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Limited Dependent Variables
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Discrete: Variables that can take only a countable number of 
values

Censored/Truncated: Data points in some specific range 
cannot be observed

Focus on discrete dependent variables!



Outlook
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Review: Cross-sectional models

Panel data: Fixed effects

Panel data: Random effects

Discussion: FE and RE

Implementation in STATA



Discrete Dependent Variables

Estimating probabilities of observing a 
particular outcome (e.g. binary outcomes)
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Labour market outcomes: Employment, self selection, labour supply

Consumer demand: Purchase decisions, investments

Programme participation: Health, education, insurance schemes

Other: Retirement decisions, transportation mode choice

Applications:



Discrete Dependent Variables

• Binary outcomes:

• Outcome for individual i at time point t

• Cross-sectional analysis: drop subscript t
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Cross-Sectional Analysis

• Interested in: 

• Probability that the outcome is positive for 
individual i
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Cross-Sectional Analysis

In the binary case it follows that: 

Possible approach: Linear probability model (LPM):

• Usual panel data methods could be applied

• But: Estimated probabilities are not restricted to the unit 
interval
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Cross-Sectional Analysis

Non-linear models:

• The last line holds only as long as the distribution of ui is 
symmetric around zero

• Function F(.) restricts the outcomes to be within the unit 
interval
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Cross-Sectional Analysis

 Intuitive illustration:

• Integral over an indicator function showing whether the outcome is 
positive given the values of the error term

• Other way to see this: Integrate over all those values of ui for which 
the outcome is positive

• Gives the probability that the error term is such that a positive 
outcome occurs (given what is known about        )
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Cross-Sectional Analysis

Specifying a distribution for ui:

• Binary Logit:

• Binary Probit: 

 Logit leads to closed form outcome probabilities

Probit is computationally more intense; but offers a more 
general treatment
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Cross-Sectional Analysis

Maximum Likelihood:
• Outcome probabilities are independent of each other

• Likelihood function takes the following form

• Outcome probabilities are                and                 respectively

• Where F(.) is either         or 

• Maximization of log L(β) with respect to β gives MLE

• Probit: Outcome probabilities have to be approximated 
numerically (e.g. through simulation)
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Panel Data: Fixed Effects

• For panel data                       

• Outcome probabilities in the fixed effects model

• Logit: View μi and β as unknown parameters to be estimated 
by maximizing log L(β,μi)

• However: As              , for a fixed T, μi increase with N

• μi cannot be consistently estimated for a fixed T

Incidental parameter problem!
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Panel Data: Fixed Effects

• Cannot get rid of μi through within-transformation (as in linear 
models)

• Possible solution: Find a minimum sufficient statistic for μi

• For the logit model              is a minimum sufficient statistic for μi

• By definition, conditioning L(β) on the minimum sufficient 
statistic gives a conditional likelihood function that does not 
depend on μi (Chamberlain, 1980)
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Panel Data: Fixed Effects

• Logit model with FE: conditioning on the minimum sufficient 
statistic for μi yields outcome probabilities that are independent 
of μi

• Maximizing the conditional likelihood gives consistent β 
estimates (while retaining closed-form outcome probabilities)

• However: Only observations for individuals who switched status 
can be used in estimation

• Dependent variable takes the value 1 if     switches from 0 to 1 
and 0 if     switches from 1 to 0

• In this case the differences              are used as independent 
variables
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Panel Data: Random Effects

• In the Probit model with RE with                           
and                          independent of each other and the

• Now:                         for          and the joint likelihood of          
involves a T-dimensional integral

• Maximization with respect to β and      gets to be infeasible if T
is large

• Numerical approximation involves simulation as well as non-
simulation procedures
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Panel Data: Preliminary Summary

Possible combinations of models with effects specifications:

• Fixed effects specification not possible in the Probit framework 
(conditional likelihood approach does not lead to simplifications)

• Logit model with random effects is feasible, but (maybe) not very 
useful

• Potential advantage of Logit: Closed-form outcome probabilities (lost 
in case of RE!)

• Disadvantage of Logit: Only outcome switches can be used for 
estimation
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Logit Probit

Fixed Effects Yes No

Random Effects Yes Yes



Panel Data: Discussion
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Possible interpretations of fixed individual effects in models 
with discrete dependent variables:

• Individual-specific unobserved effects on outcome that are 
not picked up by      

• Labour market context: E.g. ability

• Other contexts: E.g. time-invariant individual preferences

• Logit: To test for FE use a variant of the Hausman-test based 
on the difference between the conditional MLE and the usual 
MLE without FE

itx



Panel Data: Discussion
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Possible interpretations of random individual effects:
• Idea: N individuals are randomly drawn from a large population; N is large; 

FE would imply large losses in degrees of freedom

• E.g. household panel studies with representative samples

• Individual effects viewed as random and estimates valid for the population 
from which the sample was drawn

• However: Population does not consist of an infinity of individuals

• Alternative view: Population as an infinity of decisions (Haavelmo, 1944) 
 “behavioural” interpretation

• Probit: To test for RE use LR-principle to evaluate the likelihood for the 
pooled regression and for the RE estimator



Implementation in STATA
xtlogit

• Uses RE as default, FE optional

• Automatically omits groups of observations without within-group 
variation

• However: Conditional likelihood approach has to be implemented 
through data transformation (switches, differences)

xtprobit
• Only RE possible

• Uses mean and variance adaptive Gauss-Hermite quadrature as 
integration method

• Other variants of Gauss-Hermite quadrature can be defined

• Apparently: Other simulation methods not available (Accept-Reject, 
smoothed Accept-Reject, GHK simulator)

• Estimation of RE Probit models sometimes not possible because 
maximum of the likelihood function difficult to find
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Definition

Sufficient statistic: If T(X) is a sufficient statistic 
for S, then any inference about S should 
depend on the sample X only through the 
value of T(X). That is if x and y are two sample 
points such that T(x)=T(y) then inference 
about S should be the same whether X=x or 
X=y is observed.

(Casella and Berger, Statistical Inference, 2002, p.272)
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