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Features of Nonlinear Prediction (Section 10.1) —
Decomposition of Mean Square Predictive Errors

Least squares m-step ahead predictor of time-series process {X;} taken
over all measurable functions of X1 is defined as:

fr.m(Xr) = arginf E{X7+pm — f(X7)}? (1)

where T denotes forecast origin, m (m > 1) denotes forecast horizon,
and X1 denotes last p observed values of available data Xi, ..., X7 only

Let x denote observed value of X7:

= fr,m(x) = E(Xexm| X7 = %) (2)
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Corresponding mean square predictive error (average of conditional
variances) is given by:

E{XTm — f(X7)}? = E{Var(X71m|XT)} (3)

If {X:} were linear AR(p) process, conditional variance
0% m = Var(X1ym|X7 = x) would be constant

For nonlinear processes, this is not true in general:

= Conditional mean square predictive error more relevant measure of
predictive performance

= Goodness of prediction depends on where we are
= Prediction from a nonlinear point of view "one-step closer to reality”
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Conditional mean square predictive error reads:
El{Xrsm — frm(x)}2[ X7 = %] = 07 (%) (4)

True and unobserved value of X+ = x + &, where § denotes a small drift
due to measurement error, experimental error and/or so on

Hence, for least squares m-step ahead predictor fr ,(X7) subsequent
decomposition of conditional mean square predictive error holds (see
FAN/YAO 2003, pp. 442-443 for a proof):

E{XT4m — fr.m(X)}?|XT = x + 0]
=07 (x4 8) + {07 fr.m(x)}* + o([3][) (5)

where )"T,m denotes gradient vector of fr n
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As shown by Yao/ToNG (1998), conditional variance 03 (x + d) is not
necessarily dominant term in case of nonlinear processes

= Error due to drift § no longer negligible
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Noise Amplification

For a linear AR(1) process with coefficient b (|b| < 1) mean square
predictive error reads:

m—1 m—1
0‘2 Z sz = Z sz Var(ETHH) (6)
Jj=0 Jj=0

where noise entering at a fixed time exponentially decays as m increases

For a time-series process {X;} (not necessarily stationary) generated by
nonlinear AR model
Xe = f(Xeo1) + e (7)

with {&;} ~ 1ID(0,0?), €, independent of {X; , k > 1}, and |e;| < ¢
(¢ > 0) o.c.s (see FAN/YAO 2003, p. 444):
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0p(x) = Var(Xm|Xo = x) = pim(x)0* + 0(¢3) (8)
where )
pm(x) =14 > ¢ [] FIFR )] (9)
J=0 \ k=j

= For linear processes f(-) is constant and therefore jup,(x) and o2 (x)
are constant
u If, however, |f(-)| > 1 on a large part of the state space, fim(x) and

02 ,(x) can be very large for even very small m

= Only very short-range prediction is practically meaningful

Turyna & Gunter
Nonlinear Prediction



Sensitivity to Initial Values

Divergence of conditional expected values of two trajectories based on
different initial values (x + d versus x) is given by:

E{Xm(x + 0)|Xo = x + 6} — E{Xm(x)|Xo = x} = 0fim(x) + o(||5]]) (10)

where

fm(x) = E {ﬁ F(Xi—1)|Xo = X} (11)

k=1

If again |£(-)] > 1 on a large part of the state space, f,,(x) can be very
large for even very small m
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Multi-Step Prediction versus a One-Step Plug-in Method

One-step plug-in predictor for X1, based on model (7) is given by
f(m(X7), which differs from least square m-step ahead predictor
fn(X7) = E(X74m|X7) unless f(-) is linear

Hence,

EfXrim — FM(XT)PIX7] 2 E[{XT4m — fn(X0)Y1X7] (12)

= One-step plug-in method not desirable in principle
= Suggestion to stick to least square m-step ahead predictor
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Nonlinear versus Linear Prediction

m Empirical studies suggest that linear prediction methods often
perform well despite their simplicity and that gains from nonlinear
prediction are not always statistically significant (see CHATFIELD
2001)

m Linear prediction methods can be applied to any time series as long
as it has finite second moments

Let {X;} be a covariance-stationary time-series process and let us seek
best linear predictor (predictor that is a linear combination of
{Xt—k, k > 1}) such that mean square error is minimized
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Wold decomposition theorem yields:
Xt = et + Zd}jet_j + Vt (13)
j=1
where {e;} ~ N(0,0?) and

e = X¢ — Z piXe—i (14)
i=1

with V4 purely deterministic and {¢;}, {¢;} each square-summable
coefficients

Turyna & Gunter
Nonlinear Prediction



Hence,

E(Xel X k > 1) £ > Xeoi = X, (15)

i=1

» X, is best linear predictor as it minimizes E{X; — Soioy biXe—i} for
square-summable coefficients {b;}

= Mean square error of X; is E(X; — X;)? = E(€?) = o2

m However, best linear predictor is not least squares predictor in
general and therefore not best estimator
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Point Prediction (Section 10.2) — Local Linear Predictors

f(-) and f(-) can be estimated by applying local linear regression, which is
a nonparametric regression technique (see FAN/YAO 2003, pp. 314-317)

Let fn(x) = 3, ?m(x) = b, and (3, b) be minimizer of subsequent sum:

T—m

S {Xrim —a— b7 (X7 —x)}K (XhT(;)X> (16)

t=p

where K(-) is a kernel function and h(T) a bandwidth
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Calculation yields:

To(x) — S7(x)S; ' (x) Ta(x)

fm(x) = SO(X) — Sf(x)sz—l(x)sl(x) (17)
';m(x) _ S$1(x) To(x)/So(x) — T1(x) )

S2(x) = 51(x) 57 (x)/So(x)

where So(x), S1(x), S2(x), To(x), T1(x) are given in FAN/YAo0 (2003, p.
451)

w () is mean square consistent since
E[{fm(x) — fm(x)}?| X7 =x+ 8] - 0as T — oo

m Decomposition of conditional mean square predictive error (5) still
holds asymptotically
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Predictive distributions — Introduction

m For linear time series with normally distributed errors, the predictive
distributions are normal — predictive intervals are easily obtained

m Mean + a multiple of standard deviation

m Used also for some non—linear models (e.g. threshold autoregressive
models)

m Skewed distributions occur even if errors have symmetric
distributions

m Most generally we want to estimate F(y|x) = P(Y; < y|X¢ = x)

m If we write Z; = I(Y; < y) then E(Z;|X; = x) = F(y|x) and
estimation may be seen as regression of Z; on X
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Estimators for F(-|x)

m Local logistic estimator:
= A generalized local logistic model for P(x) has the form

A(x; 0)

L(x;0) = 7{1 A O)]

where A(x; 6) denotes a nonnegative function that depends on a
vector of parameters § = (61,...,6,) that represents the values of
P(x), PY(x),..., P Y(x)

m Fitting this model locally to indicator—function data leads to an
estimator F(y|x) = L(0; ) where § minimizes

R(0:x;y) = > {I(Ye < y) = L(X: = x,0)} Kn(X: — x)

t=1
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m Adjusted Nadaraya—\Watson estimator:

m Let p; = pi(x) for 1 < t < T, denote weights with the property that
p:>0,>,pr=1and

S P (Xe — x)Ki(Xe — x) = 0

t=1
m Estimator:

E _ ZtT: I(Yt < y)prh(Xf — x)
F(y|X) - 12;1 ptKh(Xt — X)

m F is first—order equivalent to local linear estimator
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Minimum—-Length Predictive Sets

{Y:, X¢} is a strictly stationary process

Yt = Xter for some m Z 1 and Xt = (Xtv L 7Xt7p+1)

General form of the predictive set is P{X711m € Qm(x)| X7 =x} =«
We restrict attention to C a class of measurable subsets of R
(usually C consists of all intervals in R)

Define: Co(x) ={C €C: F(C|x) > o}

Minimum-Length Predictor: The set in C,(x) with the minimum
Lebesgue measure is called the minimum length predictor for Y;

based on Xy = x in C with coverage probability o, which is denoted
Me(a|x).

If the conditional density g(y|x) of Y; given X = x exists than the
minimum—length predictor is given by

{y:gylx) = Ao}
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Estimation of Minimum—Length Predictors

u Three steps:
= Estimating the conditional distribution F(-|x)

m Specifying the set C
m Searching for Mc(a|x) with F replaced by its estimator
m lllustration with Nadaraya—Watson estimator:
(e € OK (25%)
T X, —
Zt:l K ( h X)

u We replace then F with F to obtain a minimum-length predictor

IA-'(Cx) = E"T:

Me(a|x) = arg ?iB{Leb(C) CF(Clx > a)}
€
with true coverage probability
& = F{Mc(alx)|x}

which converges to «
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Predictive Sets based on conditional density

m Let g(-|x) be the conditional density of Y; given X = x

m The minimum-length predictor may be defined as
M(alx) = {y : g(yx) < Ao}

where A, is the maximum value for which

/ glylx)dy < a
{y:g(yx)<Aa}

m Does not require specification of candidate C
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