_{i}}\right]
\end{aligned}
$$

$$
\hat{u}^{b}=y-Z \hat{\delta}_{\text {Between }}
$$

The unbalanced two-way error component model

- The fixed effects model:
- Wansbeek and Kapteyn (1989) consider the following model:

$$
\begin{aligned}
& y_{i t}=\alpha+X_{i t}^{\prime} \beta+u_{i t} \\
& u_{i t}=\mu_{i}+\lambda_{t}+v_{i t} \\
& i=1, \ldots, N_{t} \\
& t=1, \ldots, T
\end{aligned}
$$

- Furthermore define the matrix Δ that gives the dummy-variable structure for the incomplete data model:
$\Delta=\left(\Delta_{1}, \Delta_{2}\right) \equiv\left[\begin{array}{cccc}D_{1} & D_{1} l_{N} & & \\ \mathrm{M} & & \mathrm{O} & \\ D_{T} & & & D_{T} l_{N}\end{array}\right]$
$\Delta_{1}=\left(D_{4}^{\prime}, 2, D_{3}^{\prime}\right)^{\prime}$
$\Delta_{2}=\operatorname{diag}\left[D_{t} c_{N}\right]=\underset{14}{\operatorname{diag}} \underset{n x T}{2}\left[\iota_{u^{\prime}}\right]$
- D_{t} is $N_{t} x N$ matrix obtained from I_{N} by omitting the rows corresponding to individuals not observed in year t
- For complete panels:

$$
\begin{aligned}
& \Delta_{1}=\left(t_{T} \otimes I_{N}\right) \\
& \Delta_{2}=I_{T} \otimes t_{N}
\end{aligned}
$$

- If μ_{i} and λ_{t} are fixed, one has to run the regression with the matrix of dummies on the previous slide
- However, it is infeasible for large panels \rightarrow Within transformation needed
- Incomplete case:
$P_{[\Delta]}=P_{\Delta_{1}}+P_{\left[Q_{\left[\Delta_{1} \Delta_{2}\right]}\right.}$ and
$Q_{[\Delta]}=Q_{\left[\Delta_{1}\right]}-Q_{\left[\Delta_{1}\right]} \Delta_{2}\left(\Delta^{\prime}{ }_{2} Q_{\left[\Delta_{1}\right]} \Delta_{2}\right)^{-1} \Delta^{\prime}{ }_{2} Q_{\left[\Delta_{1}\right]}$

$$
Q_{[\Delta]}=I_{n}-P_{[\Delta]} \text { where } P_{[\Delta]}=\Delta\left(\Delta^{\prime} \Delta\right)^{-1} \Delta^{\prime}
$$

$$
\begin{aligned}
& \Delta_{N} \equiv \Delta_{1}^{\prime} \Delta_{1}=\operatorname{diag}\left[T_{i}\right] \\
& \Delta_{T} \equiv \Delta_{2}^{\prime} \Delta_{2}=\operatorname{diag}\left[N_{t}\right] \\
& \Delta_{T N} \equiv \Delta_{2}^{\prime}{ }_{2} \Delta_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{N}=T I_{N} \\
& \Delta_{T}=N I_{T} \\
& \Delta_{T N}=t_{T} \iota_{N}^{\prime}=J_{T N}
\end{aligned}
$$

- Extensions to higher-order error component model (e.g. 3-way): (Davis (2001))

$$
\Delta=\left[\Delta_{1}, \Delta_{2}, \Delta_{3}\right]
$$

$$
Q_{[\Delta]}=Q_{[A]}-P_{[B]}-P_{[C]}
$$

$$
\begin{aligned}
& A=\Delta_{1} \\
& B=Q_{[A]} \Delta_{2} \\
& C=Q_{[B]} Q_{[A]} \Delta_{3}
\end{aligned}
$$

- The random effects model:
- Vector form of the model: $u=\Delta_{1} \underset{N x 1}{\mu+\Delta_{2}} \underset{\substack{\lambda+1}}{\lambda+\underset{n x 1}{v}}$ where $\begin{aligned} & \lambda \sim\left(0, \sigma_{\lambda}^{2}\right) \\ & v \sim\left(0, \sigma_{\nu}^{2}\right)\end{aligned}$

$$
\mu \sim\left(0, \sigma_{\mu}^{2}\right)
$$

- Variance matrix: $\Omega=E\left(u u^{\prime}\right)=\sigma_{v}^{2} I_{n}+\sigma_{\mu}^{2} \Delta_{1} \Delta_{1}^{\prime}+\sigma_{\lambda}^{2} \Delta_{2} \Delta_{2}^{\prime}=$

$$
=\sigma_{v}^{2}\left(I_{n}+\phi_{1} \Delta_{1} \Delta_{1}^{\prime}+\phi_{2} \Delta_{2} \Delta_{2}^{\prime}\right)=\sigma_{v}^{2} \Sigma
$$

$$
\begin{array}{ll}
\text { where } & \phi_{1}=\sigma_{\mu}^{2} / \sigma_{v}^{2} \\
& \phi_{2}=\sigma_{\lambda}^{2} / \sigma_{v}^{2}
\end{array}
$$

- Using the general expression for the inverse of (I+X'X), one obtains

$$
\begin{array}{ll}
\Sigma^{-1}=V-V \Delta_{2} \widetilde{P}^{-1} \Delta_{2}^{\prime} V \quad \text { where } \quad & \tilde{P}=\tilde{\Delta}_{T}-\Delta_{T N} \tilde{\Delta}_{N}^{-1} \Delta_{T N}^{\prime} \\
& \tilde{\Delta}_{N}=\Delta_{N}+\left(\sigma_{v}^{2} / \sigma_{\mu}^{2}\right) I_{N} \\
& \tilde{\Delta}_{T}=\Delta_{T}+\left(\sigma_{v}^{2} / \sigma_{\lambda}^{2}\right) I_{T}
\end{array}
$$

- Davis (2001) shows that this result can be generalized to an arbitrary number of random error components, e.g. 3-way model:

$$
\Omega=E\left(u u^{\prime}\right)=\sigma_{v}^{2} I_{n}+\sigma_{\mu}^{2} \Delta_{1} \Delta_{1}^{\prime}+\sigma_{\lambda}^{2} \Delta_{2} \Delta_{2}^{\prime}+\sigma_{\eta}^{2} \Delta_{3} \Delta_{3}^{\prime}
$$

- Wansbeek and Kapteyn suggest an ANOVA-type quadratic unbiased estimator of the variance components based on the Within residuals

$$
\begin{aligned}
& q_{W}=e^{\prime} Q_{[\Delta]} e \\
& q_{N}=e^{\prime} \Delta_{2} \Delta_{T}^{-1} \Delta^{\prime}{ }_{2} e=e^{\prime} P_{\left[\Delta_{2}\right]} e \\
& q_{T}=e^{\prime} \Delta_{1} \Delta_{N}^{-1} \Delta_{1}^{\prime} e=e^{\prime} P_{\left[\Delta_{1}\right]} e
\end{aligned}
$$

- By equating q_{W}, q_{N}, q_{T} to their expected values and solving these three equations one gets QUE of $\sigma_{\nu}^{2}, \sigma_{\mu}^{2}, \sigma_{\lambda}^{2}$

Testing for individual and time effects using unbalanced panel data

- Baltagi and Li (1990) derived a corresponding LM test for the unbalanced two-way error component model
- Under normality of disturbances the LM statistic is given by

$$
\begin{aligned}
& L M=\left(\frac{1}{2}\right) n^{2}\left[A_{1}^{2} / /\left(M_{11}-n\right)+A_{2}^{2} /\left(M_{22}-n\right)\right] \\
& A_{r}=\left[\left(\tilde{u}^{\prime} \Delta_{r} \Delta^{\prime} \tilde{u} / \tilde{u} / \tilde{u}\right)-1\right] \\
& M_{11}=\sum_{i=1}^{N} T_{i}^{2} \\
& M_{22}=\sum_{t=1}^{T} N_{t}^{2}
\end{aligned}
$$

which is asymptotically distributed as χ_{2}^{2} under the null hypothesis ($H_{0}: \sigma_{\mu}^{2}=\sigma_{\lambda}^{2}=0$)

- If $H_{0}: \sigma_{\mu}^{2}=0$ then $L M=\left(\frac{1}{2}\right) n^{2}\left[A_{1}^{2} /\left(M_{11}-n\right)\right]$ and it is asymptotically distributed as χ_{1}^{2}
- If $H_{0}: \sigma_{\lambda}^{2}=0$ then $L M=\left(\frac{1}{2}\right) n^{2}\left[A_{2}^{2} /\left(M_{22}-n\right)\right]$ and it is asymptotically
distributed as χ_{1}^{2}
- These variance components cannot be negative and therefore the alternative hypotheses are (Moulton and Randolph (1989)):
$H_{A}: \sigma_{\mu}^{2}>0$ and $H_{A}: \sigma_{\lambda}^{2}>0$ and the one-sided LM statistics are given by:
$S L M=\frac{L M_{1}-E\left(L M_{1}\right)}{\sqrt{\operatorname{var}\left(L M_{1}\right)}}=\frac{d-E(d)}{\sqrt{\operatorname{var}(d)}} \quad$ and $\quad L M_{2}=n\left[2\left(\left(M_{22}-n\right)\right]^{-1 / 2} A_{2}\right.$
$L M_{1}=n\left[2\left(M_{11}-n\right)\right]^{-1 / 2} A_{1}$
$d=\left(\tilde{u}^{\prime} D \tilde{u}\right) / \tilde{u}^{\prime} \tilde{u}$
$D=\Delta_{1} \Delta_{\text {' }}^{\prime}$
- Under the null hypothesis they have asymptotic $N(0,1)$ distribution
- Honda's (1985) one-sided for the two-way model with unbalanced data is simply: $H O=\left(L M_{1}+L M_{2}\right) / \sqrt{2}$
- Baltagi, Chang and Li (1998): the locally mean most powerful onesided test for unbalanced two-way error component model is given by (King and Wu (1997)):

$$
K M=\frac{\sqrt{M_{11}-n}}{\sqrt{M_{11}+M_{22}-2 n}} L M_{1}+\frac{\sqrt{M_{22}-n}}{\sqrt{M_{11}+M_{22}-2 n}} L M_{2}
$$

- Both tests are asymptotically distributed as $\mathrm{N}(0,1)$ under H_{0}
- These tests can be standardized and the resulting SLM given by:
- For Honda's version: $\quad D=\frac{1}{2} \frac{n}{\sqrt{M_{11}-n}}\left(\Delta_{1} \Delta_{1}^{\prime}\right)+\frac{1}{2} \frac{n}{\sqrt{M_{22}-n}}\left(\Delta_{2} \Delta_{2}^{\prime}\right)$
- For the King and Wu version: $D=\frac{n}{\sqrt{2} \sqrt{M_{11}+M_{22}-2 n}}\left[\left(\Delta_{1} \Delta_{1}^{\prime}\right)+\left(\Delta_{2} \Delta_{2}^{\prime}\right)\right]$
- Since LM1 and LM2 can be negative for a specific application, especially when one or both variance components are small or close to zero \rightarrow GHM test (Gourieroux, Holly and Monfort (1982)):

$$
\chi_{m}^{2}=\left\{\begin{array}{ll}
L M_{1}^{2}+L M_{2}^{2} & \text { if } \mathrm{LM} 1>0, \mathrm{LM} 2>0 \\
L M_{1}^{2} & \text { if } \mathrm{LM} 1>0, \mathrm{LM} 2<=0 \\
L M_{2}^{2} & \text { if } \mathrm{LM} 1<=0, \mathrm{LM} 2>0 \\
0 & \text { if } \mathrm{LM} 1<=0, \mathrm{LM} 2<=0
\end{array} \quad \text { and } \chi_{m}^{2} \sim\left(\frac{1}{4}\right) \chi^{2}(0)+\left(\frac{1}{2}\right) \chi^{2}(1)+\left(\frac{1}{4}\right) \chi^{2}(2)\right.
$$

- Recommendation:
- The use of standardized version of these tests

Thank you for your attention!

