Presentation of the seminar paper:

Investigation of panel data featuring different characteristics that affect football results in the German Football League (1965-1990):

Controlling for other factors, are there significant effects of changes inside the team which make it easier to influence success?

PhD-Course "Econometric Methods of Panel Data" Hosted by Prof. Robert Kunst University of Vienna June 10th, 2009

1.Introduction 2.Inspecting the Data 3.Estimation of Different Models 4.Comparison and Results 5.Conclusions/Discussion

Motivation

- State of work:
 - In progress, together with Berno Büchel (University of Bielefeld)
- Under investigation:
 - Success in business/poltics tricky to measure, while outcome in sports is somehow one-dimensional and "easy trackable"
 - Accessable: success ------ change Changes are negatively influenced by degree of success
 - Higher self-esteem (presumably dominating) vs. "pressure leads to higher effort"
 - Not evident: Coach's trade-off: Learning vs. pressure
- 3. Basic approach:
 - Success (goal difference) as explained variable
 - Nr. of changes explaining variable (along with different control variables)
 - Distinction between three base cases (change after a victory, after a draw, and after a defeat)

1.Introduction 2.Inspecting the Data 3.Estimation of Different Models 4.Comparison and Results 5.Conclusions/Discussion

Used Data

Data provider:

IMPIRE AG (Germany)

Data:

- Football results in the first German football league
- 1965-1990: 26 seasons*34 games, 39 clubs (15912 unbalanced observations)
- Covering different aspects as: Involved clubs, hosting club, result, clubs' chart positions, number of player exchanges compared to last game

Data modifications:

- First game of each season removed
- Results of first game still stored and used as lagged values in second game to prevent additional loss of observations

Descriptive Statistics of Dependent Variable

Series: GODI Cross-sections: 39 Time points: 858 Observations (Unbalanced): 15444				
Mean	-0.000194			
Median	0.000000			
Maximum	12.00000			
Minimum	-12.00000			
Std. Dev.	2.134034			
Skewness	9.32e-05			
Kurtosis	3.916738			

1.Introduction 2.Inspecting the Data 3.Estimation of Different Models 4.Comparison and Results 5.Conclusions/Discussion

Descriptive Statistics of Dependent Variable

CLUB	Mean	Max	Min.	Std. Dev.	Obs.
1860 München	-0.030303	8.000000	-5.000000	2.029963	264
Alemannia Aachen	-0.595960	4.000000	-6.000000	2.161439	99
Bayern München	0.984848	10.00000	-7.000000	2.236538	858
Arminia Bielefeld	-0.496212	5.000000	-10.00000	2.022681	264
VfL Bochum	-0.175758	6.000000	-6.000000	1.864781	660
Borussia Neunkirchen	-1.651515	2.000000	-10.00000	2.471327	66
Eintracht Braunschweig	-0.171717	6.000000	-10.00000	2.027004	594
Werder Bremen	0.225455	7.000000	-7.000000	2.104106	825
BW 90 Berlin	-1.121212	3.000000	-7.000000	1.932576	33
Darmstadt 98	-1.075758	3.000000	-6.000000	1.986962	66
Borussia Dortmund	0.052342	10.00000	-12.00000	2.229585	726
MSV Duisburg	-0.210339	9.000000	-7.000000	1.981693	561
FC Homburg	-0.919192	3.000000	-6.000000	1.888076	99
Fortuna Düsseldorf	-0.223285	7.000000	-7.000000	2.093936	627
Fortuna Köln	-0.939394	3.000000	-5.000000	2.192878	33
Eintracht Frankfurt	0.158508	8.000000	-7.000000	2.098075	858
Hamburger SV	0.413753	8.000000	-7.000000	2.117912	858
Hannover 96	-0.354312	6.000000	-7.000000	1.944405	429
Hertha BSC Berlin	-0.136364	8.000000	-6.000000	1.970723	462
Karlsruher SC	-0.587413	5.000000	-8.000000	2.067761	429
All	-0.000194	12.00000	-12.00000	2.134034	15444

Descriptive Statistics of Dependent Variable

CLUB	Mean	Max	Min.	Std. Dev.	Obs.
Bayer/KFC Uerdingen	-0.371901	5.000000	-6.000000	1.996401	363
1.FC Kaiserslautern	0.037296	7.000000	-7.000000	2.120855	858
1.FC Köln	0.459207	8.000000	-7.000000	2.086539	858
Bayer Leverkusen	-0.080808	5.000000	-5.000000	1.787024	396
Waldhof Mannheim	-0.324675	5.000000	-6.000000	1.898110	231
Bor. Mönchengladbach	0.567599	12.00000	-7.000000	2.237523	858
1.FC Nürnberg	-0.260606	5.000000	-7.000000	1.974217	495
RW Oberhausen	-0.734848	7.000000	-7.000000	2.202912	132
Offenbacher Kickers	-0.519481	5.000000	-9.000000	2.200457	231
Rot-Weiss Essen	-0.584416	4.000000	-8.000000	2.076896	231
1.FC Saarbrücken	-0.676768	5.000000	-6.000000	1.878060	99
Schalke 04	-0.132756	7.000000	-11.00000	2.167744	693
FC. St. Pauli	-0.606061	4.000000	-7.000000	1.780975	132
VfB Stuttgart	0.308081	7.000000	-6.000000	2.192629	792
Stuttgarter Kickers	-0.787879	3.000000	-6.000000	2.341975	33
Tasmania Berlin	-2.878788	1.000000	-9.000000	2.117746	33
TeBe Berlin	-1.272727	4.000000	-9.000000	2.256924	66
Wattenscheid 09	-0.333333	3.000000	-7.000000	1.963203	33
Wuppertaler SV	-0.626263	5.000000	-6.000000	2.112093	99
All	-0.000194	12.00000	-12.00000	2.134034	15444

Estimated Relations and Expected Signs

Impact of Success on Number of Exchanges

Pooled OLS

Introducing Remarks:

- Would mean that there are no individual differences between clubs and no common effects over time
- A priori: Neglecting presumable individual effects will result in omission bias

2. Theoretical Model:

$$y_{it} = \alpha + \beta' X_{it} + v_{it}$$

3. Estimated Model:

$$GODI_{it} = C + C(2) * GODI_{i,t-1} + C(3) * CHNG_{it} + C(4) * CHNG_{it} * WIN_{i,t-1}$$

 $+ C(5) * CHNG * LOSS_{i,t-1} + C(6) * POS_{it} + C(7) * POSO_{it} + C(8) * HOME_{it}$
 $+ v_{it}$

1.Introduction 2.Inspecting the Data 3.Estimation of Different Models 4.Comparison and Results 5.Conclusions/Discussion

Pooled OLS

4. Estimation output:

Dependent Variable: GODI

Method: Panel Least Squares (Pooled OLS)

Sample (T): 1 858 Cross-sections included (N): 39

Total panel (unbalanced) observations: 15444

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GODI(-1)	0.043662	0.010506	4.155980	0.0000
CHNG	-0.034848	0.022151	-1.573197	0.1157
WIN(-1)*CHNG	-0.006724	0.028029	-0.239884	0.8104
LOSS(-1)*CHNG	0.026385	0.024032	1.097902	0.2723
POS	-0.066386	0.003139	-21.15167	0.0000
POSO	0.072059	0.002923	24.64980	0.0000
HOME	1.825248	0.031971	57.09067	0.0000
С	-0.934452	0.051748	-18.05787	0.0000
R-squared	0.222831	Mean depend	dent var	-0.000194
Adjusted R-squared	0.222479	S.D. depende	ent var	2.134034
S.E. of regression	1.881731	Akaike info c	riterion	4.102779
Sum squared resid	54657.51	Schwarz crite	erion	4.106739
Log likelihood	-31673.66	F-statistic		632.2622
Durbin-Watson stat	1.994927	Prob(F-statis	tic)	0.000000

Andreas Brunhart (June 10th, 2009): 11/30

1.Introduction 2.Inspecting the Data 3.Estimation of Different Models 4.Comparison and Results 5.Conclusions/Discussion

Pooled OLS

5. Comments:

- Negative significant intercept
- Significant controlling variables (GODI_{t-1}, POS, POSO, HOME)
- Effects of CHNG turn out to be unclear

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GODI(-1) CHNG WIN(-1)*CHNG LOSS(-1)*CHNG POS	0.043662	0.010506	4.155980	0.0000
	-0.034848	0.022151	-1.573197	0.1157
	-0.006724	0.028029	-0.239884	0.8104
	0.026385	0.024032	1.097902	0.2723
	-0.066386	0.003139	-21.15167	0.0000
POSO	0.072059	0.002923	24.64980	0.0000
HOME	1.825248	0.031971	57.09067	0.0000
C	-0.934452	0.051748	-18.05787	0.0000

Fixed Effects (One-Way)

- 1. Introducing remarks:
 - Accounts for unobserved differences between clubs (individual effects) but neglects common effects over time
 - A priori: Individual effects "make sense", rather than time-effects
- 2. Theoretical model:

$$y_{it} = \alpha + \beta' X_{it} + \mu_i + v_{it}$$

3. Estimated model:

$$GODI_{it} = [C] + C(2)*GODI_{i,t-1} + C(3)*CHNG_{it} + C(4)*CHNG_{it}*WIN_{i,t-1}$$

$$+ C(5)*CHNG*LOSS_{i,t-1} + C(6)*POS_{it} + C(7)*POSO_{it} + C(8)*HOME_{it}$$

$$+ \mu_i + \nu_{it}$$

1.Introduction 2.Inspecting the Data 3.Estimation of Different Models 4.Comparison and Results 5.Conclusions/Discussion

Fixed Effects (One-Way)

4. Estimation output:

Dependent Variable: GODI

Method: Panel Least Squares (LSDV)
Sample: 1 858 Cross-section included: 39
Total panel (unbalanced) observations: 15444

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GODI(-1)	0.030453	0.010413	2.924661	0.0035
CHNG	-0.041622	0.022010	-1.891091	0.0586
WIN(-1)*CHNG	-0.000950	0.027739	-0.034261	0.9727
LOSS(-1)*CHNG	0.018366	0.023817	0.771155	0.4406
POS	-0.033290	0.003592	-9.268473	0.0000
POSO	0.071674	0.002889	24.80911	0.0000
HOME	1.794975	0.031622	56.76402	0.0000
С	-1.217280	0.053496	-22.75442	0.0000

Effects Specification

Cross-section fixed (dummy variables)

R-squared Adjusted R-squared	0.243415 0.241203	Mean dependent var S.D. dependent var	-0.000194 2.134034
S.E. of regression	1.858934	Akaike info criterion	4.080858
Sum squared resid	53209.90	Schwarz criterion	4.103629
Log likelihood	-31466.38	F-statistic	110.0881
Durbin-Watson stat	1.997299	Prob(F-statistic)	0.000000

Andreas Brunhart (June 10th, 2009): 14/30

Fixed Effects (One-Way)

5. Comments:

- Negative intercept (In this case of secondary relevance due to estimation procedure chosen by software)
- Significant controlling variables (GODI_{t-1}, POS, POSO, HOME)
- Effects of CHNG again unclear
- Robust covariance matrix estimation procedures (Arellano [1987] and Beck/Katz [1995]) lead to analog results
- Large T (=858) and small autoregressive coefficient (0.03) should lead to neglectable Nickell (1981) bias: Dynamics sufficiently captured

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GODI(-1)	0.030453	0.010413	2.924661	0.0035
CHNG	-0.041622	0.022010	-1.891091	0.0586
WIN(-1)*CHNG	-0.000950	0.027739	-0.034261	0.9727
LOSS(-1)*CHNG	0.018366	0.023817	0.771155	0.4406
POS	-0.033290	0.003592	-9.268473	0.0000
POSO	0.071674	0.002889	24.80911	0.0000
HOME	1.794975	0.031622	56.76402	0.0000
С	-1.217280	0.053496	-22.75442	0.0000

Fixed Effects (Two-Way)

- 1. Introducing remarks:
 - Two significant error components would indicate that there are differences between the clubs (individual effects) and also common effects over time
 - A priori: Individual effects are easy imaginable while time effects are implausible
- 2. Theoretical Model:

$$y_{it} = \alpha + \beta' X_{it} + \mu_i + \lambda_t + \nu_{it}$$

3. Estimated Model:

$$GODI_{it} = [C] + C(2) * GODI_{i,t-1} + C(3) * CHNG_{it} + C(4) * CHNG_{it} * WIN_{i,t-1}$$

$$+ C(5) * CHNG * LOSS_{i,t-1} + C(6) * POS_{it} + C(7) * POSO_{it} + C(8) * HOME_{it}$$

$$+ \mu_{i} + \lambda_{t} + \nu_{it}$$

1.Introduction 2.Inspecting the Data 3.Estimation of Different Models 4.Comparison and Results 5.Conclusions/Discussion

Fixed Effects (Two-Way)

4. Estimation output:

Dependent Variable: GODI

Method: Panel Least Squares (LSDV)
Sample: 1 858 Cross-sections included: 39
Total panel (unbalanced) observations: 15444

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GODI(-1) CHNG WIN(-1)*CHNG LOSS(-1)*CHNG POS POSO HOME	0.032753 -0.047337 -0.000412 0.018851 -0.032575 0.072160 1.797803	0.010804 0.023893 0.029523 0.025458 0.003690 0.002978 0.032611	3.031386 -1.981242 -0.013972 0.740457 -8.828522 24.23480 55.12893	0.0024 0.0476 0.9889 0.4590 0.0000 0.0000
C	-1.222995	0.055488	-22.04066	0.0000

Effects Specification

Cross-section fixed (dummy variables)

Period fixed (dummy variables)

R-squared	0.250070	Mean dependent var	-0.000194
Adjusted R-squared	0.203551	S.D. dependent var	2.134034
S.E. of regression	1.904498	Akaike info criterion	4.183004
Sum squared resid	52741.82	Schwarz criterion	4.630000
Log likelihood Durbin-Watson stat	-31398.16 1.996516	F-statistic Prob(F-statistic)	5.375624 0.000000

Andreas Brunhart (June 10th, 2009): 17/30

Fixed Effects (Two-Way)

5. Comments:

- Negative intercept (In this case again of secondary relevance due to estimation procedure chosen by software)
- Significant controlling variables (GODI_{t-1}, POS, POSO, HOME),
 very similar estimates compared to FE (1-way)
- Estimated time effects are small and seem insignificant
- Effects of CHNG again unclear

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GODI(-1)	0.032753	0.010804	3.031386	0.0024
CHNG	-0.047337	0.023893	-1.981242	0.0476
WIN(-1)*CHNG	-0.000412	0.029523	-0.013972	0.9889
LOSS(-1)*CHNG	0.018851	0.025458	0.740457	0.4590
POS	-0.032575	0.003690	-8.828522	0.0000
POSO	0.072160	0.002978	24.23480	0.0000
HOME	1.797803	0.032611	55.12893	0.0000
С	-1.222995	0.055488	-22.04066	0.0000

Random Effects (One-Way)

- 1. Introducing remarks:
 - Assumes that unobserved effects are uncorrelated with explanatory variables
 - Accounts for unobserved differences between clubs (individual effects) but neglects common effects over time
 - A priori: Individual effects "make sense", but small individual dimension (N=39) compared to large time dimension (T=858) rather favours the view of non-random effects
- 2. Theoretical model:

$$y_{it} = \alpha + \beta' X_{it} + \mu_i + \nu_{it} \qquad \mu_i \sim i.i.d. \left(0, \sigma_{\mu}^2\right) \qquad \nu_{it} \sim i.i.d. \left(0, \sigma_{\nu}^2\right)$$

3. Estimated model:

$$GODI_{it} = C + C(2)*GODI_{i,t-1} + C(3)*CHNG_{it} + C(4)*CHNG_{it}*WIN_{i,t-1}$$
$$+ C(5)*CHNG*LOSS_{i,t-1} + C(6)*POS_{it} + C(7)*POSO_{it} + C(8)*HOME_{it}$$
$$+ \mu_i + \nu_{it}$$

Andreas Brunhart (June 10th, 2009): 19/30

Random Effects (One-Way)

4. Estimation output of different error component variance estimators:

Random Effects (1-way, individual effects)					
Dep. Var: GODI	Swamy/Arora	Wallace/Hussain	Wansbeek/Kapteyn		
GODI(-1)	0.043662***	0.033147***	0.032207***		
CHNG	-0.034848 (p=0.1113)	-0.040928* (p=0.0635)	-0.041235* (p=0.0609)		
WIN(-1)*CHNG	-0.006724	-0.003580	-0.002810		
LOSS(-1)*CHNG	0.026385	0.016917	0.017035		
POS	-0.066386***	-0.039505***	-0.037251***		
POSO	0.072059***	0.071739***	0.071715***		
HOME	1.825248***	1.801744***	1.799455***		
С	-0.934452***	-1.366581***	-1.420928***		
R ²	0.222831	0.209035	0.208397		
σ_{μ}	0	0.258140	0.349146		
$\sigma_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	1.858934	1.8648601	1.858934		
θ	0	0.760544	0.821164		

Andreas Brunhart (June 10th, 2009): 20/30

Random Effects (One-Way)

- 5. Comments:
- Swamy/Arora (1972) seems not appropriate in this case, since it reports all indivdual effects to be zero

Random Effects (1-way, individual effects)					
Dep. Var: GODI	Dep. Var: GODI Swamy/Arora		Wansbeek/Kapteyn		
GODI(-1)	0.043662***	0.033147***	0.032207***		
CHNG	-0.034848 (p=0.1113)	-0.040928* (p=0.0635)	-0.041235* (p=0.0609)		
WIN(-1)*CHNG	-0.006724	-0.003580	-0.002810		
LOSS(-1)*CHNG	0.026385	0.016917	0.017035		
POS	-0.066386***	-0.039505***	-0.037251***		
POSO	0.072059***	0.071739***	0.071715***		
HOME	1.825248***	1.801744***	1.799455***		
С	-0.934452***	-1.366581***	-1.420928***		
R ²	0.222831	0.209035	0.208397		
σ_{μ}	0	0.258140	0.349146		
$\sigma_{\scriptscriptstyle V}$	1.858934	1.8648601	1.858934		
θ	0	0.760544	0.821164		

- Wallace/Hussain (1969) provides positive estimates for the individual effects, but Hausman-Test cannot be conducted
- Wansbeek/Kapteyn (1989) yields very similar estimates of covariates and effects but Hausman-Test can be conducted. This procedure obtaines $\theta = 0.82$:

$$\theta = 0$$

$$\theta = 0.82 \ \theta = 1$$

Andreas Brunhart (June 10th, 2009): 21/30

Comparing the Different Models

Dep.Variable: GODI	[1] Pooled OLS	[2] Fixed Effects (1-way)	[3] Fixed Effects (2-way)	[4] Random Effects (1-way)
GODI(-1)	0.043662***	0.030453***	0.032753***	0.032207***
CHNG	-0.034848 (p=0.1157)	-0.041622* (p=0.0586)	-0.047337**(p=0.0476)	-0.041235* (p=0.0609)
CHNG*WIN(-1)	-0.006724	-0.000950	-0.000412	-0.002810
CHNG*LOSS(-1)	0.026385	0.018366	0.018851	0.017035
POS	-0.066386***	-0.033290***	-0.032575***	-0.037251***
POSO	0.072059***	0.071674***	0.072160***	0.071715***
HOME	1.825248***	1.794975***	1.797803***	1.799455***
С	-0.934452***	-1.217280***	-1.222995***	-1.420928***
R ² / adj.R ²	0.206413 / 0.206105	0.243415 / 0.241203	0.250070 / 0.203551	0.208397 / 0.208038

- → Explaining Variables have same significance within the different model spedifications, only significance of CHNG varies
- → [2], [3], and [4] provide comparable coefficient and S.E. estimates

1.Introduction 2.Inspecting the Data 3.Estimation of Different Models 4.Comparison and Results 5.Conclusions/Discussion

Choosing a Model

Tests	H ₀	H _A	p-value	Proposed Model	
F	Pooled OLS	Fixed Effects (1-way)	0	FE(1 way) \ Paolad OLS	
	Pooled OLS	Fixed Effects (2-way) 1 Fixed Effects (2-way) 1 Fixed Effects (2-way) 1		FE(1-way) > Pooled OLS	
	Fixed Effects (1-way)			~ r L(2-way)	
LR	Pooled OLS	Fixed Effects (1-way)	0	FE(1 way)\ Basis Ol S	
	Pooled OLS	Fixed Effects (2-way)	1	FE(1-way)≻ Pooled OLS ≻ FE(2-way)	
	Fixed Effects (1-way)	Fixed Effects (2-way)	1		
Hausman	Random Effects (1-way)	Fixed Effects (1-way)	0	FE(1-way)≻ RE(1-way)	
Information Criteria (Akaike and Schwarz) also favour FE(1-way)					

- Different evaluation methods provide coherent results
- Fixed Effects (1-way) appears to be the most appropriate specification for the underlying data
- Perfectly in line with a priori considerations

Chosen Model: Fixed Effects (One-Way)

$$GODI_{it} = [-1.2173^{***}] + 0.0305^{***} \cdot GODI_{i,t-1} - 0.0416^{*} \cdot CHNG_{it} - 0.0010 \cdot CHNG_{it} \cdot WIN_{i,t-1}$$

$$+ 0.0184 \cdot CHNG_{it} \cdot LOSS_{i,t-1} - 0.0333^{***} \cdot POS_{it} + 0.0717^{***} \cdot POSO_{it} + 1.7950^{***} \cdot HOME_{it}$$

$$+ \mu_{i} + \nu_{it}$$

- GODI_{t-1}: As expected, goal difference is a positive function of the past goal difference for all the three cases $(GODI_{t-1} = 0, >0, <0)$
- **?** CHNG: Even though coefficient signs yields interesting insights, they remain weak since t-values and F-tests are not significant for alle the three cases ($GODI_{t-1} = 0$, >0, <0)
- POS: Obviously, own strength is positively related to success (Own strength is measured by the proxy chart position, which is a decreasing function of strength)
- POSO: Opponent's strength is negatively related to success (Opponent's strength is measured by the proxy chart position, which is a decreasing function of strength)
- HOME: Not surprisingly, there exists a strong and highly significant home advantage
- Anticipated impacts of controlling variables are confirmed by the covariates estimates, while influence of interest (CHNG on GODI) remains unclear

Chosen Model: Fixed Effects (One-Way)

Dep.Variable:	Fixed Effects	Fixed Effects	Fixed Effects	
GODI (1-way)		(1-way)	(1-way)	
GODI(-1)	0.030453***	0.030453***	0.030453***	
CHNG	-0.041622* (p=0.0586)	-0.041622* (p=0.0586)	-0.041622* (p=0.0586)	
CHNG*WIN(-1)	-0.000950 (p=0.9727)	-0.000950 (p=09727)	-0.000950	
CHNG*LOSS(-1)	0.018366 (p=0.4406)	0.018366	0.018366 (p=0.4406)	
POS	-0.033290***	-0.033290***	-0.033290***	
POSO	0.071674***	0.071674***	0.071674***	
HOME	1.794975***	1.794975***	1.794975***	
С	-1.217280***		-1.217280***	
F-Test	p=0.1325	p=0.1437	p=0.0701	

- → Evaluation of the different cases (GODI_{t-1} =0, >0, <0) regarding F-Tests and the t-value of the base group (GODI_{t-1} =0) indicate no clear significance of CHNG_t on (GODI_t)
- → Therefore, we have no clear indication that the coach's decisions as a reaction on past success (shown earlier) singificantly influence success whatsoever the result in past game was

Chosen Model: Fixed Effects (One-Way)

Dep.Variable: GODI	Fixed Effects (1-way)	Fixed Effects (1-way)	Fixed Effects (1-way)
GODI(-1)	0.030453 (p=0.0035)	0.030453 (p=0.0035)	0.030453 (p=0.0035)
CHNG	-0.041622*	-0.041622*	-0.041622*
CHNG*WIN(-1)	-0.000950 (p=0.9727)	-0.000950 (p=0.9727)	-0.000950
CHNG*LOSS(-1)	0.018366 (p=0.4406)	0.018366	0.018366 (p=0.4406)
POS	-0.033290***	-0.033290***	-0.033290***
POSO	0.071674***	0.071674***	0.071674***
HOME	1.794975***	1.794975***	1.794975***
С	-1.217280***	-1.217280***	-1.217280***
F-Test	p=0.0144	p=0.0135	p=0.0080

→ Evaluation of the different cases (GODI_{t-1} =0, >0, <0) regarding F-Tests and the t-value of the base group (GODI_{t-1} =0) indicate clear significance of GODI_{t-1} (on GODI_t)

Chosen Model: Fixed Effects (One-Way)

	Club	Ind. Effect	Obs		Club	Ind. Effect	Obs
1	1860 München	0.023028	264	21	Bayer/KFC Uerdingen	-0.307683	363
2	Alemannia Aachen	-0.480458	99	22	1.FC Kaiserslautern	0.027000	858
3	Bayern München	0.731727	858	23	1.FC Köln	0.361328	858
4	Arminia Bielefeld	-0.313018	264	24	Bayer Leverkusen	-0.090010	396
5	VfL Bochum	-0.104594	660	25	Waldhof Mannheim	-0.260302	231
6	Bor. Neunkirchen	-1.349134	66	26	Bor. Mönchengladbach	0.432669	858
7	Eintr. Braunschweig	-0.184072	594	27	1.FC Nürnberg	-0.164694	495
8	Werder Bremen	0.184825	825	28	RW Oberhausen	-0.549832	132
9	BW 90 Berlin	-0.815350	33	29	Offenbacher Kickers	-0.440666	231
10	Darmstadt 98	-0.797142	66	30	Rot-Weiss Essen	-0.496608	231
11	Borussia Dortmund	0.040195	726	31	1.FC Saarbrücken	-0.441468	99
12	MSV Duisburg	-0.167549	561	32	Schalke 04	-0.099923	693
13	FC Homburg	-0.659677	99	33	FC. St. Pauli	-0.418882	132
14	Fortuna Düsseldorf	-0.182693	627	34	VfB Stuttgart	0.231320	792
15	Fortuna Köln	-0.748745	33	35	Stuttgarter Kickers	-0.502470	33
16	Eintracht Frankfurt	0.138205	858	36	Tasmania Berlin	-2.470812	33
17	Hamburger SV	0.312917	858	37	TeBe Berlin	-1.023995	66
18	Hannover 96	-0.235046	429	38	Wattenscheid 09	-0.326807	33
19	Hertha BSC Berlin	-0.123964	462	39	Wuppertaler SV	-0.529424	99
20	Karlsruher SC	-0.422444	429		Weighted Total	0	15444

Some Concluding Remarks

- → Controlling variables are very significant and of expected nature, while impact of changes on success remain unclear (change → success):

 Therefore, we have no clear indication that the coach's decisions as a reaction on past success (shown earlier) singificantly influence success whatsoever the result in past game was
- → Possible source of insignificant influence of interest (CHNG on GODI) for all three groups (GODI_{t-1} =0, >0, <0):</p>
 - Not possible to account for the distinction between forced exchanges and voluntary modification of the team line-up as a way to influence outcome
- Possible drawback of usage of data set:
 - .Unbalancedness" is systematic
- → Opposite direction (success → change) would be worth further examinations

1.Introduction 2.The Data 3.Pooled OLS and Effects-Models 4.Comparison/Possible Modifications 5.Conclusions/Discussion

Thanks for your attention!

Questions and comments VERY welcome...

andreas.brunhart@gmx.li

1.Introduction 2.The Data 3.Pooled OLS and Effects-Models 4.Comparison/Possible Modifications 5.Conclusions/Discussion

Quoted Literature

AKAIKE, H. (1974): "A New Look at the Statistical Model Identification", *IEEE Transactions on Automatic Control*, AC-19, p.716-723.

AMEMIYA, T. (1971): "The estimation of the variances in a variance-components model", *International Economic Review* 12, p.1-13.

ARELLANO, M. (1987): "Computing Robust Standard Errors for Within-Groups Estimators", Oxford Bulletin of Economics and Statistics 49, p.431-434.

BECK, N. AND J.N. KATZ (1995): "What to do (and not to do) with Time-Series Cross-Section Data", *The American Political Science Review* 89, p.634-647

BALTAGI, B. H. (2005): "Econometric Analysis of Panel Data".

HAUSMAN, J. A. (1978): "Specification Tests in Econometrics", *Econometrica* 46, p.1251-1271.

NICKELL, S (1981): "Biases in dynamic models with fixed effects, *Econometrica* 49, p.1417-1426.

SCHWARZ, G. (1978): "Estimating the dimension of a model", Annals of Statistics 6, p.461-464.

SWAMY, P.A. AND S.S. ARORA (1972): "The Exact Finite Sample Properties of the Estimators of Coefficients in the Error Components Regression Models", *Econometrica* 40, p.261-275.

WALLACE, T.D. AND A. HUSSAIN (1969): "The use of error components models in comining cross-section and time-series data", *Econometrica* 37, p.55-72.

Wansbeek, T. and A. Kapteyn (1989): "Estimation of the Error Components Model with Incomplete Panels", *Journal of Econometrics* 41, p.341-361.

WHITE, H. (1980): "A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity", *Econometrica* 48, p.817-838.

WOOLDRIDGE, J.M. (2002): "Econometric Analysis of Cross Section and Panel Data".