Nonstationary Panels

Based on chapters 12.1, 12.2, and 12.3 of Baltagi, B. (2005): Econometric Analysis of Panel Data, 3rd edition. Chichester, John Wiley\&Sons.

Jürgen Holl, University of Vienna

Econometric Methods for Panel Data
June 3rd, 2009

Levin, Lin and Chu (LLC) test I

- Levin, Lin and Chu (2002)
- Idea:
individual unit root tests with limited power against near unit root processes, especially in small samples
\rightarrow thus use increased sample size of panel data
- Null hypothesis:
each individual time series contains a unit root
- Alternative hypothesis: each individual time series is stationary
■ Maintained hypothesis, analogous to Dickey-Fuller, but double-indexed:

1 without constant or trend:

$$
\begin{equation*}
\Delta y_{i t}=\rho y_{i, t-1}+\sum_{L=1}^{p_{i}} \theta_{i L} \Delta y_{i, t-L}+\varepsilon_{i t} \tag{1}
\end{equation*}
$$

Levin, Lin and Chu (LLC) test II

2 with constant:

$$
\begin{equation*}
\Delta y_{i t}=\rho y_{i, t-1}+\sum_{L=1}^{p_{i}} \theta_{i L} \Delta y_{i, t-L}+\alpha_{i}+\varepsilon_{i t} \tag{2}
\end{equation*}
$$

3 with constant and trend:

$$
\begin{equation*}
\Delta y_{i t}=\rho y_{i, t-1}+\sum_{L=1}^{p_{i}} \theta_{i L} \Delta y_{i, t-L}+\alpha_{i}^{\prime}\binom{1}{t}+\varepsilon_{i t} \tag{3}
\end{equation*}
$$

where α_{i} is the vector of coefficients corresponding to a constant and a trend component

- Three-step procedure:

Levin, Lin and Chu (LLC) test III

1 perform separate augmented Dickey-Fuller (ADF) regressions for each cross-section i :

$$
\begin{equation*}
\Delta y_{i t}=\rho_{i} y_{i, t-1}+\sum_{L=1}^{p_{i}} \theta_{i L} \Delta y_{i, t-L}+\alpha_{m i}^{\prime} d_{m t}+\varepsilon_{i t} \quad m=1,2,3 \tag{4}
\end{equation*}
$$

where m corresponds to the model without constant or trend $\left(d_{1 t}=0\right)$, with constant $\left(d_{2 t}=1\right)$, and with constant and trend ($d_{3 t}^{\prime}=(1, t)$), respectively.
1.1 determine lag order to completely specify the ADF regression: choose $p_{\max }$ and use t-statistic of $\hat{\theta}_{i L}$ to decide whether smaller order is to be preferred (t -statistic of $\hat{\theta}_{i L}$ is distributed $\mathrm{N}(0,1)$ under $\left.H_{0}: \theta_{i L}=0\right)$
1.2 get orthogonalized residuals to use Frisch-Waugh theorem:
regress $\Delta y_{i t}$ on $\Delta y_{i, t-L}$ for $L=1, \ldots, p_{i}$ and $d_{m t}$
\rightarrow residuals $\hat{e}_{i t}$
regress $y_{i, t-1}$ on $\Delta y_{i, t-L}$ for $L=1, \ldots, p_{i}$ and $d_{m t}$
\rightarrow residuals $\hat{\nu}_{i, t-1}$

Levin, Lin and Chu (LLC) test IV

1.3 standardize residuals to control for different variances across i :

$$
\begin{equation*}
\tilde{e}_{i t}=\frac{\hat{e}_{i t}}{\hat{\sigma}_{\varepsilon i}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\nu}_{i, t-1}=\frac{\hat{\nu}_{i, t-1}}{\hat{\sigma}_{\varepsilon i}} \tag{6}
\end{equation*}
$$

where $\hat{\sigma}_{\varepsilon i}$ is the standard error from each ADF regression for $i=1, \ldots, N$
2 estimate the ratio of long-run to short-run standard deviations:
2.1 long-run variance under H_{0} :

$$
\begin{equation*}
\hat{\sigma}_{y i}^{2}=\frac{1}{T-1} \sum_{t=2}^{T} \Delta y_{i t}^{2}+2 \sum_{L=1}^{\bar{K}} w_{\bar{K} L}\left[\frac{1}{T-1} \sum_{t=2+L}^{T} \Delta y_{i t} \Delta y_{i, t-L}\right] \tag{7}
\end{equation*}
$$

where $w_{\bar{K} L}=L /(\bar{K}+1)$ for a Bartlett kernel
2.2 short-run variance:

$$
\begin{equation*}
\hat{\sigma}_{\varepsilon i}^{2} \tag{8}
\end{equation*}
$$

Levin, Lin and Chu (LLC) test V

2.3 ratio:

$$
\begin{equation*}
\hat{s}_{i}=\frac{\hat{\sigma}_{y i}}{\hat{\sigma}_{\varepsilon i}} \tag{9}
\end{equation*}
$$

which is a "standardized" standard deviation; the average standard deviation is then

$$
\begin{equation*}
\hat{S}_{N}=\frac{1}{N} \sum_{i=1}^{N} \hat{s}_{i} \tag{10}
\end{equation*}
$$

3 calculate the panel test statistics:
3.1 run the pooled regression:

$$
\begin{equation*}
\tilde{e}_{i t}=\rho \tilde{\nu}_{i, t-1}+\tilde{\varepsilon}_{i t} \tag{11}
\end{equation*}
$$

based on $N \tilde{T}$ observations where $\tilde{T}=T-\bar{p}-1$ is the average number of observations per individual where \bar{p} is the average lag order

Levin, Lin and Chu (LLC) test VI

3.2 calculate the conventional t-statistic under $H_{0}: \rho=0$:

$$
\begin{equation*}
t_{\rho}=\frac{\hat{\rho}}{\hat{\sigma}(\hat{\rho})} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\rho}=\frac{\sum_{i=1}^{N} \sum_{t=2+p_{i}}^{T} \tilde{\nu}_{i, t-1} \tilde{e}_{i t}}{\sum_{i=1}^{N} \sum_{t=2+p_{i}}^{T} \tilde{\nu}_{i, t-1}^{2}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\sigma}(\hat{\rho})=\frac{\hat{\sigma}_{\tilde{\varepsilon}}}{\left[\sum_{i=1}^{N} \sum_{t=2+p_{i}}^{T} \tilde{\nu}_{i, t-1}^{2}\right]^{\frac{1}{2}}} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\sigma}_{\tilde{\varepsilon}}^{2}=\frac{1}{N \tilde{T}} \sum_{i=1}^{N} \sum_{t=2+p_{i}}^{T}\left(\tilde{e}_{i t}-\hat{\rho} \tilde{\nu}_{i, t-1}\right)^{2} \tag{15}
\end{equation*}
$$

is the estimated variance of $\tilde{\varepsilon}_{i t}$
3.3 calculate the adjusted t-statistic:

$$
\begin{equation*}
t_{\rho}^{*}=\frac{t_{\rho}-N \tilde{T} \hat{S}_{N} \hat{\sigma}_{\tilde{\tilde{E}}}^{-2} \hat{\sigma}(\hat{\rho}) \mu_{m \tilde{T}}^{*}}{\sigma_{m}^{*} \tilde{T}} \tag{16}
\end{equation*}
$$

where $\mu_{m \tilde{T}}^{*}$ and $\sigma_{m \tilde{T}}^{*}$ are adjustments suggested and tabulated by LLC

Levin, Lin and Chu (LLC) test VII

- Asymptotic distribution of t_{ρ}^{*} :
- $N(0,1)$, which is different from univariate unit root tests converging to functionals of Brownian motions
- requires $\sqrt{N_{T}} / T \rightarrow 0$ where N is an arbitrary monotonically increasing function of T

■ Limitations:

- assumes cross-sectional independence, problem in macro panels
- does not assume $T \rightarrow \infty$ at a faster rate than $N \rightarrow \infty$ which would be sufficient but not necessary, then problem in micro panels
- assumes ρ homogeneous across i, all cross-sections have or do not have a unit root, "every country converges at the same rate"
- Recommendations:
- for panels of moderate size ($10<N<250,25<T<250$)
- for very large T, individual unit root tests are sufficiently powerful
- for very large N and very small T, use standard procedures

Im, Pesaran and Shin (IPS) test I

- Im, Pesaran and Shin (2003)
- Idea:

LLC requires ρ to be homogeneous across i, implying convergence at the same rate for all i under the alternative
\rightarrow allow ρ to be heterogeneous across i
■ Null hypothesis:

$$
\begin{equation*}
H_{0}: \rho_{i}=0 \quad \text { for all } i \tag{17}
\end{equation*}
$$

- Alternative hypothesis:

$$
H_{1}: \begin{cases}\rho_{i}<0 & \text { for } i=1,2, \ldots, N_{1} \tag{18}\\ \rho_{i}=0 & \text { for } i=N_{1}+1, \ldots, N\end{cases}
$$

where the fraction of stationary individual time series is assumed nonzero (necessary for the consistency of the test)

Im, Pesaran and Shin (IPS) test II

- Test statistic:

$$
\begin{equation*}
\bar{t}=\frac{1}{N} \sum_{i=1}^{N} t_{\rho i} \tag{19}
\end{equation*}
$$

where $t_{\rho i}$ is the t-statistic from the individual ADF regressions for all i
\rightarrow "average of the individual ADF statistics"

- Standard result:

$$
\begin{equation*}
t_{\rho i} \Rightarrow \frac{\int_{0}^{1} W_{i}(r) d W_{i}(r)}{\left[\int_{0}^{1} W_{i}(r)^{2} d r\right]^{\frac{1}{2}}}=t_{i T} \tag{20}
\end{equation*}
$$

for fixed N and $T \rightarrow \infty$ where $t_{i T}$ is assumed i.i.d. with finite mean and variance

Im, Pesaran and Shin (IPS) test III

- Asymptotic distribution:

$$
\begin{equation*}
t_{\text {IPS }}=\frac{\sqrt{N}\left(\bar{t}-\frac{1}{N} \sum_{i=1}^{N} E\left[t_{i T} \mid \rho_{i}=0\right]\right)}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} \operatorname{var}\left[t_{i T} \mid \rho_{i}=0\right]}} \Rightarrow N(0,1) \tag{21}
\end{equation*}
$$

as $T \rightarrow \infty$ and $N \rightarrow \infty$, by the Lindeberg-Lévy central limit theorem
■ $E\left[t_{i T} \mid \rho_{i}=0\right]$ and $\operatorname{var}\left[t_{i T} \mid \rho_{i}=0\right]$ obtained by simulations for different values of T and p_{i} 's

- Recommendation:
if lag order is large enough, then IPS outperforms LLC

Breitung's test I

- Breitung (2000)
- Idea:

LLC and IPS have weak power performance with deterministic terms due to bias correction

- Three-step procedure:

1 perform separate augmented Dickey-Fuller (ADF) regressions for each cross-section i :
1.1 determine lag order to completely specify the ADF regression
1.2 get orthogonalized residuals to use Frisch-Waugh theorem, but without using deterministic terms $d_{m t}$
1.3 standardize residuals to control for different variances across i

Breitung's test II

2 transform $\tilde{e}_{i t}$ using the forward orthogonalization transformation by Arellano and Bover (1995):

$$
\begin{gather*}
e_{i t}^{*}=\sqrt{\frac{T-t}{T-t+1}}\left(\tilde{e}_{i t}-\frac{\tilde{e}_{i, t+1}+\ldots+\tilde{e}_{i, T}}{T-t}\right) \tag{22}\\
\nu_{i, t-1}^{*}= \begin{cases}\tilde{\nu}_{i, t-1} & \text { without intercept or trend } \\
\tilde{\nu}_{i, t-1}-\tilde{\nu}_{i, 1} & \text { with intercept } \\
\tilde{\nu}_{i, t-1}-\tilde{\nu}_{i, 1}-\frac{t-1}{T} \tilde{\nu}_{i, T} & \text { with intercept and trend }\end{cases} \tag{23}
\end{gather*}
$$

3 run the pooled regression:

$$
\begin{equation*}
e_{i t}^{*}=\rho \nu_{i, t-1}^{*}+\varepsilon_{i t}^{*} \tag{24}
\end{equation*}
$$

\rightarrow t-statistic for $H_{0}: \rho=0, t_{\rho}^{*}$
■ Asymptotic distribution:

$$
\begin{equation*}
t_{\rho}^{*} \Rightarrow N(0,1) \tag{25}
\end{equation*}
$$

Combined p-value tests I

- Maddala and Wu (1999) and Choi(2001)
- Let $G_{i T_{i}}$ be a unit root test statistic for the i th individual
- Assume $G_{i T_{i}} \Rightarrow G_{i}$ as $T_{i} \rightarrow \infty$ where G_{i} is a nondegenerate random variable
- Let p_{i} be the corresponding asymptotic p -value
- Test statistic:

$$
\begin{equation*}
P=-2 \sum_{i=1}^{N} \ln p_{i} \tag{26}
\end{equation*}
$$

which uses the p -values from unit root tests for each cross-section i (e.g. ADF test) \rightarrow "Fisher's inverse chi-square test"

- Asymptotic distribution:

$$
\begin{equation*}
P \Rightarrow \chi_{2 N}^{2} \tag{27}
\end{equation*}
$$

as $T_{i} \rightarrow \infty$ for finite N

- Improved test statistic:

Combined p-value tests II

- "inverse normal test"

$$
\begin{equation*}
Z=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \Phi^{-1}\left(p_{i}\right) \tag{28}
\end{equation*}
$$

where Φ is the standard normal cumulative distribution function

- as $0 \leq p_{i} \leq 1, \phi^{-1}\left(p_{i}\right) \sim N(0,1)$

■ Asymptotic distribution:

$$
\begin{equation*}
Z \Rightarrow N(0,1) \tag{29}
\end{equation*}
$$

as $T_{i} \rightarrow \infty$ for all i
■ Advantages:

- different lag orders may be used
- other unit root tests may be applied

■ Disadvantages:
p-values have to be derived by Monte Carlo simulations

- Recommendations:
- for ρ and/or T heterogeneous across i
- combined p -value tests outperform the IPS test, the Z test performs best

Residual-based LM test I

- Hadri (2000)
- Null hypothesis: no unit root in any of the series
- Alternative hypothesis: unit root in the panel
- Model:

$$
\begin{gather*}
y_{i t}=r_{i t}+\beta_{i} t+\varepsilon_{i t} \tag{30}\\
r_{i t}=r_{i, t-1}+u_{i t} \tag{31}
\end{gather*}
$$

where $\varepsilon_{i t} \sim$ i.i.n. $\left(0, \sigma_{\varepsilon}^{2}\right)$ and $u_{i t} \sim$ i.i.n. $\left(0, \sigma_{u}^{2}\right)$ are mutually independent across i and over t

- By back substitution:

$$
\begin{equation*}
y_{i t}=r_{i 0}+\beta_{i} t+\sum_{s=1}^{t} u_{i s}+\varepsilon_{i t} \tag{32}
\end{equation*}
$$

Residual-based LM test II

■ Null hypothesis revisited:

$$
\begin{equation*}
H_{0}: \sigma_{u}^{2}=0 \tag{33}
\end{equation*}
$$

associated with stationarity

- LM statistic:

$$
\begin{equation*}
L M_{2}=\frac{1}{N}\left[\sum_{i=1}^{N}\left(\frac{1}{T^{2}} \sum_{t=1}^{T} \frac{S_{i t}^{2}}{\hat{\sigma}_{\varepsilon i}^{2}}\right)\right] \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{i t}=\sum_{s=1}^{t} \hat{\varepsilon}_{i s} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\sigma}_{\varepsilon i}^{2}=\frac{1}{T} \sum_{t=1}^{T} \hat{\varepsilon}_{i t}^{2} \tag{36}
\end{equation*}
$$

which allows for heteroskedasticity across i

Residual-based LM test III

- Test statistic:

$$
\begin{equation*}
Z=\sqrt{N} \frac{L M_{2}-\xi}{\zeta} \tag{37}
\end{equation*}
$$

where $\xi=1 / 15$ and $\zeta=11 / 6300$ for the model with constant and trend ($\xi=1 / 6$ and $\zeta=1 / 45$ with constant only)

- Asymptotic distribution:

$$
\begin{equation*}
Z \Rightarrow N(0,1) \tag{38}
\end{equation*}
$$

Moon and Perron test I

■ Moon and Perron (2004)

- Idea: tackle cross-sectional dependence, i.e. control for it
- Null hypothesis:

$$
\begin{equation*}
H_{0}: \rho_{i}=0 \quad \text { for all } i \tag{39}
\end{equation*}
$$

- Alternative hypothesis:

$$
\begin{equation*}
H_{1}: \rho_{i}<0 \quad \text { for some } i \tag{40}
\end{equation*}
$$

- Dynamic factor model:

$$
\begin{gather*}
y_{i t}=\alpha_{i}+y_{i t}^{0} \tag{41}\\
y_{i t}^{0}=\rho_{i} y_{i, t-1}^{0}+\varepsilon_{i t} \tag{42}
\end{gather*}
$$

where $\varepsilon_{i t}$ is generated by M unobservable random factors f_{t}, such that

$$
\begin{equation*}
\varepsilon_{i t}=\Lambda_{i}^{\prime} f_{t}+e_{i t} \tag{43}
\end{equation*}
$$

where Λ_{i} is a vector of nonrandom factor loading coefficients of unknown length M

Moon and Perron test II

- Let Q_{Λ} be the matrix projecting onto the space orthogonal to the factor loadings, purging from cross-sectional dependence; let $\sigma_{e, i}^{2}$ be the variance of $e_{i, t}, w_{e, i}^{2}$, the long-run variance of $e_{i t}$, and $\lambda_{e, i}$, the one-sided long-run variance of $e_{i t}$; let $\sigma_{e}^{2}, w_{e}^{2}$, and λ_{e} be their cross-sectional averages, and ϕ_{e}^{4} be the cross-sectional average of $w_{e, i}^{4}$
- Test statistic:

$$
\begin{equation*}
t_{a}=\frac{\sqrt{N} T\left(\hat{\rho}_{\rho o o l}^{+}-1\right)}{\sqrt{\frac{2 \phi_{4}^{4}}{w_{e}^{4}}}} \tag{44}
\end{equation*}
$$

where the pooled bias-correlated estimate

$$
\begin{equation*}
\hat{\rho}_{\text {pool }}^{+}=\frac{\operatorname{tr}\left(Y_{-1} Q_{\Lambda} Y^{\prime}\right)-N T \lambda_{e}^{N}}{\operatorname{tr}\left(Y_{-1} Q_{\Lambda} Y_{-1}^{\prime}\right)} \tag{45}
\end{equation*}
$$

where Y is a $T \times N$ matrix of the data, Y_{-1} contains lagged values

Moon and Perron test III

- Asymptotic distribution:

$$
\begin{equation*}
t_{a} \Rightarrow N(0,1) \tag{46}
\end{equation*}
$$

where $N \rightarrow \infty$ and $T \rightarrow \infty$ such that $N / T \rightarrow 0$

