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Features of Nonlinear Prediction (Section 10.1) –
Decomposition of Mean Square Predictive Errors

Least squares m-step ahead predictor of time-series process {Xt} taken
over all measurable functions of XT is defined as:

fT ,m(XT ) = arg inf
f
E{XT+m − f (XT )}2 (1)

where T denotes forecast origin, m (m ≥ 1) denotes forecast horizon,
and XT denotes last p observed values of available data X1, ...,XT only

Let x denote observed value of XT :

⇒ fT ,m(x) = E (Xt+m|XT = x) (2)
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Corresponding mean square predictive error (average of conditional
variances) is given by:

E{XT+m − f (XT )}2 = E{Var(XT+m|XT )} (3)

If {Xt} were linear AR(p) process, conditional variance
σ2
T ,m ≡ Var(XT+m|XT = x) would be constant

For nonlinear processes, this is not true in general:

⇒ Conditional mean square predictive error more relevant measure of
predictive performance

⇒ Goodness of prediction depends on where we are

⇒ Prediction from a nonlinear point of view ”one-step closer to reality”
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Conditional mean square predictive error reads:

E [{XT+m − fT ,m(x)}2|XT = x] = σ2
T ,m(x) (4)

True and unobserved value of XT = x + δ, where δ denotes a small drift
due to measurement error, experimental error and/or so on

Hence, for least squares m-step ahead predictor fT ,m(XT ) subsequent
decomposition of conditional mean square predictive error holds (see
Fan/Yao 2003, pp. 442-443 for a proof):

E [{XT+m − fT ,m(x)}2|XT = x + δ]

= σ2
T ,m(x + δ) + {δτ ḟT ,m(x)}2 + o(||δ||2) (5)

where ḟT ,m denotes gradient vector of fT ,m
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As shown by Yao/Tong (1998), conditional variance σ2
T ,m(x + δ) is not

necessarily dominant term in case of nonlinear processes

⇒ Error due to drift δ no longer negligible

Turyna & Gunter

Nonlinear Prediction



Noise Amplification

For a linear AR(1) process with coefficient b (|b| < 1) mean square
predictive error reads:

σ2
m−1∑
j=0

b2j =
m−1∑
j=0

b2jVar(εT+1+j) (6)

where noise entering at a fixed time exponentially decays as m increases

For a time-series process {Xt} (not necessarily stationary) generated by
nonlinear AR model

Xt = f (Xt−1) + εt (7)

with {εt} ∼ IID(0, σ2), εt independent of {Xt−k , k ≥ 1}, and |εt | ≤ ζ
(ζ > 0) o.c.s (see Fan/Yao 2003, p. 444):
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σ2
m(x) = Var(Xm|X0 = x) = µm(x)σ2 + O(ζ3) (8)

where

µm(x) = 1 +
m−1∑
j=0


m−1∏
k=j

ḟ [f (k)(x)]


2

(9)

For linear processes ḟ (·) is constant and therefore µm(x) and σ2
m(x)

are constant

If, however, |ḟ (·)| > 1 on a large part of the state space, µm(x) and
σ2
m(x) can be very large for even very small m

⇒ Only very short-range prediction is practically meaningful
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Sensitivity to Initial Values

Divergence of conditional expected values of two trajectories based on
different initial values (x + δ versus x) is given by:

E{Xm(x + δ)|X0 = x + δ} − E{Xm(x)|X0 = x} = δḟm(x) + o(||δ||) (10)

where

ḟm(x) = E

{
m∏

k=1

ḟ (Xk−1)|X0 = x

}
(11)

If again |ḟ (·)| > 1 on a large part of the state space, ḟm(x) can be very
large for even very small m
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Multi-Step Prediction versus a One-Step Plug-in Method

One-step plug-in predictor for XT+m based on model (7) is given by
f (m)(XT ), which differs from least square m-step ahead predictor
fm(XT ) = E (XT+m|XT ) unless f (·) is linear

Hence,

E [{XT+m − f (m)(XT )}2|XT ] ≥ E [{XT+m − fm(XT )}2|XT ] (12)

⇒ One-step plug-in method not desirable in principle

⇒ Suggestion to stick to least square m-step ahead predictor
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Nonlinear versus Linear Prediction

Empirical studies suggest that linear prediction methods often
perform well despite their simplicity and that gains from nonlinear
prediction are not always statistically significant (see Chatfield
2001)

Linear prediction methods can be applied to any time series as long
as it has finite second moments

Let {Xt} be a covariance-stationary time-series process and let us seek
best linear predictor (predictor that is a linear combination of
{Xt−k , k ≥ 1}) such that mean square error is minimized
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Wold decomposition theorem yields:

Xt = et +
∞∑
j=1

ψjet−j + Vt (13)

where {et} ∼ N(0, σ2) and

et = Xt −
∞∑
i=1

ϕiXt−i (14)

with Vt purely deterministic and {ψj}, {ϕi} each square-summable
coefficients
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Hence,

E (Xt |Xt−k , k ≥ 1) 6=
∞∑
i=1

Xt−i ≡ X̂t (15)

X̂t is best linear predictor as it minimizes E{Xt −
∑∞

i=1 biXt−i} for
square-summable coefficients {bi}
Mean square error of X̂t is E (Xt − X̂t)

2 = E (e2t ) = σ2

However, best linear predictor is not least squares predictor in
general and therefore not best estimator
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Point Prediction (Section 10.2) – Local Linear Predictors

f (·) and ḟ (·) can be estimated by applying local linear regression, which is
a nonparametric regression technique (see Fan/Yao 2003, pp. 314-317)

Let f̂m(x) = â, ˆ̇fm(x) = b̂, and (â, b̂) be minimizer of subsequent sum:

T−m∑
t=p

{XT+m − a− bτ (XT − x)}K
(
XT − x

h(T )

)
(16)

where K (·) is a kernel function and h(T ) a bandwidth
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Calculation yields:

f̂m(x) =
T0(x)− Sτ1 (x)S−12 (x)T1(x)

S0(x)− Sτ1 (x)S−12 (x)S1(x)
(17)

ˆ̇fm(x) =
S1(x)T0(x)/S0(x)− T1(x)

S2(x)− S1(x)Sτ1 (x)/S0(x)
(18)

where S0(x),S1(x),S2(x),T0(x),T1(x) are given in Fan/Yao (2003, p.
451)

f̂m(x) is mean square consistent since
E [{fm(x)− f̂m(x)}2|XT = x + δ]→ 0 as T →∞
Decomposition of conditional mean square predictive error (5) still
holds asymptotically
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Predictive distributions – Introduction

For linear time series with normally distributed errors, the predictive
distributions are normal – predictive intervals are easily obtained

Mean ± a multiple of standard deviation

Used also for some non–linear models (e.g. threshold autoregressive
models)

Skewed distributions occur even if errors have symmetric
distributions

Most generally we want to estimate F (y |x) ≡ P(Yt ≤ y |Xt = x)

If we write Zt = I (Yt ≤ y) then E (Zt |Xt = x) = F (y |x) and
estimation may be seen as regression of Zt on Xt
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Estimators for F (·|x)

Local logistic estimator:

A generalized local logistic model for P(x) has the form

L(x ; θ) ≡ A(x ; θ)

{1 + A(x ; θ)}

where A(x ; θ) denotes a nonnegative function that depends on a
vector of parameters θ = (θ1, . . . , θr ) that represents the values of
P(x),P(1)(x), . . . ,P(r−1)(x)
Fitting this model locally to indicator–function data leads to an
estimator F̂ (y |x) ≡ L(0; θ̂) where θ̂ minimizes

R(θ; x ; y) =
T∑
t=1

{I (Yt ≤ y)− L(Xt − x , θ)}2Kh(Xt − x)
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Adjusted Nadaraya–Watson estimator:

Let pt = pt(x) for 1 ≤ t ≤ T , denote weights with the property that
pt ≥ 0,

∑
t pt = 1 and

T∑
t=1

pt(x)(Xt − x)Kh(Xt − x) = 0

Estimator:

F̃ (y |x) =

∑T
t=1 I (Yt ≤ y)ptKh(Xt − x)∑T

t=1 ptKh(Xt − x)

F̃ is first–order equivalent to local linear estimator
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Minimum–Length Predictive Sets

{Yt ,Xt} is a strictly stationary process

Yt = Xt+m for some m ≥ 1 and Xt = (Xt , · · · ,Xt−p+1)

General form of the predictive set is P{XT+m ∈ Ωm(x)|XT = x} = α

We restrict attention to C a class of measurable subsets of R
(usually C consists of all intervals in R)

Define: Cα(x) = {C ∈ C : F (C |x) ≥ α}
Minimum–Length Predictor: The set in Cα(x) with the minimum
Lebesgue measure is called the minimum length predictor for Yt

based on Xt = x in C with coverage probability α, which is denoted
MC(α|x).

If the conditional density g(y |x) of Yt given Xt = x exists than the
minimum–length predictor is given by

{y : g(y |x) ≥ λα}
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Estimation of Minimum–Length Predictors
Three steps:

Estimating the conditional distribution F (·|x)
Specifying the set C
Searching for MC(α|x) with F replaced by its estimator

Illustration with Nadaraya–Watson estimator:

F̂ (Cx) =

∑T
t=1 I (Yt ∈ C )K

(
Xt−x

h

)∑T
t=1 K

(
Xt−x

h

)
We replace then F with F̂ to obtain a minimum–length predictor

M̂C(α|x) = arg min
C∈C
{Leb(C ) : F̂ (C |x ≥ α)}

with true coverage probability

α̂ ≡ F{M̂C(α|x)|x}

which converges to α
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Predictive Sets based on conditional density

Let g(·|x) be the conditional density of Yt given Xt = x

The minimum–length predictor may be defined as

M(α|x) = {y : g(y |x) ≤ λα}

where λα is the maximum value for which∫
{y :g(y |x)≤λα}

g(y |x)dy ≤ α

Does not require specification of candidate C
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