Nonstationary Panels

Baltagi: Econometric Analysis of Panel Data (Wiley, 2005) Chapter 12

Prof. Dr. Robert Kunst UK 40871 Ziad Al Hajeb Harun Akbas 9/6/2010

Outline

- 12.1 Introduction
- 12.2 Panel Unit Roots Tests assuming Crosssectional Independence
 - 12.2.1 Levin, Lin and Chu Test
 - 12.2.2 Im, Pesaran and Shin Test
 - 12.2.3 Breitung's Test
 - 12.2.4 Combining *p*-Value Tests
 - 12.2.5 Residual-Based LM Test

12.3 Panel Unit Roots Tests allowing for Crosssectional Dependence

Moon and Perron Test

Outline

- 12.4 Spurious Regression in Panel Data
- 12.5 Panel Cointegration Tests
- 12.6 Estimation and Inference in Panel

Introduction

- The growing use of cross-country data over time to study purchasing power parity, growth convergence and International R&D spillovers
- The focus of panel data econometrics shifted towards studying the asymptotics of macro panels with large N (number of countries) and large T (length of the time series) rather than the usual asymptotics of micro panels with large N and small T

Introduction

- The fact that T is allowed to increase to infinity in macro panel data generated two strands of ideas:
- rejected the homogeneity of the regression parameters implicit in the use of a pooled regression model in favor of heterogeneous regressions
- 2. applied time series procedures to panels, worrying about nonstationarity, spurious regressions and cointegration

- Quah (1994) suggested a test for unit root in a panel data model without fixed effects where both N and T go to infinity at the same rate such that N/T is constant.
- Levin et al. (2002), LLC, generalized this model to allow for fixed effects, individual deterministic trends and heterogeneous serially correlated errors

- LLC argue that individual unit root tests have limited power against alternative hypotheses with highly persistent deviations from equilibrium, particularly in small samples
- Therefore, suggest a more powerful panel unit root test than performing individual unit root tests for each cross-section using an increased sample size of panel data

Panel Unit Roots Tests assuming Cross-sectional Independence Levin, Lin, and Chu (LLC) test

- Null hypothesis: each individual time series contains a unit root
- Alternative hypothesis: each individual time series is stationary
- Maintained hypothesis:

$$\Delta y_{it} = \rho y_{i,t-1} + \sum_{L=1}^{p_i} \theta_{iL} \Delta y_{it-L} + \alpha_{mi} d_{mt} + \varepsilon_{it} \quad m = 1, 2, 3$$

- d_{mt} the vector of deterministic variables
- α_{mi} : the corresponding vector of coefficients for model m = 1, 2, 3.
- $d_{1t} = \{\text{empty set}\}, d_{2t} = \{1\} \text{ and } d_{3t} = \{1, t\}.$
- Since the lag order p_i is unknown, LLC suggest a three-step procedure to implement their test

 Perform separate augmented Dickey-Fuller (ADF) regressions for each cross-section:

$$\Delta y_{it} = \rho_i y_{i,t-1} + \sum_{L=1}^{p_i} \theta_{iL} \Delta y_{i,t-L} + \alpha_{mi} d_{mt} + \varepsilon_{it} \quad m = 1, 2, 3$$

i. choose a maximum lag order p_{max} and use $t - statistic \ of \ \widehat{\theta}_{iL}$ to determine if a smaller lag order is preferred (t - statistics are distributed N(0, 1) under the H₀($\Theta_{iL} = 0$)

Panel Unit Roots Tests assuming Cross-sectional Independence II. In order to get orthogonalized residuals

Run Δy_{it} on $\Delta y_{i,t-L}(L=1,\ldots,p_i)$ and d_{mt} to get residuals \hat{e}_{it} Run $y_{i,t-1}$ on $\Delta y_{i,t-L}(L=1,\ldots,p_i)$ and d_{mt} to get residuals $\hat{v}_{i,t-1}$

iii. Standardize these residuals to control for different variances across *i*

 $\widetilde{e}_{it} = \widehat{e}_{it} / \widehat{\sigma}_{\varepsilon i}$ and $\widetilde{\nu}_{i,t-1} = \widehat{\nu}_{it} / \widehat{\sigma}_{\varepsilon i}$

where $\hat{\sigma}_{\epsilon i}$ is the standard error from each ADF regression, for i = 1, ..., N

2. Estimate the ratio of long-run to short-run standard deviations. The long-run variance under the null hypothesis of a unit root:

$$\widehat{\sigma}_{yi}^{2} = \frac{1}{T-1} \sum_{t=2}^{T} \Delta y_{it}^{2} + 2 \sum_{L=1}^{\bar{K}} w_{\bar{K}L} \left[\frac{1}{T-1} \sum_{t=2+L}^{T} \Delta y_{it} \Delta y_{i,t-L} \right]$$

where $w_{\bar{K}L} = 1 - (L/(\bar{K} + 1))$ for a Bartlett kernel

- 3. Compute the panel test statistics by
- i. running the pooled regression:

 $\widetilde{e}_{it} = \rho \widetilde{\nu}_{i,t-1} + \widetilde{\varepsilon}_{it}$

based on $N\widetilde{T}$ observations where $\widetilde{T} = T - \overline{p} - 1$. \widetilde{T} is the average number of observations per individual where \overline{p} is the average lag order

ii. calculate the conventional t-statistic under H_0 : $\rho = 0$

$$\widehat{\rho} = \sum_{i=1}^{N} \sum_{t=2+p_i}^{T} \widetilde{\nu}_{i,t-1} \widetilde{e}_{it} / \sum_{i=1}^{N} \sum_{t=2+p_i}^{T} \widetilde{\nu}_{i,t-1}^2$$
$$\widehat{\sigma}(\widehat{\rho}) = \widehat{\sigma}_{\widetilde{\varepsilon}} / \left[\sum_{i=1}^{N} \sum_{t=2+p_i}^{T_i} \widetilde{\nu}_{i,t-1}^2 \right]^{1/2}$$

$$\widehat{\sigma}_{\widetilde{\varepsilon}}^2 = \frac{1}{N\widetilde{T}} \sum_{i=1}^N \sum_{t=2+p_i}^T (\widetilde{e}_{it} - \widehat{\rho}\widetilde{\nu}_{i,t-1})^2$$

is the estimated variance of $\widetilde{\varepsilon}_{it}$

iii. calculate the adjusted t-statistic

$$t_{\rho}^{*} = \frac{t_{\rho} - N\widetilde{T}\widehat{S}_{N}\widehat{\sigma}_{\widetilde{\epsilon}}^{-2}\widehat{\sigma}(\widehat{\rho})\mu_{m\widetilde{T}}^{*}}{\sigma_{m\widetilde{T}}^{*}}$$

where $\mu_{m\widetilde{T}}^*$ and $\sigma_{m\widetilde{T}}^*$ are the mean and standared deviation adjusted and tabulated by LLC

- t_{ρ}^* is asymptotically distributed:
 - as N(0,1)
 - requires $\sqrt{N_T}/T \rightarrow 0$ where N is an arbitrary monotonically increasing function of T

Limitations

- depends upon the *independence* assumption across cross-sections and is not applicable if cross-sectional correlation is present
- the assumption that *all* cross-sections have or do not have a unit root is restrictive

- Suggestions for using the LLC test:
 - for panels of moderate size (10<N<250, 25<T<250)
 - for very large *T*, individual unit root time series tests are sufficiently powerful
 - For very large N and very small T, usual panel data procedures

Panel Unit Roots Tests assuming Cross-sectional Independence Im, Pesaran and Shin (IPS) test

- IPS test allow ρ to be heterogeneous across i
- Null Hypothesis:

 $H_0: \rho_i = 0$ for all i

Alternative hypothesis:

$$H_1: \begin{cases} \rho_i < 0 & \text{for } i = 1, 2, \dots, N_1 \\ \rho_i = 0 & \text{for } i = N_1 + 1, \dots, N \end{cases}$$

it requires the fraction of the individual time series that are stationary to be nonzero, otherwise the panel unit root test will be inconsistent

Test statistic:

$$\overline{t} = \frac{1}{N} \sum_{i=1}^{N} t_{\rho_i}$$

where $t_{\rho i}$ is the individual t –statistic for testing H_0 : $\rho_i = 0$ for all /

"the average of the individual ADF statistics"

• for fixed N and $T \rightarrow \infty$, the standard result is:

$$t_{\rho_i} \Rightarrow \frac{\int_0^1 W_{iZ} \mathrm{d}W_{iZ}}{\left[\int_0^1 W_{iZ}^2\right]^{1/2}} = t_{iT}$$

t_{iT} is assumed to be IID with finite mean and variance

▶ by the Lindeberg–Levy central limit theorem, as $T \rightarrow \infty$ followed by $N \rightarrow \infty$ sequentially, the Asymptotic distribution is:

$$t_{\text{IPS}} = \frac{\sqrt{N} \left(\overline{t} - \frac{1}{N} \sum_{i=1}^{N} E\left[t_{iT} | \rho_i = 0\right]\right)}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} \operatorname{var}\left[t_{iT} | \rho_i = 0\right]}} \Rightarrow N(0, 1)$$

• the values of $E[t_{iT}|\rho_i = 0]$ and $var[t_{iT}|\rho_i = 0]$ are computed by IPS via simulations for different values of T and p_i 's

if a large enough lag order is selected, IPS is generally better than LLC

Panel Unit Roots Tests assuming Cross-sectional Independence Breitung's test

- LLC and IPS tests suffer from a dramatic loss of power if individual-specific trends are included due to the bias correction
- Breitung's test statistic without bias adjustment is obtained in a 3 step process

- 1. Same as in LLC, but $\Delta y_{i,t-L}$ is used in obtaining the residuals \hat{e}_{it} and $\hat{v}_{i,t-1}$, basically separate augmented ADF regressions for each cross section *i*
- 2. Transform \hat{e}_{it} using the forward orthogonalization transformation by Arellano and Bover (1995)

$$e_{it}^* = \sqrt{\frac{T-t}{(T-t+1)}} \left(\widetilde{e}_{it} - \frac{\widetilde{e}_{i,t+1} + \ldots + \widetilde{e}_{i,T}}{T-t}\right)$$

$$\nu_{i,t-1}^{*} = \begin{cases} \tilde{\nu}_{i,t-1} & \text{without intercept or trend} \\ \tilde{\nu}_{i,t-1} - \tilde{\nu}_{i,1} & \text{with intercept} \\ \tilde{\nu}_{i,t-1} - \tilde{\nu}_{i,1} - \frac{t-1}{T}\tilde{\nu}_{i,T} & \text{with intercept and trend} \end{cases}$$

Run the pooled regression

$$e_{it}^* = \rho v_{i,t-1}^* + \varepsilon_{it}^*$$

t-statistic for H_0 : $\rho = 0$, which has in the limit a standard N(0, 1) distribution

- Let G_{iTi} be a unit root test statistic for the i th group
- Assume $G_{iTi} \Rightarrow G_i$ where G_i is a nondegenerate random Variable as $T_i \rightarrow \infty$
- Let p_i be the corresponding asymptotic pvalue
- Fisher type test with P-value from unit root tests for each cross section *i*

$$P = -2\sum_{i=1}^{N} \ln p_i$$

When N is large, a modified P test is proposed:

$$P_m = \frac{1}{2\sqrt{N}} \sum_{i=1}^{N} (-2\ln p_i - 2)$$

By applying the Lindberg-Levy central limit theorem we get:

 $P_m \Rightarrow N(0, 1)$ as $T_i \to \infty$ followed by $N \to \infty$

- Advantages:
 - different lag orders may be used
 - other unit root tests may be applied
- Disadvantages:
 - p-values have to be derived by Monte Carlo simulations
- Recommendations:
 - combined p-value tests outperform the IPS test, the Z test performs best

Panel Unit Roots Tests assuming Cross-sectional Independence Residual-based LM test

- Null Hypothesis: No unit root in any of the series
- Alternative Hypothesis: Unit root in the Panel
- Hadri (2000) considers the following two models:

$$y_{it} = r_{it} + \varepsilon_{it}$$
 $i = 1, ..., N; \quad t = 1, ..., T$

 $y_{it} = r_{it} + \beta_i t + \varepsilon_{it}$

- Where $\varepsilon_{it} \sim \text{IIN}(0, \sigma_{\varepsilon}^2)$ and $u_{it} \sim \text{IIN}(0, \sigma_{\mu}^2)$ are mutually independent normals that are IID across *i*
- Using back substitution:

$$y_{it} = r_{io} + \beta_i t + \sum_{s=1}^t u_{is} + \varepsilon_{it} = r_{io} + \beta_i t + \nu_{it}$$

The stationary hypothesis:

$$H_0: \sigma_u^2 = 0$$

The LM statistic is given by:

$$LM_1 = \frac{1}{N} \left(\sum_{i=1}^N \frac{1}{T^2} \sum_{t=1}^T S_{it}^2 \right) / \widehat{\sigma}_{\varepsilon}^2$$

Where $S_{it} = \sum_{s=1}^{t} \hat{\epsilon}_{is}$ are the partial sum of OLS residuals and $\hat{\sigma}_{\varepsilon}^2 = \frac{1}{NT} \sum_{i=1}^{N}$ is a consistent estimate of σ_{ε}^2 under the null Hypotheses

The alternative LM test that allows for heteroskedasticity across *i*

$$LM_{2} = \frac{1}{N} \left(\sum_{i=1}^{N} \left(\frac{1}{T^{2}} \sum_{t=1}^{T} S_{it}^{2} / \widehat{\sigma}_{\varepsilon i}^{2} \right) \right)$$

The test statistic is given by $Z = \sqrt{N}(LM - \xi_1)/\zeta$ and is asymptotically distributed as N(0, 1) Panel Unit Roots Tests assuming Cross-sectional Independence General Remarks:

1. The empirical sizes of the IPS and the Fisher test are reasonably close to their nominal size 0.05 when N is small. But the Fisher test shows mild size distortions at N = 100, which is expected from the asymptotic theory. Overall, the IPS *t*-bar test has the most stable size.

- In terms of the size-adjusted power, the Fisher test seems to be superior to the IPS *t*-bar test.
- 3. When a linear time trend is included in the model, the power of all tests decreases considerably.

Panel Unit Roots Tests allowing for Cross-sectional Dependence Moon and Perron test

- Null Hypothesis: H_0 : $\rho_i = 0$ for all *i*
- Alternative Hypothesis: H_1 : $\rho_i < 0$ for some *i*
- The model is used to capture cross-section correlation, consider the following model:

$$y_{it} = \alpha_i + y_{it}^0$$

$$y_{it}^0 = \rho_i y_{i,t-1}^0 + \epsilon_{it}$$

Panel Unit Roots Tests allowing for Cross-sectional Dependence

• e_{it} is generated by *M* unobservable random factors f_t and idiosyncratic shocks e_{it}

$$\epsilon_{it} = \Lambda'_i f_t + e_{it}$$

 Λ_i are nonrandom factor loading coefficient vectors and the number of factors *M* is unknown

Panel Unit Roots Tests allowing for Cross-sectional Dependence

- Test statistic $t_a = \frac{\sqrt{N}T(\widehat{\rho}_{pool}^+ - 1)}{\sqrt{\frac{2\phi_e^4}{w_e^4}}}$
- The pooled bias-correlated estimate of ρ is

$$\widehat{\rho}_{pool}^{+} = \frac{\operatorname{tr}(Y_{-1}Q_{\Lambda}Y') - NT\lambda_{e}^{N}}{\operatorname{tr}(Y_{-1}Q_{\Lambda}Y'_{-1})}$$

where Y is a T x N matrix of the data, Y₋₁ contains lagged values

Panel Unit Roots Tests allowing for Cross-sectional Dependence

Asymptotic distribution:

 $t_a \Rightarrow N(0, 1)$

where $N \to \infty$ and $T \to \infty$ such that $N/T \to 0$