Nonstationary Panels

Based on chapters 12.4, 12.5, and 12.6 of Baltagi, B. (2005): Econometric Analysis of Panel Data, 3rd edition. Chichester, John Wiley & Sons.

12.4 Spurious Regressions in Panel Data

- ✓ Entorf (1997) studied spurious fixed effects regressions when the true model involves independent random walks with and without drifts.
- Phillips and Moon provided a regression limit theory for non stationary panel data with large numbers of cross section and time series.
- ✓ Kao studied the Least-Squares Dummy Variable estimator (LSDV) where the spurious regression phenomenon is still present for independent nonstationary variables.

- Entorf (1997): found that for T→∞ and N
 finite the nonsense regression phenomenon
 holds for spurious fixed effects models and
 inference based on t-values can be highly
 misleading.
- This implies seemingly significant t-statistics and high R² in case of FE estimation

Suppose:

- y_t and X_t are unit root nonstationary time series variables
- with long-run variance matrix

$$\Omega = egin{pmatrix} \Omega_{yy} & \Omega_{yx} \ \Omega_{xy} & \Omega_{xx} \end{pmatrix}$$

- Then $\beta = \Omega_{yx}\Omega_{xx}^{-1}$ can be interpreted as a classical long-run regression coefficient relating the two nonstationary variables γ_t and X_t .
- When Ω has deficient rank, β is a cointegrating coefficient because y_t β X_t is stationary.

- Phillips and Moon (1999) extend this concept to panel regressions with nonstationary data.
- In this case, heterogeneity across individuals i can be characterized by heterogeneous long-run covariance matrices Ω_i .
- Then Ω_i are randomly drawn from a population with mean $\Omega = E(\Omega_i)$.
- In this case:
 - the regression coefficient corresponding to the average long-run covariance matrix is

$$\beta = E[\Omega_{y_i x_i}] E[\Omega_{x_i x_i}]^{-1} = \Omega_{yx} \Omega_{xx}^{-1}$$

Hence, we get a fundamental framework for studying sequential and joint limit theories in nonstationary panel data, which allows for four cases:

- 1. Panel spurious regression
- 2. Heterogeneous panel cointegration
- 3. Homogeneous panel cointegration
- 4. Near-homogeneous panel cointegration

 Phillips and Moon (1999) investigated these four models and developed panel asymptotics for regression coefficients and tests using both sequential and joint limit arguments.

In all four cases

- The pooled estimator is consistent and has a normal limiting distribution.
- The pooled least squares estimator of the slope coefficient β is √N-consistent for the long-run average relation parameter β and has a limiting normal distribution.
- A limiting cross-section regression with time-averaged data is also VN-consistent for β and has a limiting normal distribution.

- This is different from the pure time series spurious regression where the limit of the OLS estimator of β is a nondegenerate random variate that is a functional of Brownian motions and is therefore not consistent for β .
- The idea in Phillips and Moon (1999) is that independent cross-section data in the panel adds information and this leads to a stronger overall signal than the pure time series case.

12.5 PANEL COINTEGRATION TESTS

- Like the panel unit root tests, panel cointegration tests can be motivated by the search for more powerful tests than those obtained by applying individual time series cointegration tests.
- In the case of purchasing power parity and convergence in growth, economists pool data on similar countries, like G7, OECD or Euro countries in the hopes of adding cross-sectional variation to the data that will increase the power of unit root tests or panel cointegration tests.

- Null of no cointegration
 - Residual-Based DF and ADF Tests (Kao Tests)

- Null of cointegration
 - Residual-Based LM Test
 - Pedroni Tests

Residual-Based DF and ADF Tests (Kao Tests)

• the panel regression model:

$$y_{it} = x'_{it}\beta + z'_{it}\gamma + e_{it}$$

Where y_{it} and x_{it} are I(1) and noncointegrated.

- For $z_{it} = {\mu_i}$, Kao(1999) proposed Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) type unit root tests for e_{it} as a test for the null of no cointegration.
- The DF-type tests can be calculated from the fixed effects residuals

$$\hat{\mathbf{e}}_{it} = \rho \hat{\mathbf{e}}_{it-1} + \nu_{it}$$

where
$$\hat{e}_{it} = \tilde{y}_{it} - \tilde{x}'_{it}\beta, \tilde{y}_{it} = y_{it} - \bar{y}_{i}$$
.

To test the null hypothesis of no cointegration

$$H_0: \rho = 1$$

• The OLS estimate of ρ and the *t-statistic are* given as

$$\hat{\rho} = \frac{\sum_{i=1}^{N} \sum_{t=2}^{T} \hat{e}_{it} \hat{e}_{it-1}}{\sum_{i=1}^{N} \sum_{t=2}^{T} \hat{e}_{it}^{2}}$$

$$t_{\hat{\rho}} = \frac{(\hat{\rho} - 1) \sqrt{\sum_{i=1}^{N} \sum_{t=2}^{T} \hat{e}_{it-1}^{2}}}{s_{e}}$$
where $s_{e}^{2} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=2}^{T} (\hat{e}_{it} - \hat{\rho} \hat{e}_{it-1})^{2}$

• Kao proposed the following four DF-type tests: $\sqrt{NT(\hat{a}-1)+3\sqrt{N}}$

$$\begin{array}{rcl} DF_{\rho} & = & \frac{\sqrt{N}T(\hat{\rho}-1) + 3\sqrt{N}}{\sqrt{10.2}} \\ DF_{t} & = & \sqrt{1.25}t_{\hat{\rho}} + \sqrt{1.875N} \\ DF_{\rho}^{*} & = & \frac{\sqrt{N}T(\hat{\rho}-1) + \frac{3\sqrt{N}\hat{\sigma}_{\nu}^{2}}{\hat{\sigma}_{0\nu}^{2}}}{\sqrt{3 + \frac{36\hat{\sigma}_{\nu}^{4}}{5\hat{\sigma}_{0\nu}^{4}}}} \\ DF_{t}^{*} & = & \frac{t_{\hat{\rho}} + \frac{\sqrt{6N}\hat{\sigma}_{\nu}}{2\hat{\sigma}_{0\nu}}}{\sqrt{\frac{\hat{\sigma}_{0\nu}^{2}}{2\hat{\sigma}_{\nu}^{2}} + \frac{3\hat{\sigma}_{\nu}^{2}}{10\hat{\sigma}_{0\nu}^{2}}}} \\ \\ \text{where } \hat{\sigma}_{\nu}^{2} = \hat{\Sigma}_{yy} - \hat{\Sigma}_{yx}\hat{\Sigma}_{xx}^{-1}, \hat{\sigma}_{0\nu}^{2} = \hat{\Omega}_{yy} - \hat{\Omega}_{yx}\hat{\Omega}_{xx}^{-1} \end{array}$$

- While DF_{ρ} and DF_{t} are based on the strong exogeneity of the regressors and errors, $DF_{*\rho}$ and DF_{*t} are for the cointegration with endogenous relationship between regressors and errors.
- For the ADF test, we can run the following regression: $\hat{e}_{it} = \rho \hat{e}_{it-1} + \sum_{i=1}^{p} \vartheta_{j} \Delta \hat{e}_{it-j} + \nu_{itp}$
- With the null hypothesis of no cointegration,

$$ADF = \frac{t_{ADF} + \frac{\sqrt{6N\hat{\sigma}_{\nu}}}{2\hat{\sigma}_{0\nu}}}{\sqrt{\frac{\hat{\sigma}_{0\nu}^2}{2\hat{\sigma}_{\nu}^2} + \frac{3\hat{\sigma}_{\nu}^2}{10\hat{\sigma}_{0\nu}^2}}}$$

Residual-Based LM Test

- McCoskey and Kao (1998) derived a residualbased test for the null of cointegration rather than the null of no cointegration in panels.
- This test is an extension of the LM test and the locally best invariant (LBI) test for an MA unit root in the time series literature.
- Under the null, the asymptotics no longer depend on the asymptotic properties of the estimating spurious regression, rather the asymptotics of the estimation of a cointegrated relationship are needed.

Pedroni Tests

- Pedroni (2000, 2004) also proposed several tests for the null hypothesis of cointegration in a panel data model that allows for considerable heterogeneity.
- His tests can be classified into two categories.
 - The first set is similar to the tests discussed above, and involves averaging test statistics for cointegration in the time series across cross-sections.
 - For the second set, the averaging is done in pieces so that the limiting distributions are based on limits of piecewise numerator and denominator terms.

Finite Sample Properties

- McCoskey and Kao (1999) conducted Monte Carlo experiments to compare the size and power of different residual-based tests for cointegration in heterogeneous panel data: varying slopes and varying intercepts.
- They found that the average ADF performs better with respect to power and their maximum eigenvalue-based pvalue performs better with regard to size.
- The test of the null hypothesis was originally proposed in response to the low power of the tests of the null of no cointegration, especially in the time series case.
- Authors find that in cases, where economic theory predicts long-run steady-state relationships, it seemed that a test of the null of cointegration rather than the null of no cointegration would be appropriate.

12.6 ESTIMATION AND INFERENCE IN PANEL COINTEGRATION MODELS

- The asymptotic properties of the estimators of the regression coefficients and the associated statistical tests are different from those of the time series cointegration regression models.
- The finite sample proprieties of the OLS estimator the t-statistic, the bias-corrected OLS estimator, and the bias-corrected t-statistic.
- The bias-corrected OLS estimator does not improve over the OLS estimator in general.

 Kao and Chiang (2000) consider the following panel regression:

$$y_{it} = x'_{it}\beta + z'_{it}\gamma + u_{it}$$

Where

$$x_{it} = x_{it-1} + \varepsilon_t$$

- y_{it} is cointegrated with x_{it}
- The assumption of cross-sectional independence is maintained.
- The OLS estimator of β is

$$\hat{\beta}_{OLS} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{y}_{it}\right)$$

- β_{OLS} is inconsistent using panel data.
- This is in sharp contrast with the consistency of β_{OLS} in time series under similar circumstances.

 Choi (2002) studied instrumental variable estimation for an error component model with stationary and nearly nonstationary regressors. Consider the simple panel regression

$$y_{it} = \alpha + \beta x_{it} + u_{it}$$

- Where x_{it} is nearly nonstationary, u_{it} is I(0) and z_{t} is an instrumental variable
- Yielding the panel IV (Within) estimator

$$\hat{\beta}_{IV} = \left[\sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \bar{x}_{i.})(z_{it} - \bar{z}_{i.}) \right]^{-1} \left[\sum_{i=1}^{N} \sum_{t=1}^{T} (y_{it} - \bar{y}_{i.})(z_{it} - \bar{z}_{i.}) \right]$$

 when N is large, and proper conditions hold, the central limit theorem can be applied which leads to the asymptotic normality result for the panel estimator.