Dynamic panel data methods for cross-section panels

Franz Eigner University Vienna

Prepared for UK Econometric Methods of Panel Data with Prof. Robert Kunst

27th May 2009

Structure

- Preliminary considerations
 - Dynamic modelling
 - Bias of the LSDV estimator
- 2 Consistent Estimation
 - GMM estimators
 - Bias corrected LSDV estimators
- 3 Application Winter tourism demand model

Motivation

for linear dynamic panel models

Before: linear fixed effects model

$$y_{it} = \beta x_{it} + \mu_i + \varepsilon_{it}, \ u_{it} = \mu_i + \varepsilon_{it}$$

Now: e.g. including AR(1)

$$y_{it} = \rho y_{i,t-1} + \beta x_{it} + \mu_i + \varepsilon_{it}, \ u_{it} = \mu_i + \varepsilon_{it}$$
 (1)

→ Allowing feedback from current or past shocks

Dynamic modelling adequate when

- **1** Temporal autocorrelation in the residuals ε_{it}
- ② High persistency in the dependent variable y_{it}

Estimation methods Dealing with temporal autocorrelation

here: Inclusion of a dynamic component.
 Find consistent estimator for N → ∞ and T fixed (cross-section panel)

Alternative methods:

- Parks method (FGLS)
- Panel corrected standard errors (PCSE)
 Prais Winston Transformation

Inconsistency of the LSDV estimator in dynamic panel models

LSDV estimator requires strict exogeneity assumption:

$$E(\varepsilon_{i,t} \mid x_i, \mu_i) = 0, \quad t = 1, ..., T; \ i = 1, ..., N$$

Violated by inclusion of $y_{i,t-1}$.

One can show:

 $\widetilde{y}_{i,t-1}$ is negatively correlated with $\widetilde{\varepsilon}_{it}$, due to $cor(y_{i,t-1}, -\frac{1}{T-1}\varepsilon_{i,t-1}) < 0$ and $cor(-\frac{1}{T-1}y_{it}, \varepsilon_{it}) < 0$, where $\widetilde{y}_{i,t-1} = y_{i,t-1} - \frac{1}{T-1}(y_{i2} + \ldots + y_{iT})$ and $\widetilde{\varepsilon}_{it} = \varepsilon_{it} - \frac{1}{T-1}(\varepsilon_{i2} + \ldots + \varepsilon_{iT})$

 \rightarrow LSDV estimator is inconsistent and biased in dynamic models (for $N \rightarrow \infty$ and fixed T)

Bias of the LSDV estimator

Nickell (1981) and Hsiao (2001)

$$\rho^* = \mathop{\mathsf{plim}}_{\mathsf{N} \to \infty}(\hat{\rho}_{\mathit{lsdv}} - \rho) = \frac{-\sigma_{\tilde{\varepsilon}}^2 h(\rho, T)}{(1 - \rho_{\tilde{x}\tilde{y}-1}^2) \sigma_{\tilde{y}-1}^2}$$

$$\begin{array}{l} \beta^* = -\zeta \rho^*, \ \ \text{where} \ \zeta = \sigma_{\!\tilde{x}\tilde{y}-1}/\sigma_{\!\tilde{x}}^2 \\ h(\rho,T) = \frac{(T-1)-T\rho+\rho^T}{T(T-1)(1-\rho)^2} \ \ \text{and} \ \rho_{\!\tilde{x}\tilde{y}-1} = \sigma_{\!\tilde{x}\tilde{y}-1}/\sigma_{\!\tilde{x}}\sigma_{\!\tilde{y}-1} \end{array}$$

annot.: variables denoted as \tilde{x} and \tilde{y} are within-transformed

h(
ho, T) is always positive ightarrow LSDV estimate is downward biased

Bias of the LSDV estimator

Bias is especially severe, when

- lacktriangledown the autoregressive coefficient ho is high
- $\ \ \, \textbf{ 1he ratio of } \sigma^2_{\tilde{\epsilon}}/\sigma^2_{\tilde{\gamma}-1} \text{ is high} \\$

First Difference IV Anderson/Hsiao (1981)

• Eliminating μ_i by differencing (instead of within-transformation)

$$y_{it} = \rho y_{i,t-1} + x'_{it}\beta + \mu_i + \varepsilon_{it}$$
$$\triangle y_{it} = \rho \triangle y_{i,t-1} + \triangle x'_{it}\beta + \triangle \varepsilon_{it}$$

In matrix notation:

$$F_{y} = F_{y-1}\rho + FX\beta + F\varepsilon$$
where $F = I_{N} \otimes F_{T}$ and $F_{T} = \begin{pmatrix} -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & 0 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$

First Difference IV Andersion/Hsiao (1981)

However $\triangle y_{i,t-1}$ is now correlated with the error term $\triangle \varepsilon_{i,t-1}$ \rightarrow using IV method with $y_{i,t-2}$ as instrument for $\triangle y_{i,t-1}$, because

$$E(y_{i,t-2}\triangle\varepsilon_{it})=0$$

ightarrow inefficient, because not all information, e.g. $\triangle arepsilon_{it} \sim \textit{MA}(1)$, is used

Difference-GMM Arellano and Bond (1991)

Efficient estimates are obtained using a GMM framework. Following moments are exploited:

$$E[y_{i,t-s}\triangle \varepsilon_{it}] = 0$$
 and $E[X_{i,t-s}\triangle \varepsilon_{it}] = 0$ for $s \ge 2$; $t = 3,...T$

$$X_{i} = \begin{bmatrix} y_{i2} - y_{i1} & x'_{i3} - x'_{i2} \\ y_{i3} - y_{i2} & x'_{i4} - x'_{i3} \\ \vdots & \vdots \\ y_{i,T-1} - y_{i,T-2} & x'_{iT} - x'_{i,T-1} \end{bmatrix}$$

$$Z_{i} = \begin{bmatrix} [y_{i1}, x'_{i1}, x'_{i2}] & 0 & \cdots & 0 \\ 0 & \ddots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & [y_{i1}, \dots, y_{i,T-2}, x'_{i1}, \dots, x'_{i,T-1}] \end{bmatrix}$$

$$X = (y_{-1}, X), Z = (Z'_{1}, Z'_{2}, \dots, Z'_{N})', \gamma' = (\rho, \beta')$$

Diff-GMM

Idea of the GMM-Framework

L instruments imply a set of L moments, i.a. $g_i(\hat{\beta}) = y_{i,t-s} \triangle \varepsilon_{it}$, where exogeneity holds when $E(g_i(\beta)) = 0$. Each of the L moment equations corresponds to a sample moment $\bar{g}(\hat{\beta}) = \frac{1}{n} \sum_{i=1}^{n} g_i(\hat{\beta})$. Estimator is typically obtained by solving $\bar{g}(\hat{\beta}) = 0$. but here: model overidentification \to minimizing the criterion J_N :

$$J_{N}(\hat{\beta}) = \bar{g}(\hat{\beta})' \hat{W}_{N} \bar{g}(\hat{\beta})$$

or in our notation:

$$J_{N} = \left(\frac{1}{N}\sum_{i=1}^{N}\triangle\varepsilon_{i}^{\prime}Z_{i}\right)\hat{W}_{N}\left(\frac{1}{N}\sum_{i=1}^{N}Z_{i}^{\prime}\triangle\varepsilon_{i}\right)$$

where \hat{W}_N is the estimated weighting matrix.

Diff-GMM

Estimation of the weighting matrix

→ Optimal weighting matrix is the inverse of the moment covariance matrix:

$$W_N = Var(Z' \triangle \varepsilon)^{-1} = (Z'\Omega Z)^{-1}$$

Unless Ω is known, efficient GMM is not feasible \rightarrow two-step procedure

First replace Ω with some simple G (here: assuming ε_{it} i.i.d.)

$$\hat{W}_{1N} = \left(\sum_{i=1}^{N} Z_i' G_T Z_i\right)^{-1} = \left(Z' G Z\right)^{-1}$$

where
$$G = (I_N \otimes G'_T)$$
 and $G_T = F_T F'_T = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & \ddots & 0 \\ 0 & \ddots & \ddots & -1 \\ 0 & 0 & -1 & 2 & 2 \end{bmatrix}$

Diff-GMM Estimation

... delivers (consistent) first-step estimates. Its residuals $\triangle \hat{\varepsilon}_{1i}$ are used for the two-step estimation of \hat{W} .

$$\hat{W} = \left(\sum_{i=1}^{N} Z_i' \triangle \hat{\varepsilon}_{1i} \triangle \hat{\varepsilon}_{1i}' Z_i\right)^{-1}$$

Efficient estimates for the Diff-GMM are then obtained with:

$$\hat{\gamma}^{EGMM} = \left(X' Z \hat{W} Z' X \right)^{-1} X' Z \hat{W} Z' y$$

One can show: under homoskedasticity, one-step estimates are asymptotically equivalent to the two-step estimates.

However:

If y_{it} is highly persistent, instruments are weak. (Blundell and Bond, 1998, Kitazawa, 2001)

one-step

replacing Ω with a sandwich-type proxy $\hat{\Omega}_{\beta_1}$ delivers consistent and robust variances.

$$\widehat{Var}[\hat{\beta}_1] = \left(X'Z\hat{W}_1Z'X\right)^{-1}X'Z\hat{W}_1Z'\hat{\Omega}_{\beta_1}Z\hat{W}_1Z'X\left(X'Z\hat{W}_1Z'X\right)^{-1}$$

two-step

using the optimal weighting matrix $W = (Z'\Omega Z)^{-1}$, above formula reduces to

$$\widehat{Var}[\hat{eta}_2] = \left(X'Z(Z'\hat{\Omega}_{eta_1}Z)^{-1}Z'X\right)^{-1}$$

however: $\widehat{Var}[\hat{\beta}_2]$ can be heavily downward biased \rightarrow Windmeyer's correction (2005)

System-GMM Blundell and Bond (1998)

System of two equations »level equation« and »difference equation«

Additional moments are explored:

$$E[\triangle y_{i,t-1}(\mu_i + \varepsilon_{it})] = 0$$
 and $E[\triangle X_{i,t-1}(\mu_i + \varepsilon_{it})] = 0$, for $t = 3, ..., T$

»where Arellano-Bond instruments differences [...] with levels, Blundell-Bond instruments levels with differences. [...] For random walk-like variables, past changes may indeed be more predictive of current levels than past levels are of current changes« (Roodman, 2006)

→ reduction of weak instrument problem

System-GMM Matrix notation

$$X_{i} = \begin{bmatrix} y_{i2} - y_{i1} & x'_{i3} - x'_{i2} \\ y_{i3} - y_{i2} & x'_{i4} - x'_{i3} \\ \vdots & \vdots \\ y_{i,T-1} - y_{i,T-2} & x'_{iT} - x'_{i,T-1} \\ y_{i2} & x'_{i2} \\ \vdots & \vdots \\ y_{i,T-1} & x'_{iT} \end{bmatrix} Z_{i} = \begin{bmatrix} Z_{i}^{D} & 0 \\ 0 & Z_{i}^{L} \end{bmatrix}$$

$$Z_{i}^{L} = \begin{bmatrix} [\triangle y_{i2}, \triangle x'_{i2}, \triangle x'_{i3}] & 0 & \cdots & 0 \\ 0 & \ddots & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & [\triangle y_{i2}, \dots, \triangle y_{i,T-2}, \triangle x'_{i,2}, \dots, \triangle x'_{i,T}] \end{bmatrix}$$

Validity of the instruments Assumptions and tests

Performance depends strongly on the validity of the instruments.

A valid instrumental variable z requires

- 1) $E[\varepsilon \mid z] = 0$ (exogeneity)
- 2) $cov(z,x) \neq 0$ (relevance)
 - Overidentifying restrictions test (Sargan/Hansen Test) Hansen: $J(\hat{\beta}_{EGMM}) \sim \chi^2_{L-K}$

Sargan: as Hansen but under conditional homoskedasticity

Difference-in-Sargan: testing subset of instruments

$$DS = S_u - S_r \sim \chi^2$$

Arellano and Bond - Autocorrelation test

More instruments increase finite sample bias (Bun/Kiviet, 2002)

ightarrow trade-off between small sample bias and efficiency

Bias corrected LSDV estimators

Consistent estimation by additive bias correction Estimating the extent of the bias

- by using a preliminary consistent estimator Kiviet (1995)
 Hansen (2001)
 Hahn and Kuersteiner (2002) - not for short T
 Bruno (2005) - for unbalanced panels and short T
- without using a preliminary consistent estimator Bun/Carree (2005)

Bruno (2005)

Bias approximations emerge with an increasing level of accuracy. $B_1 = c_1(\bar{T}^{-1}), B_2 = B_1 + c_2(N^{-1}\bar{T}^{-1})$ and $B_3 = B_2 + c_3(N^{-1}\bar{T}^{-2})$ where c_1, c_2 and c_3 depend i.a. on σ_{ε}^2 and γ .

 \rightarrow they are not yet feasible. σ_{ε}^2 and γ have to obtained from a consistent estimator. (AH, AB, BB)

$$LSDVC_i = LSDV - \hat{B}_i$$
, $i = 1, 2$ and 3

Summary of the models

Model	Transformation	Regressors	Consistency
LSDV/FE	Within	$y_{i,t-1}, x_{it}$	no
Bias corrected LSDV	Within	$y_{i,t-1}, x_{it}$	yes
First-difference IV	Δ	$\triangle y_{i,t-1}, \triangle x_{it}$	yes
First-difference GMM	Δ	$\triangle y_{i,t-1}, \triangle x_{it}$	yes
System-GMM	Δ	$\triangle y_{i,t-1}, \triangle x_{it}, y_{i,t-1}, x_{it}$	yes

Comparison of performance according to Monte Carlo Simulations:

- GMM more adequate for large N
- Bias corrected LSDV performs better for small data sets

Modelling winter tourism demand for Austrian ski destinations from 1973 to 2006

Cross section panel data with $N=185^1$ and T=34

Nights	number of overnight stays in winter season
Snow ²	snow cover
GDP ³	income variable
Beds ⁴	infrastructure variable
PP ⁵	relative purchasing power

¹Austrian ski resort database. JOANNEUM Research (2008)

²ZAMG (2009)

³OECD (2008)

⁴Statistik Austria (2008)

⁵OECD (2008)

Commands in statistical software packages

With STATA

- GMMs: xtabond/xtdpdsys or xtabond2 (Roodman, 2006)
- Bias corrected LSDV: xtlsdvc (Bruno, 2005)
- Cross section autocorrelation test (Pesaran, 2004): xtcsd

With R

- Package plm (Yves/Giovanni, 2008) contains i.a. function
- pgmm for GMMs

other: SAS, LIMDEP, ...

Estimation table

Winter tourism demand for Austrian ski destinations from 1973 to 2006

	pool	fe			diffgmm2	sysgmm2	sysgmm_v	sysgmm_g
L.NIGHTS	0.716***	0.609***			0.475***			
		(10.54)			(6.35)	(11.63)		
L2.NIGHTS	0.215***	0.174***	0.187***	0.161***	0.166***	0.163***	0.268***	0.179***
	(3.92)	(3.82)	(4.36)	(16.72)	(5.44)	(3.93)	(3.69)	(3.78)
SNOW / 100	0.067***	0.076***	0.070***	0.071***	0.071***	0.097***	0.153***	0.095***
	(5.70)	(6.49)	(4.04)	(4.44)	(3.65)	(4.41)	(2.70)	(5.35)
log(BEDS)					0.202***			
	(7.40)	(5.53)	(5.80)	(10.34)	(4.41)	(6.19)		(7.87)
log(GDP)					0.977			
	(0.73)	(1.42)	(3.29)	(5.85)	(1.45)	(1.49)	(0.97)	(2.72)
log(PP)	-0.041***	-0.035***			-0.024			
	(-3.35)		(-2.31)		(-0.38)	(-0.16)	(-1.17)	(0.30)
R2 within		0.776	0.785					
corr(x i,mu i)		0.954	0.924					
sigma u		0.193	0.174					
sigma e		0.147	0.145					
rho		0.632	0.592					
Pesaran AR		74.3	2.8					
Pesaran p value		0.000	0.005					
t-statistics	Robust	Robust	Robust		Corrected	Corrected	Corrected	Correcte
F	15133.0	1129.5	355.7		102.7	37285.5	274410.0	211497.0
diff AR(2)					0.621	0.901	0.345	0.926
Sargan test					0.000	0.000	0.000	
Hansen test					1.000	1.000	0.202	
Diff_Sarg IV						1.000	0.752	1.000
Diff_Sarg GMM						1.000	0.510	1.000
No. of instruments					562	594	147	893
No. of groups	185	185	185		185	185	185	185
No. of observations	5920	5920	5920	5920	5735	5920	5920	5920

^{*} p<0.1, ** p<0.05, *** p<0.01

Instrument list for the GMM estimators

Equation	Туре	DIFF_GMM	SYS_GMM	SYS_GMM_valid	SYS_GMM_gdp
First	IV	Diff.	Diff.	-	Diff.
difference		(SNOW	(SNOW log_PP		(log_BEDS SNOW
equation		log_PP	log_GDP		log_PP)
		log_GDP	log_BEDS)		time dummies
		log_BEDS)	time_dummies		
		time_dummies			
	GMM	Lag(2).	Lag(2).	Lag(4-7).	Lag(2).
		log_NIGHTS	log_NIGHTS	log_NIGHTS	log_NIGHTS
					log_GDP
Level equation	IV	-		log_GDP	log_GDP SNOW
				SNOW log_PP	log_PP
	GMM	-	Diff.Lag.	Diff.(Lag(3).	Diff.Lag.(log_NIG
			log_NIGHTS	log_NIGHTS)	HTS log_GDP)

Final considerations concerning the tourism demand model estimates

 \rightarrow Biases in the estimates seem to follow the theory

however some open questions concerning the

- consequence of cross section dependence Potential loss in efficiency (Phillips and Sul, 2003)
- validity of the instruments
- choice of the best estimator