Bayesian Theory	Pooled Model	Individual Effects	Random Coefficients
00000	000	000	00

Bayesian Estimation of Panel Models

C. Berka/S. Humer/M. Moser

15 June 2011

Bayesian Theory 00000	Pooled Model	Individual Effects	Random Coefficients
Agenda			

1 Bayesian Theory

2 Pooled Model

Individual Effects

Bayesian Theory •0000	Pooled Model	Individual Effects	Random Coefficients
What is the Bay	esian Approach?	>	

- $\bullet\,$ How information in the data modifies a reseacher's beliefs about the parameters θ
- Additional information is formalised into $p(\theta)$
- Combine prior via Bayes' theorem with the data

	Frequentist	Bayesian
heta	true value	random
Output	$\widehat{ heta}$	$p(\theta y)$
Beliefs	ad hoc	p(heta)
Probability	frequency	degree of belief

Table: Frequentist vs. Bayesian Approach

Bayesian Theory 00000	Pooled Model	Individual Effects	Random Coefficients
Tasks/Problems			

- Choosing a prior
 - informative vs. ignorance priors
 - results from previous studies
- Finding the posterior
 - mathematically demanding
 - advanced computational methods
- Convincing others
 - sensitivity analysis

Bayesian Theory	Pooled Model	Individual Effects	Random Coefficients
Bayesian Econo	metrics		

• Basic Probability Theory:

$$p(A,B) = p(A|B)p(B) = p(B|A)p(A)$$

• Rearranging gives Bayes Rule:

$$p(B|A) = \frac{p(A|B)p(B)}{p(A)}$$

• In Econometrics we search parameters (θ) given the data (y):

$$\underbrace{p(\theta|y)}_{\textit{posterior}} \propto \underbrace{p(y|\theta)}_{\textit{likelihood}} \underbrace{p(\theta)}_{\textit{prior}}$$

Bayesian Theory 000●0	Pooled Model	Individual Effects	Random Coefficients
Posterior = Like	lihood x Prior		

- $p(\theta|y)$ the posterior
 - $\bullet\,$ random distribution of θ
 - $\rightarrow\,$ take uncertainty into account

 $p(\boldsymbol{y}|\boldsymbol{\theta})$ — the likelihood

• best guess on θ out of y

 $p(\theta)$ — the prior

- information before seeing the data
 - e.g. constant returns to scale in production function

Precision $\frac{1}{\sigma^2}$ of the prior and the likelihood are the relative weights which lead to the posterior distribution of θ .

Bayesian Theory Pooled Model Individual Effects **Random Coefficients** 00000

Illustration of Prior, Likelihood & Posterior

Bayesian Theory 00000	Pooled Model ●○○	Individual Effects	Random Coefficients
The Pooled Mo	odel		

Same linear relationship holds for every individual

 $y_i = X_i\beta + \epsilon_i$

i = 1, ..., N β : k coefficients + intercept

Assumptions:

• $\epsilon_i \sim N(0_T, h^{-1}I_T)$: multivariate Normal distribution $(\sigma^2 = \frac{1}{h})$

2 ϵ_i and ϵ_j are independent for $i \neq j$

Solution All elements of X_i are fixed or independent of ϵ_i with a probability function $p(X_i|\lambda)$, where $\beta, h \notin \lambda$

Assumptions lead to a likelihood function of the form:

$$p(y|\beta,h) = \prod_{i=1}^{N} \frac{h^{\frac{1}{2}}}{2\pi^{\frac{T}{2}}} \left\{ \exp\left[-\frac{h}{2}(y_i - X_i\beta)'(y_i - X_i\beta)\right] \right\}$$
$$= \frac{1}{2\pi^{\frac{NT}{2}}} \left\{ h^{\frac{k}{2}} \exp\left[-\frac{h}{2}(\beta - \hat{\beta})'X_i'X_i(\beta - \hat{\beta})\right] \right\} \left\{ h^{\frac{\nu}{2}} \exp\left[-\frac{h\nu}{2s^{-2}}\right] \right\}$$

 \Rightarrow suggests a Normal–Gamma prior

$$\beta \sim N(\underline{\beta}, h^{-1}\underline{V}) \qquad \qquad h \sim G(\underline{s}^{-2}, \underline{\nu})$$

Bayesian Theory 00000	Pooled Model	Individual Effects	Random Coefficients
Pooled Model -	- Posterior		

Analytical

Results in
$$\beta$$
, $h|y \sim NG(\overline{\beta}, \overline{V}, \overline{s}^{-2}, \overline{\nu})$

$$\overline{V} = (\underline{V}^{-1} + X_i'X_i)^{-1}$$

$$\overline{\beta} = \overline{V}(\underline{V}^{-1}\underline{\beta} + X_i'X_i\hat{\beta})$$

$$\overline{\nu} = \underline{\nu} + NT$$

Numerical

- Rejection/ Importance Sampling
- Markov Chain Monte Carlo (MCMC)
 - Metropolis-Hastings algorithm
 - Gibbs sampling

Bayesian Theory OCO Pooled Model Pooled Mod

Assuming that the intercept varies across inviduals, we can write

$$y_{it} = \alpha_i + \beta X_{it} + \epsilon_{it}$$

where α_i accounts for individual effects The likelihood function is based on the regression equation

$$y_i = \alpha_i \iota_T + \tilde{X}_i \tilde{\beta +} \epsilon_i$$

and is thus

$$p(y|\alpha,\tilde{\beta},h) = \prod_{i=1}^{N} \frac{h^{\frac{T}{2}}}{2\pi^{\frac{T}{2}}} \left\{ exp\left[-\frac{h}{2} (y_i - \alpha_i - \tilde{X}_i \tilde{\beta})' (y_i - \alpha_i - \tilde{X}_i \tilde{\beta}) \right] \right\}$$

Bayesian Theory OCO Priors in the Individual Effects Modell Priors in the Individual Effects Modell

Non-hierarchical Prior [FE]

- Prior Assumption for the coefficients and their variance
- e.g. Normal-Gamma prior

$$\beta^* \sim N(\underline{\beta^*}, \underline{V})$$

$$h \sim G(\underline{s}^{-2}, \underline{\nu})$$

Bayesian Theory 00000	Pooled Model	Individual Effects	Random Coefficients
Priors in the Indi	ividual Effects N	Aodell	

Hierarchical Prior [RE]

• Impose a prior over the prior for the individual effects α_i Say that for i = 1, ..., N

$$\alpha_i \sim N(\mu_\alpha, V_\alpha)$$

we could treat μ_{α} and V_{α} as unknown paramaters which require their own prior

$$\mu_{\alpha} \sim \mathcal{N}(\underline{\mu}_{\alpha}, \underline{\sigma}_{\alpha}^{2})$$
$$\mathcal{V}_{\alpha}^{-1} \sim \mathcal{G}(\underline{V}_{\alpha}^{-1}, \underline{\nu}_{\alpha})$$

 Bayesian Theory
 Pooled Model
 Individual Effects
 Random Coefficients

 Object
 Object

Intercept and slopes vary across inviduals

 $y_i = X_i\beta_i + \epsilon_i$

i = 1, ..., N β_i : k coefficients + intercept

▶ Nk + 1 parameters to estimate: difficult unless $T \rightarrow \infty$

 \Rightarrow hierarchical prior for β_i : common distribution

Bayesian Theory Pooled Model Individual Effects ooo Coefficients

Likelihood

$$p(y|\beta,h) = \prod_{i=1}^{N} \frac{h^{\frac{T}{2}}}{2\pi^{\frac{T}{2}}} \left\{ exp\left[-\frac{h}{2} (y_i - X_i\beta_i)'(y_i - X_i\beta_i) \right] \right\}$$

Hierarchical Prior

 $\beta_i \dots$ independent draws from a normal distribution

$$\beta_{i} \sim N(\mu_{\beta}, V_{\beta})$$
$$\mu_{\beta} \sim N(\underline{\mu}_{\beta}, \underline{\Sigma}_{\beta}) \qquad V_{\beta}^{-1} \sim W(\underline{\nu}_{\beta}, \underline{V}_{\beta}^{-1})$$
$$h \sim G(\underline{s}^{-2}, \underline{\nu})$$

Bayesian Theory 00000	Pooled Model	Individual Effects	Random Coefficients
References			

J. Albert

Bayesian Computation with R. Springer Science, 2009.

S. Chib.

Marginal likelihood from the gibbs sampler. Journal of the American Statistical Association. 90(432):1313-1321, 1995.

P. Kennedy. A Guide to Econometrics. The MIT Press. 2003.

G. Koop. Bayesian Econometrics. John Wiley & Sons, 2003.