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Motivation

Basic idea of the presentation

Get a short introduction to non-linear prediction (Fan & Yao
Chapter 10)

Set-up: Why −→ Examples −→ Bits of the theory

Why forecasting? What is it for?

Who does not want to know the future?

Policy decisions depend on forecasts (e.g. future development
of GDP)

How to become rich (Financial markets)

In the end, that is why we do time series analysis
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Simplest case
Least squares m-step-ahead predictor

Simple Quadratic Model to understand the graphs and
sensitivity to initial values

Xt = 0.235Xt−1(16− Xt−1) + εt

where
εt ∼ U[−0.52, 0.52]

Now, we look at

m=2 and 3 step ahead predictor fm(•)
their conditional variance function

and a comparison of the conditional variance.
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Simplest case
Least squares m-step-ahead predictor

m=2 step ahead predictor

Figure: m=2 step ahead predictor with different initial values

Predictive error depends on initial value

Can be seen from the deviation from the dots and the line

and the conditional variance

Legend

a Dots: Scatter plot Xt+2 against Xt

b Solid line: 2-step ahead predictor fm(•)
c Impulses: Conditional variance σ2

m(•)
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Simplest case
Least squares m-step-ahead predictor

m=3 step ahead predictor

Figure: m=3 step ahead predictor with different initial values

Predictive error may be larger or smaller than for the m=2 step ahead predictor

Legend

a Dots: Scatter plot Xt+3 against Xt

b Solid line: 3-step ahead predictor fm(•)

c Impulses: Conditional variance σ2
m(•)

Back
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Simplest case
Least squares m-step-ahead predictor

Conditional Variance

Figure: Conditional variance depending on initial values

In the ranges where the solid line is below the dotted line, the 3-step predictor is

more accurate than the 2-step predictor More

Legend

a Dotted line: Conditional variance of the 2-step-ahead predictor
b Solid line: Conditional variance of the 3-step-ahead predictor
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Simplest case
Least squares m-step-ahead predictor

Least squares predictor

Observations from time series process X1, ...XT

Predict XT+m (m ≥ 1) based on last p observed values
(XT ,XT−1, ...XT−p+1)τ ≡ XT

Predictor: fT ,m(XT ) = arg inf E{XT+m − f (XT )}2

compare OLS: β̂ = arg min S(b) = (X ′X )−1X ′y
with S(b) =

∑n
i=1(yi − x ′i b)2 = (y − Xb)′(y − Xb)

−→ fT ,m(x) = E (XT+m|XT = x)
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Simplest case
Least squares m-step-ahead predictor

Conditional variances given XT

Mean Square Predictive Error of fT ,m:

E{XT+m − fT ,m(XT )}2

= E [E{(XT+m − fT ,m(XT ))2|XT}]

= E{Var(XT+m|XT )}
→ average of conditional variances of XT+m given XT

Note that for XT being a linear AR(p) conditional variance is
constant:

σ2
T ,m(x) ≡ Var(XT+m|XT = x)

CONDITIONAL Mean Square Predictive Error:

E [{XT+m − fT ,m(x)}2|XT = x] = σ2T ,m(x) (1)
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Simplest case
Least squares m-step-ahead predictor

Decomposition of conditional mean square error

Decomposition: E [{XT+m − fT ,m(x)}2|XT = x + δ]

= σ2T ,m(x + δ) + {δτ ḟT ,m(x)}2 + o(||δ||2) (2)

In non-linear time series we might not neglect the error coming
from the drift δ!
For non-linear processes both types of errors may be amplified
rapidly at some places in the state-space → hence it is
important for predictions at which point we are!
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Simplest case
Least squares m-step-ahead predictor

Noise Amplification

Assume simple model

Xt = f (Xt−1) + εt

with {εt} ∼ IID(0, σ2) and εt is independent of {Xt−k , k ≥ 1}
From Markov property it follows that

fT ,m(x) = E (XT+m|XT = x) ≡ fm(x)

and
σ2T ,m(x) = Var(XT+m|XT = x) ≡ σ2m(x)

where x is the first component of x.
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Simplest case
Least squares m-step-ahead predictor

For linear processes, e.g. an AR(1) process, the noise entering
at a fixed point in time decays exponentially as m increases.
This noise contraction is not necessarily observed in non-linear
processes.
For Xt = f (Xt−1) + εt

σ2m(x) = Var(Xm|X0 = x) = µm(x)σ2 + O(ζ3)

with

µm(x) = 1 +
m−1∑
j=1


m−1∏
k=j

ḟ [f (k)(x)]


2

σ2
m(x) varies with x
µm(x) dictates noise amplification (for linear processes σ2

m(x) and
µm(x) are constant).
Values of µm are determined by those of the derivative ḟ

If |ḟ (.)| > 1 defines large state-space, µm(.) can be large even for

small m See Maybe Conclusion
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Example: Predictive distribution
Theory again: Estimate predictive distributions

Predictive Distribution: Different estimators

Nadaraya-Watson estimator (NW)

Local linear regression estimator (LL)

adjusted Nadaraya-Watson estimator (ANW)

Local logistic estimator (LG-2)

Compare them using mean absolute deviation error (MADE)

MADE =

∑
i |Fe(yi |xi )− F (yi |xi )|I{0.001 ≤ F (yi |xi ) ≤ 0.999}∑

i I{0.001 ≤ F (yi |xi ) ≤ 0.999}
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Example: Predictive distribution
Theory again: Estimate predictive distributions

Example II: Model

Yt = 3.76Yt−1 − 0.235Y 2
t−1 + 0.3εt

where
εt independent with common distribution U[−0.52, 0.52]

Look at conditional distribution function z = F (y |x) for m=2
and 3

and a compare the predicted distribution using MADE.
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Example: Predictive distribution
Theory again: Estimate predictive distributions

Conditional Distribution Function for m = 2

Figure: CDF for m = 2

Legend

a X-Axis: past observed values

b Y-Axis: predicted values

c Vertical axis: Probability z = F (y|x)
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Example: Predictive distribution
Theory again: Estimate predictive distributions

Conditional Distribution Function for m = 3

Figure: CDF for m = 3

Legend

a X-Axis: past observed values

b Y-Axis: predicted values

c Vertical axis: Probability z = F (y|x)
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Example: Predictive distribution
Theory again: Estimate predictive distributions

Comparison of the Conditional Distribution Function

Figure: Comparison of the estimated conditional distribution function

Authors claim NW is considerable worse than the other
estimators
I do not see this, they look rather similar

Legend
a NW: Nadaraya-Watson estimator
b LL: Local linear regression estimator
c ANW: adjusted Nadaraya-Watson estimator
d LG-2: Local logistic estimator
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Example: Predictive distribution
Theory again: Estimate predictive distributions

Estimate predictive distributions

Generally: forecast a predictive interval/predictive set

”All information on the future is [...]contained in a predictive
distribution function, which is in fact a conditional
distribution of a future variable given the present state.”
(F&Y, p. 454)

Linear time series: predictive distributions are normal (hence,
simply estimate means and variances)

Non-linear time series: pred. distributions usually not normal
Furthermore: even if process is generated by parametric
non-linear model the multiple-step-ahead predictive
distributions are of unknown form and may only be estimated
in a non-parametric manner
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Example: Predictive distribution
Theory again: Estimate predictive distributions

Local linear regression estimator (LL)

Assume: data from str. stat. stochastic process {(Xt ,Yt)}
where Xt = (Xt , ...,Xt−p+1)τ typically denotes a vector of
lagged values of Yt = Xt+m for some m ≥ 1

Estimate conditional distribution function

F (y |x) ≡ P(Yt ≤ y |Xt = x)

Rewrite I (Yt ≤ y) = Zt , then

F (y |x) = E (Zt |Xt = x)

Hence, estimation problem can be viewed as regression
of Zt on Xt by local linear technique (see F&Y 8.2)

−→ yields our Local Linear regression estimator (LL)

Problem: estimator F̂ (y |x) is not necessarily a CDF
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Example: Predictive distribution
Theory again: Estimate predictive distributions

Adjusted Nadaraya-Watson Estimator (ANW)

Nadaraya-Watson kernel regression: estimate expectation as a locally weighted average, using a kernel as a
weighting function

Let pt = pt(x) denote weights with the following properties:
each pt ≥ 0,

∑
t pt = 1 and

T∑
t=1

pt(x)(Xt − x)Kh(Xt − x) = 0

Now define

F̃ (y |x) =

∑T
t=1 I (Yt ≤ y)pt(x)Kh(Xt − x)∑T

t=1 pt(x)Kh(Xt − x)

−→ 0 ≤ F̃ (y |x) ≤ 1, F̃ is monotone in y
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Conclusions

Linear prediction methods still dominant in time series
forecasting

Linear prediction does well, whenever time series is covariance
stationary (finite second moments)

Nevertheless, the best linear predictor is not the least squares
predictor in general and hence not the best estimator

Life (real-life generating processes) is not always linear!

Initial value sensitivity
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Literature

Nonlinear Time Searies: Nonparametric and Parametric Methods

Fan, Jianqing and Yoa, Qiwei, Springer Series in Statistics (2003);
especially Chapter 10

Quantifying the inference of initial values on nonlinear prediction

Yao, Q. and Tong, H. (1994); Journal of the Royal Statistical
Society, Series B, 56, 701-725.
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THANKS FOR YOUR ATTENTION
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Modified Simple Quadratic Model: Point Prediction

Xit = 0.23Xt−1(16− Xt−1) + 0.4εt

where
εt ∼ iidN[0, 1]

on the interval [−12, 12].

draw a sample of 1,200 data points

σ21(x) = 0.16 due to iid normality, thus m=1 is not reported
in the book

look at m=2, 3, and 4 step ahead predictor for sample point
1001 to 1200 and compare them to actual values
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m=2 step ahead predictor

Figure: m=2 step ahead predictor with bandwidth h = 0.25

Legend

a Diamonds: Predicted values

b Solid line: Estimated conditional variance σ̂2
m(•)

c Impulses: Absolute errors
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m=3 step ahead predictor

Figure: m=3 step ahead predictor with bandwidth h = 0.2

Legend

a Diamonds: Predicted values

b Solid line: Estimated conditional variance σ̂2
m(•)

c Impulses: Absolute errors
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m=4 step ahead predictor

Figure: m=4 step ahead predictor with bandwidth h = 0.18

Legend

a Diamonds: Predicted values

b Solid line: Estimated conditional variance σ̂2
m(•)

c Impulses: Absolute errors

Back
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