
Bayesian Theory Pooled Model Individual Effects Random Coefficients

Bayesian Estimation of Panel Models

C. Berka/S. Humer/M. Moser

15 June 2011

1 / 16



Bayesian Theory Pooled Model Individual Effects Random Coefficients

Agenda

1 Bayesian Theory

2 Pooled Model

3 Individual Effects

4 Random Coefficients

2 / 16



Bayesian Theory Pooled Model Individual Effects Random Coefficients

What is the Bayesian Approach?

How information in the data modifies a reseacher’s beliefs
about the parameters θ
Additional information is formalised into p(θ)
Combine prior via Bayes’ theorem with the data

Frequentist Bayesian

θ true value random
Output θ̂ p(θ∣y)
Beliefs ad hoc p(θ)

Probability frequency degree of belief

Table: Frequentist vs. Bayesian Approach
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Tasks/Problems

Choosing a prior
informative vs. ignorance priors
results from previous studies

Finding the posterior
mathematically demanding
advanced computational methods

Convincing others
sensitivity analysis
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Bayesian Econometrics

Basic Probability Theory:

p(A,B) = p(A∣B)p(B) = p(B ∣A)p(A)

Rearranging gives Bayes Rule:

p(B ∣A) = p(A∣B)p(B)
p(A)

In Econometrics we search parameters (θ) given the data (y):

p(θ∣y)
´¹¹¹¹¹¸¹¹¹¹¹¶
posterior

∝ p(y ∣θ)
´¹¹¹¹¹¸¹¹¹¹¹¶
likelihood

p(θ)
±
prior
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Posterior = Likelihood × Prior

p(θ∣y) — the posterior
random distribution of θ

→ take uncertainty into account

p(y ∣θ) — the likelihood
best guess on θ out of y

p(θ) — the prior
information before seeing the data

e.g. constant returns to scale in production function

Precision 1
σ2

of the prior and the likelihood are the relative weights
which lead to the posterior distribution of θ.
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Illustration of Prior, Likelihood & Posterior
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The Pooled Model

Same linear relationship holds for every individual

yi = Xiβ + εi

i = 1, . . . ,N β: k coefficients + intercept

Assumptions:
1 εi ∼ N(0T ,h−1IT ): multivariate Normal distribution (σ2 = 1

h )
2 εi and εj are independent for i ≠ j
3 All elements of Xi are fixed or independent of εi with a

probability function p(Xi ∣λ), where β,h /∈ λ
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Pooled Model — Likelihood & Prior

Assumptions lead to a likelihood function of the form:

p(y ∣β,h) =
N
∏
i=1

h
T
2

2π
T
2

{exp [−h
2
(yi −Xiβ)′(yi −Xiβ)]}

= 1

2π
NT
2

{h
k
2 exp [−h

2
(β − β̂)′X ′

i Xi(β − β̂)]}{h
ν
2 exp [− hν

2s−2 ]}

⇒ suggests a Normal–Gamma prior

β ∼ N(β,h−1V ) h ∼ G(s−2, ν)
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Pooled Model — Posterior

▸ Analytical

Results in β,h∣y ∼ NG(β,V , s−2, ν)

V = (V −1 +X ′

i Xi)−1

β = V (V −1β +X ′

i Xi β̂)
ν = ν +NT

▸ Numerical
Rejection/ Importance Sampling
Markov Chain Monte Carlo (MCMC)

Metropolis–Hastings algorithm
Gibbs sampling
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The Individual Effects Model

Assuming that the intercept varies across inviduals, we can write

yit = αi + βXit + εit

where αi accounts for individual effects The likelihood function is
based on the regression equation

yi = αi ιT + X̃i β̃+εi

and is thus

p(y ∣α, β̃,h) =
N
∏
i=1

h
T
2

2π
T
2

{exp [−h
2
(yi − αi − X̃i β̃)′(yi − αi − X̃i β̃)]}

11 / 16



Bayesian Theory Pooled Model Individual Effects Random Coefficients

Priors in the Individual Effects Modell

Non-hierarchical Prior [FE ]
Prior Assumption for the coefficients and their variance

e.g. Normal-Gamma prior

β∗ ∼ N(β∗,V )

h ∼ G(s−2, ν)
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Priors in the Individual Effects Modell

Hierarchical Prior [RE ]
Impose a prior over the prior for the individual effects αi

Say that for i = 1, .....,N

αi ∼ N(µα,Vα)

we could treat µα and Vα as unknown paramaters which require
their own prior

µα ∼ N(µ
α
, σ2

α)

V −1
α ∼ G(V −1

α , να)
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The Random Coefficients Model

Intercept and slopes vary across inviduals

yi = Xiβi + εi

i = 1, . . . ,N βi : k coefficients + intercept

▸ Nk + 1 parameters to estimate: difficult unless T →∞

⇒ hierarchical prior for βi : common distribution
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Random Coefficients — Likelihood & Prior

Likelihood

p(y ∣β,h) =
N
∏
i=1

h
T
2

2π
T
2

{exp [−h
2
(yi −Xiβi)′(yi −Xiβi)]}

Hierarchical Prior
βi . . . independent draws from a normal distribution

βi ∼ N(µβ,Vβ)

µβ ∼ N(µ
β
,Σβ) V −1

β ∼ W (νβ,V −1
β )

h ∼ G(s−2, ν)
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