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Different regression equations that seem to be unrelated and
indivdually satisfy the classical OLS assumption, but are
interdependent in the error term.

OLS unbiased and consistent but more efficient estimates by using
FGLS to account for interdependence.



y1 = X1β1 + u1

y2 = X2β2 + u2

...

yi = Xiβi + ui

...

ym = Xmβm + um

I yi is an n × 1 vector of observations on variable i.

I Xi is an n × ki matrix of observations on explanatory variables

I βi is a ki × 1 vector of coefficients

I ui is an n × 1 vector of disturbances
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
y = Xβ + u

I y is an nm × 1 vector of observations on variable i.

I X is an n ×
∑

i ki matrix of observations on explanatory
variables

I β is a
∑

i ki × 1 vector of coefficients

I u is an nm × 1 vector of disturbances



E [uu′] =


E (u1u1′) E (u1u2′) . . . E (u1um′)
E (u2u1′) E (u2u2′) . . . E (u2um′)

. . . . . .
. . . . . .

E (umu1′) E (umu2′) . . . E (umum′)
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E [uu′] =


VCV1 E (u1u2′) . . . E (u1um′)

E (u2u1′) VCV2 . . . E (u2um′)

. . . . . .
. . . . . .

E (umu1′) E (umu2′) . . . VCVm





E [uu′] =


σ11IN σ12IN . . . σ1mIN
σ21IN σ22IN . . . σ2mIN

. . . . . .
. . . . . .

σm1IN σm2IN . . . σmmIN


E [uiuj ′] = Σ⊗ In

for a m ×m symmetric matrix with positive entries Σ.



James G. Beierlein, James W. Dunn, James C. McConnon, Jr.
The Demand for Electricity and Natural Gas in the
Northeastern United States
The Review of Economics and Statistics, 1981

Simultaneous estimation of the

1. residential gas

2. residential electric

3. commercial gas

4. commercial electric

5. industrial gas

6. industrial electric

demand in logarithmized quantities in the northern US. Both
cross-sectional and time dimension for each equation. Estimation
as a Two-Way Random Effects SUR model.



The individuals are nine states, the time is yearly from 1967-1977.

Explanatory variables are fuel prices , per capita income and
disposable income, value of retail sales and value added by
manufacturing.

No qualitative differences between OLS, two-way random effects
and two-way random effects SUR, but the latter gives much lower
standard errors.



Notation and assumptions

I set of M equations
yi = Xjβj + uj (j = 1, . . . ,M)
yj is NT × 1, Xj is NT × kj , βj is kj × 1

I additive error components
uj = Zµµj + Zλλj + νj two-way random effects
with Zµ = IN ⊗ et , Zλ = eN ⊗ IT

I µj , λj and νj are random vectors with expectation 0 and a
variance-covariance matrix given by

E

µj

λj

νj

(µl λl νl

)
=

σµjl
IN 0 0

0 σλjl
IT 0

0 0 σνjl
INT





Combining all M equations

I Combining all M equations yields y = Xβ + u

I with E (uu′) = Ω = [Ωjl ] and X = IM ⊗ Xj



rewriting Ωjl

I Ωjl = E (uju
′
l) = σ2

µjl
A + σ2

λjl
B + σ2

νjl
INT with A = IN ⊗ ete

′
t

and B = eNe ′N ⊗ IT
I this can be rewritten as

Ωjl = σ2
3jl

JNT
NT + σ2

1jl(
A
T −

JNT
NT ) + σ2

2jl(
B
N −

JNT
NT ) + σ2

νjl
Q

with

I Q = INT − A
T −

B
N + JNT

NT and JNT = eNT e ′NT ,

I σ2
3jl = σ2

νjl
+ Nσ2

λjl
+ Tσ2

µjl

I σ2
1jl = σ2

νjl
+ Tσ2

µjl

I σ2
2jl = σ2

νjl
+ Nσ2

λjl



Eigenvalues of Ω

I it can be shown that (Nerlove(1971)) σ2
1jl , σ

2
2jl , σ

2
3jl and σ2

νjl

form the eigenvalues of Ωjl .

I plugging them in yields the following expression for Ω
Ω = Ω3 ⊗ JNT

NT + Ω1 ⊗ ( A
T −

JNT
NT ) + Ω2 ⊗ (B

N −
JNT
NT ) + ΩνQ

I where Ω3 = [σ2
3jl ],Ω2 = [σ2

2jl ],Ω1 = [σ2
1jl ] and Ων = [σ2

νjl
]



in search of Ω−1

I the expression for Ω is of the structure Ω =
k∑

i=1
Ωi ⊗ Di where

Ωi are nonsingular matrizes and Di are symmetric, sum up to
In and are mutual orthogonal (i.e. DiDj = 0 for i 6= j and
idempotent.

I it can be shown that for a matrix Ω of this structure the
unique inverse of the following form can be obtained:
Ω−1 =

∑r
i=1 Ω−1

i ⊗ Di

I closer inspection of the structure of Ω as derived above shows

that indeed Ω is of the form: Ω =
k∑

i=1
Ωi ⊗ Di with

D1 = ( A
T −

JNT
NT ),D2 = (B

N −
JNT
NT ), D3 = JNT

NT and D4 = Q



the GLS-Estimator for β

I therefore Ω−1 is given by a weighted sum of four matrizes
Ω−1 = Ω−1

3 ⊗
JNT
NT +Ω−1

1 ⊗( A
T−

JNT
NT )+Ω−1

2 ⊗(B
N−

JNT
NT )+Ω−1

ν ⊗Q

I note that X ′(Ω−1
3 ⊗ (JNT/NT ))X = 0 as JNTXj = 0

I as usual the GLS estimator is then given by:
β̂GLS = (X ′Ω−1X )−1)X ′Ω−1Y

I note also that for σ2
µjl = σ2

λjl = 0, Ω1 = Ω2 = Ων which

results in Ω−1 = Ω−1
ν ⊗ INT ⇒ standard SUR estimator

without a two-way random effects error specification.

I but unlike the standard SUR estimator, even when all matrizes
Xj contain the same information, i.e. X1 = X2 = ...XM = X̂
performing GLS on each system seperately is not equivalent to
GLS perform on the whole system.
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What estimators of the variance-covariance-matrix are good
asymptotically?



Probabilistic limits are with respect to both N and T .

Theorem: Let β̂FGLS be a fesible GLS-estimator satisfying

(i) plim Ω̂ν = Ων ,

(ii) plim Ω̂µ = Ω∗µ and

(iii) plim Ω̂λ = Ω∗λ,

where Ω∗µ and Ω∗λ are any finite, positive definite matrices. Then

plim
√

NT (β̂GLS − β̂FGLS) = 0.



A sufficient condition for plim
√

NT
(
β̂FGLS − β̂GLS

)
= 0 is that

(i) plim X ′(Ω̂−1 − Ω−1)X/NT = 0 and

(ii) plim X ′(Ω̂−1 − Ω−1)u
√

NT = 0.



Using Baltagis formula for the inverse of Ω, this can be rewritten
as

(i) plim(σ̂jl
1 − σ

jl
1 )

X ′
j (A/T−J/NT )Xl

NT + (σ̂jl
2 − σ

jl
2 )

X ′
j (B/N−J/NT )Xl

NT +

(σ̂jl
ν − σjl

ν )
XjQXl√

NT
= 0 for j , l = 1, . . . ,M.

(ii) plim
∑

l T
3/4(σ̂jl

1 − σ
jl
1 )

X ′
j (A/T−J/NT )ul√

NT 5/2
+ N3/4(σ̂jl

2 −

σjl
2 )

X ′
j (B/N−J/NT )ul√

N5/2T
+ (σ̂jl

ν − σjl
ν )

XjQul√
NT

= 0 for j = 1, . . . ,M.



By assumption
X ′j Xl/NT

and
X ′j QXl/NT

converge, so
X ′j (A/T − J/NT )Xl/NT

and
X ′j (B/T − J/NT )Xl/NT

converge too.

Write our first condition as

(i) plim(σ̂jl
1 − σ

jl
1 )[ ] + (σ̂jl

2 − σ
jl
2 )[ ] + (σ̂jl

ν − σjl
ν )[ ] = 0 for

j , l = 1, . . . ,M.



Now plim
X ′

j (A/T−J/NT )ul√
NT 5/2

= plim
X ′

j (B/N−J/NT )ul√
N5/2T

= 0.

X ′j Qul/
√

NT = X ′j Qvl/
√

NT can be shown to converge in
distribution to a random variable by a CLT.

Write our second condition as

(ii) plim
∑

l T
3/4(σ̂jl

1 − σ
jl
1 )0 + N3/4(σ̂jl

2 − σ
jl
2 )0 + (σ̂jl

ν − σjl
ν )[̃] = 0

for j = 1, . . . ,M.



We only have to show that

(i) plim(σ̂jl
1 − σ

jl
1 )[ ] + (σ̂jl

2 − σ
jl
2 )[ ] + (σ̂jl

ν − σjl
ν )[ ] = 0 for

j , l = 1, . . . ,M.

(ii) plim
∑

l T
3/4(σ̂jl

1 − σ
jl
1 )0 + N3/4(σ̂jl

2 − σ
jl
2 )0 + (σ̂jl

ν − σjl
ν )[̃] = 0

for j = 1, . . . ,M.



That’s all Folks!


