Preliminaries ANN for Returns

Artificial Neural Network for Returns Application of Non-Linear TSA in Empirical Finance

Alexandra Kim & Markus Mayer

Department of Economics University of Vienna

January 19, 2010

= 200

Preliminaries 1/3

- Artificial Neural Networks (ANNs) or just Neural Networks (NNs) simulate the structure of biological neural networks.
- Network of simple processing elements (neurons), which can exhibit complex global behavior.
- In the artificial case, a function is defined as a composition of other functions, which can further be defined as a composition of functions.

Preliminaries 2/3

- Pro: Able to approximate almost any nonlinear function arbitrarily close. If a time series is characterized by a truly nonlinear dynamic relationship, the ANN will detect these and provide a superior fit, compared to linear time series models.
- Pro: No need to construct a specific parametric nonlinear time series model.

Preliminaries 3/3

- Con: Parameters are difficult, if not possible to interpret, therefore ANNs are often considered as 'black box' models, and constructed mainly for the purpose of pattern recognition and forecasting.
- Con: Danger of overfitting. By increasing the flexibility of the model, it is possible to obtain a almost perfect in-sample fit, but this can only be achieved by fitting the irregular noise of the time series. The result can be a inferior out-of-sample forecast.

ANN Terminology 1/2

- We consider the 'single hidden layer feedforward' model, which is the most popular among time series practitioners.
- The network is seen to consist of three different layers:
 - Input layer, consisting of explanatory variables in x_t .
 - The inputs are multipled by so-called connection strengths $\gamma_{i,j}$ as they enter the hidden layer, which consists of q logistic functions $G(\cdot)$.
 - In the hidden layer the linear combinations $x'_t \gamma_j$ are formed and transformed into a value between 0 and 1 by the activation functions $G(\cdot)$. These are multiplied by weights β_j to produce the y_t of the output layer.

Preliminaries ANN for Returns Theoretical Part Empirical Part

ANN Terminology 2/2

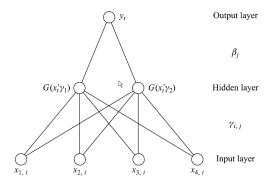


Figure: Single hidden layer feedforward neural network ANN (k,q) with k=4 and q=2.

wien

₹ = < € = <0 < 0

・ロト ・回ト ・ヨト

Presented by Kim & Mayer ANN for Returns

Consider the following STAR model for a univariate time series y_t ,

$$y_t = \phi_0 + \beta_1 G(\gamma[y_{t-1} - c]) + \epsilon_t,$$

where $G(\cdot)$ is the logistic function

$$G(z) = \frac{1}{1 + exp(-z)}$$

An ANN can now be obtained by assuming that the conditional mean of y_t depends on the value of a linear combination of p lagged values $y_{t-1}, ..., y_{t-p}$ relative to the threshold c.

< 1[™] >

Represenation 2/2

• The model then becomes

$$y_t = \phi_0 + \beta_1 G(x'_t \gamma_1) + \epsilon_t,$$

• The possible nonlinear relationship between y_t and x_t can be modelled by including additional logistic components, which yields

$$y_t = \phi_0 + \sum_{j=1}^q \beta_1 G(x'_t \gamma_1) + \epsilon_t.$$

Illustration of Approximation 1/2

- It can be shown, that an ANN of this form can approximate any function arbitrarily close, provided that the number of nonlinear components q is sufficiently large (without proof).
- We consider the last network and assume that only y_{t-1} acts as an input, therefore $x_t = (1, y_{t-1})'$.
- The next slide shows the skeleton of such a network with

•
$$\phi_0 = 2$$
, $q = 3$, $\beta_1 = 8$, $\beta_2 = -12$, $\beta_3 = 6$
• $G(x'_t \gamma_1) = 1/(1 + exp[-40 - 10y_{t-1}])$

•
$$G(x'_t \gamma_2) = 1/(1 + exp[-y_{t-1}])$$

•
$$G(x_t'\gamma_3) = 1/(1 + exp[20 - 20y_{t-1}])$$

Preliminaries ANN for Returns Theoretical Part Empirical Part

Illustration of Approximation 2/2

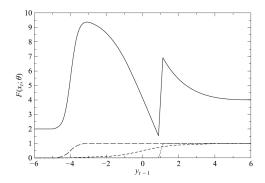


Figure: Skeleton $F(x_t; \theta)$ of an ANN with a single input and q = 3 (solid line); values of the activation functions $G(x'_t\gamma_j), j = 1, 2, 3$ are shown on the horizontal axis.

Preliminaries Theo ANN for Returns Emp

Theoretical Part Empirical Part

Estimation 1/2

• The parameters in the ANN (k,q) model

$$y_t = x'_t \phi + \sum_{j=1}^q \beta_j G(x'_t \gamma_j) + \epsilon_t.$$

can be estimated by minimizing the residual sum of squares function

$$Q_n(\theta) = \sum_{t=1}^n [y_t - F(x_t; \theta)]^2,$$

where

$$F(x_t;\theta) = x'_t \phi + \sum_{j=1}^q \beta_j G(x'_t \gamma_j).$$

- ANN are not considered as the result of an underlying data generating process. Because we see them as approximating models, they are inherent misspecified.
- Properties of the nonlinear least squares estimator $\hat{\theta}_n$:
 - $\hat{\theta}_n$ converges to θ^* as the sample size n increases without bound.
 - The normalized estimator $\sqrt{n}(\hat{\theta}_n \theta^*)$ converges to a multivariate normal distribution with mean zero and a covariance matrix, that can be estimated.

Model Evaluation and Model Selection

- Implementing an ANN(p, q) requires several decisions to be made:
 - choosing the activation function $G(\cdot)$
 - choosing the number of hidden units q
 - choosing the number of lags p to use as input variables
- In most cases the logistic function is choosen as activation function.
- There are various strategies for choosing p and q. One is to estimate all possible models and select the most appropriate one with the help of selection criteria like AIC.

- A 1-step-ahead forecast y_{n+1} can be computed directly as $y_{t+1}|t = x'_t \phi + \sum_{j=1}^q \beta_j G(x'_t \gamma_j)$ where $x_t = (1, y_t, ..., y_{t-p+1})$.
- There exists no closed-form expression for multiple-step-ahead forecasts $y_{t+h}|t$ where h > 1. In this case, we have to rely on simulation techniques.
- Again, the main danger of forecasting with ANNs is overfitting. A method to limit this danger is crossvaliadation.
- Methods for forecast evaluation of ANNs are not different from other models, therefore the main criteria are MSPE & MAPE.

Software for ANN

- All programs, which are used for statistical analysis like SAS, SPSS, Excel and Stata can be used to implement ANNs.
- Besides programs, which are developed especially for ANN, the most commonly used programs for ANNs are MATLAB and recently R.
- We employ the MATLAB code of Shapour and Hossein, which is accessible at IDEAS: A Matlab Code for Univariate Time Series Forecasting (2005)¹

¹http://ideas.repec.org/c/wpa/wuwppr/0505001.html < @

Univariate Time Series Forecasting

- The data we employ is exchange rate data from the ECB database for the Australian Dollar against the Euro on a daily basis from 16 January 2009 to 15 January 2010. ²
- We want to conduct a 5-step ahead forecast.

²http://sdw.ecb.europa.eu/browseSelection.do? DATASET=0FREQ=DCURRENCY=AUDnode=2018794

- FAN, J., AND YAO, Q., (2003): Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York.
- FRANCES, P. H., AND VAN DIJK, D., (2000): *Non-Linear Time Series Models in Empirical Finance*. Cambridge University Press, Cambridge.

