Non-linear Prediction

Nora Prean and Peter Lindner

18" January 2011

Nora Prean and Peter Lindner Non-linear Prediction



Contents

© Motivation

© Example and Theory |
@ Simplest case
@ Least squares m-step-ahead predictor

© Example and Theory |l
@ Example: Predictive distribution
@ Theory again: Estimate predictive distributions

@ Concluding remarks
@ Non-linear versus linear prediction
@ Literature
@ Appendix

Nora Prean and Peter Lindner Non-linear Prediction



Motivation

Motivation

Basic idea of the presentation

@ Get a short introduction to non-linear prediction (Fan & Yao
Chapter 10)

@ Set-up: Why — Examples — Bits of the theory
Why forecasting? What is it for?
@ Who does not want to know the future?

@ Policy decisions depend on forecasts (e.g. future development
of GDP)

@ How to become rich (Financial markets)

@ In the end, that is why we do time series analysis
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Example and Theory | Simplest case
Least squares m-step-ahead predictor

Simple Quadratic Model to understand the graphs and
sensitivity to initial values

Xt = 0235Xt71(16 — thl) + &t
where

er ~ U[—0.52,0.52]

Now, we look at
e m=2 and 3 step ahead predictor 7p(e)
@ their conditional variance function

@ and a comparison of the conditional variance.
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Example and Theory | Simplest case
Least squares m-step-ahead predictor

m=2 step ahead predictor

(a) Two-step-ahead prediction

o i L

X(t)

Figure: m=2 step ahead predictor with different initial values

@ Predictive error depends on initial value
@ Can be seen from the deviation from the dots and the line
@ and the conditional variance

Legend

a Dots: Scatter plot X; 5 against X¢
b Solid line: 2-step ahead predictor f;,(®)

¢ Impulses: Conditional variance afn(o)
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Example and Theory | Simplest case
Least squares m-step-ahead predictor

m=3 step ahead predictor

(b) Three-step-ahead prediction

Figure: m=3 step ahead predictor with different initial values

@ Predictive error may be larger or smaller than for the m=2 step ahead predictor

Legend
a Dots: Scatter plot X;3 against X¢
b Solid line: 3-step ahead predictor fi,(e)

c Impulses: Conditional variance ogn(o)

Nora Prean and Peter Lindner Non-linear Prediction



Simplest case
Least squares m-step-ahead predictor

Example and Theory |

Conditional Variance
(c) Conditional variance

Figure: Conditional variance depending on initial values

@ In the ranges where the solid line is below the dotted line, the 3-step predictor is

more accurate than the 2-step predictor

Dotted line: Conditional variance of the 2-step-ahead predictor
b Solid line: Conditional variance of the 3-step-ahead predictor
Non-linear Prediction
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Example and Theory | Simplest case
Least squares m-step-ahead predictor

Least squares predictor

Observations from time series process Xi, ...XT1

Predict X71,m (m > 1) based on last p observed values
(X7, X721, X7—p11)” = X7
Predictor: fr m(X7) = arg inf E{X7,m — f(X7)}?
o compare OLS: 3 = arg min S(b) = (X' X)"1X"y
with S(b) = 3771 (vi — x/b)* = (y — Xb)'(y — Xb)
— fT,m(x) = E(XT+m‘XT = X)
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Example and Theory | Simplest case
Least squares m-step-ahead predictor

Conditional variances given Xt

@ Mean Square Predictive Error of f7 p:
E{XT+m — fr.m(XT)}?
= E[E{(X74m — fr.m(X7))?[X7}]

= E{Var(X74m|X7)}

— average of conditional variances of X1, given X1

o Note that for X7 being a linear AR(p) conditional variance is
constant:
0% m(X) = Var(X74m|X1 = X)

@ CONDITIONAL Mean Square Predictive Error:
El{XT+m — frm()}* X1 = x] = 0F n(x) (1)
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Example and Theory | Simplest case
Least squares m-step-ahead predictor

Decomposition of conditional mean square error

o Decomposition: E[{X711m — fr.m(x)}?|X7 = x + 4]

= 0% (X +6) + {67 Fr.m(x)}? + o(||0]*) (2)

o In non-linear time series we might not neglect the error coming
from the drift §!

e For non-linear processes both types of errors may be amplified
rapidly at some places in the state-space — hence it is
important for predictions at which point we are!
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Example and Theory | Simplest case
Least squares m-step-ahead predictor

Noise Amplification

@ Assume simple model
Xt = f(Xt_l) =+ €t

with {e;} ~ IID(0,0?) and ¢; is independent of {X;_x, k > 1}

@ From Markov property it follows that
fT7m(X) = E(XT+m\XT = X) = fm(X)

and
G2T’m(x) = Var(X74m| X7 =x%) = a%,(x)

where x is the first component of x.
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Example and Theory | Simplest case

Least squares m-step-ahead predictor

@ For linear processes, e.g. an AR(1) process, the noise entering
at a fixed point in time decays exponentially as m increases.
This noise contraction is not necessarily observed in non-linear

processes.
e For Xt = f(Xt_l) + €

Tm(X) = Var(Xm|Xo = x) = pm(x)o® + O(¢?)

with
m—1 | m—1 ) 2
fm(x) =1+ I fir9 )l
Jj=1  k=J
@ 02 (x) varies with x

@ um(x) dictates noise amplification (for linear processes o2,(x) and
1m(x) are constant). '
@ Values of i, are determined by those of the derivative f

@ If |f(.)] > 1 defines large state-space, jim(.) can be large even for
small m
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Example: Predictive distribution
Example and Theory Il Theory again: Estimate predictive distributions

Predictive Distribution: Different estimators

e Nadaraya-Watson estimator (NW)

@ Local linear regression estimator (LL)

@ adjusted Nadaraya-Watson estimator (ANW)
e Local logistic estimator (LG-2)

Compare them using mean absolute deviation error (MADE)

MADE — i [Fe(yilxi) — F(yi|xi)|1{0.001 < F(yi]x;) < 0.999}
3. 1{0.001 < F(y;|x;) < 0.999}
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Example: Predictive distribution
Example and Theory Il Theory again: Estimate predictive distributions

Example II: Model

Yy =3.76Y;_1 — 0.235Y2 | 4 0.3¢;

where
e¢ independent with common distribution U[—0.52,0.52]

@ Look at conditional distribution function z = F(y|x) for m=2
and 3

@ and a compare the predicted distribution using MADE.
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Example: Predictive distribution
Example and Theory Il Theory again: Estimate pre ve distributions

Conditional Distribution Function for

—

(a) Conditional CDF (m=2)

i{:wlllllll I'T'}-‘
’i‘l|'||\l'|\|\

Figure: CDF for m =2

Legend

a X-Axis: past observed values

b Y-Axis: predicted values
¢ Vertical axis: Probability z = F(y|x)
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Example: Predictive distrib ]
Example and Theory Il Theory again: Estimate predictive distributions

Conditional Distribution Function for m = 3

(b) Conditional CDF (m=3)

1)
LI
i
| ,'w,'l.'.‘l i

Figure: CDF for m=3

Legend
a X-Axis: past observed values
b Y-Axis: predicted values
¢ Vertical axis: Probability z = F(y|x)
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Example: Predictive distribution
Example and Theory Il Theory aga Estimate predictive distributions

Comparison of the Conditional Distribution Function

(c) MADEs (m=2) (d) MADEs (m=3)
=] i S
NW L ANW L?:Z g k NW NN m LG-2

Figure: Comparison of the estimated conditional distribution function

@ Authors claim NW is considerable worse than the other
estimators

@ | do not see this, they look rather similar

Legend
a NW: Nadaraya-Watson estimator
b LL: Local linear regression estimator
c  ANW: adjusted Nadaraya-Watson estimator
d LG-2: Local logistic estimator
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Example: Predictive distribution
Example and Theory Il Theory again: Estimate predictive distributions

Estimate predictive distributions

@ Generally: forecast a predictive interval/predictive set

o "All information on the future is [...]contained in a predictive
distribution function, which is in fact a conditional
distribution of a future variable given the present state.”
(F&Y, p. 454)

@ Linear time series: predictive distributions are normal (hence,
simply estimate means and variances)

@ Non-linear time series: pred. distributions usually not normal
Furthermore: even if process is generated by parametric
non-linear model the multiple-step-ahead predictive
distributions are of unknown form and may only be estimated
in a non-parametric manner
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Example: Predictive distribution
Example and Theory Il Theory again: Estimate predictive distributions

Local linear regression estimator (LL)

@ Assume: data from str. stat. stochastic process {(X¢, Y:)}
where X¢ = (X¢, ..., X¢e—p4+1)" typically denotes a vector of
lagged values of Y; = Xiypm for some m>1

e Estimate conditional distribution function
Fylx) = P(Y: < y|X¢ = x)
Rewrite I(Y; < y) = Z;, then
F(ylx) = E(Z:|X: = x)

Hence, estimation problem can be viewed as regression
of Z; on X, by local linear technique (see F&Y 8.2)

@ — yields our Local Linear regression estimator (LL)
e Problem: estimator F(y|x) is not necessarily a CDF
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Example: Predictive distribution
Example and Theory Il Theory again: Estimate predictive distributions

Adjusted Nadaraya-Watson Estimator (ANW)

@ Nadaraya-Watson kernel regression: estimate expectation as a locally weighted average, using a kernel as a
weighting function

o Let p; = p:(x) denote weights with the following properties:
each pt >0, >, pr =1 and

-
ZPt(X)(Xt — x)Kp(Xt —x) =0
t=1
@ Now define
Fylx) = Sy 1(Ye < y)pe(x)Kn(Xe — x)

S 1 Pe(x)Kn(Xe — x)

o —0< I:_(y]x) < 1, F is monotone in y
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Non-linear versus linear prediction
Literature

. Appendix
Concluding remarks PE

Conclusions

@ Linear prediction methods still dominant in time series
forecasting

@ Linear prediction does well, whenever time series is covariance
stationary (finite second moments)

@ Nevertheless, the best linear predictor is not the least squares
predictor in general and hence not the best estimator

o Life (real-life generating processes) is not always linear!

@ Initial value sensitivity
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Non-linear versus linear prediction
Literature

. Appendix
Concluding remarks PE

Literature

Nonlinear Time Searies: Nonparametric and Parametric Methods
Fan, Jianqing and Yoa, Qiwei, Springer Series in Statistics (2003);
especially Chapter 10

Quantifying the inference of initial values on nonlinear prediction

Yao, Q. and Tong, H. (1994); Journal of the Royal Statistical
Society, Series B, 56, 701-725.
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Non-linear versus linear prediction
Literature
Appendix

Concluding remarks

THANKS FOR YOUR ATTENTION
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Non-linear versus linear prediction
Literature

Concluding remarks Appendix

Modified Simple Quadratic Model: Point Prediction

Xit = 0.23X;-1(16 — X;—1) + 0.4¢;
where
e¢ ~ iidNJ0, 1]
on the interval [-12,12].
@ draw a sample of 1,200 data points

e 02(x) = 0.16 due to iid normality, thus m=1 is not reported

in the book

@ look at m=2, 3, and 4 step ahead predictor for sample point
1001 to 1200 and compare them to actual values
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Non-linear versus linear prediction
Literature

Concluding remarks Appendix

m=2 step ahead predictor

(a) m=2
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Figure: m=2 step ahead predictor with bandwidth h = 0.25

Legend
a Diamonds: Predicted values
b Solid line: Estimated conditional variance &,2,,(0)

¢ Impulses: Absolute errors
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Non-linear versus linear prediction

Literature
Concluding remarks Appendix

m=3 step ahead predictor
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Figure: m=3 step ahead predictor with bandwidth h = 0.2

Legend
a Diamonds:

Predicted values
b Solid line: Estimated conditional variance &7, (e)

¢ Impulses: Absolute errors

Non-linear Prediction
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Non-linear versus linear prediction
Literature

Concluding remarks Appendix

m=4 step ahead predictor

(c) m=4
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Figure: m=4 step ahead predictor with bandwidth h = 0.18

Legend
a Diamonds: Predicted values
b Solid line: Estimated conditional variance &%1(0)

c Impulses: Absolute errors
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