Presentation of the seminar paper:

GARCH-models dealing with daily stock prices of two different banks (VPB and LLB) and TAR-models regarding monthly unemployment data (Austria, Switzerland and Liechtenstein)

PhD-Course "Nonlinear Time Series Analysis" Hosted by Prof. Robert Kunst University of Vienna (Department of Economics) January 18th, 2011

Andreas Brunhart (January 18th, 2011)

Motivation

- Investigation of daily stock prices of the banks "Liechtensteinische Landesbank" and "Verwaltungs- und Privatbank" from 2006 until 2010 and assessing the impact of the financial crisis and the "Zumwinkel-Affair" on performance and risk (using GARCHmodels)
- Examination of monthly unemployment figures from Austria, Switzerland and Liechtenstein from 1995 until 2009 applying Threshold Autoregressive (TAR) models in order to check whether the dynamics in economic contractions are different from those in expansions

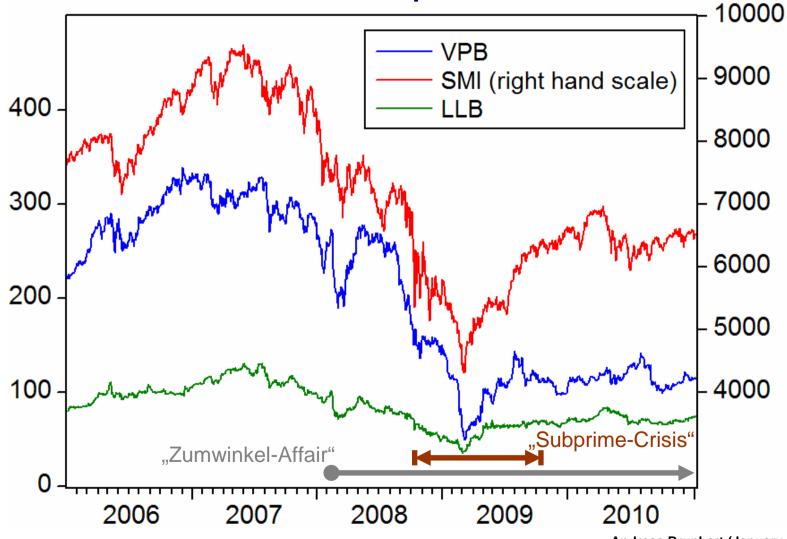
2. GARCH-models on stock prices

Investigating daily stock prices of the two banks "Liechtensteinische Landesbank AG (LLB)" and "Verwaltungs- und Privatbank AG (VPB)" from January 1st 2006 until December 31th 2010:

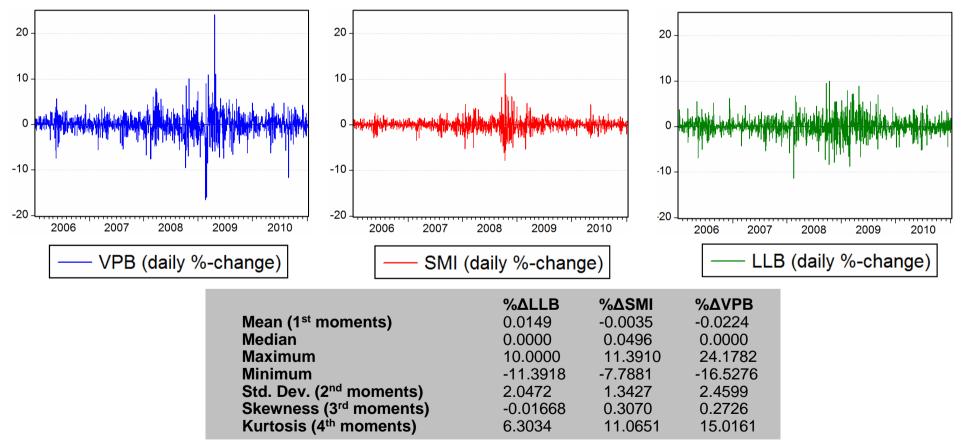
- GARCH-approach following Engle [1982] and Bollerslev [1986]
- Dependent variables: Daily percentage change of stock price (VPB or LLB)
- Influence on performance (mean equation) AND risk (variance equation):
 - Controlling variables: Performance of Swiss Market Index (%-change of SMI) and past performance of bank's stock price (%-change of VPB or LLB)
 - Additional impact of financial/subprime crisis: Time dummy from october 6th (2008) until october 19th (2009)
 - Additional impact of data theft ("Zumwinkel-affair"): Time dummy from february 15th (2008) until december 31th (2010)
 - Augmented GARCH-specification of variance equation: Squared past residuals and past conditional variance are supplemented by squared control variables (same as in mean euqation) and by the dummy variables ("subprime crisis" and "data theft")

1. Introduction 2. GARCH-models on stock prices 3. TAR-models on unemployment 4. Conclusions

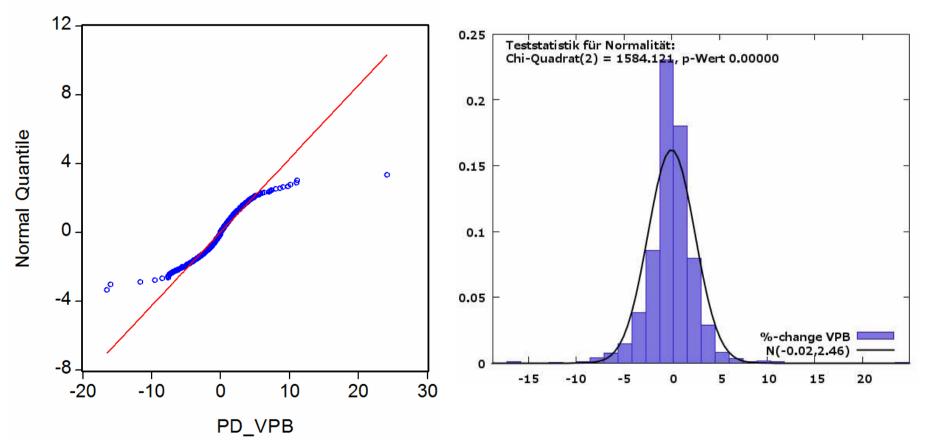
Data theft: "Zumwinkel-affair"



Heinrich Kieber sold stolen data (containing clients of the LGT Bank) to the german intelligence service (BND) for 5 Million Euro, which led to approximately 600 tax evasion proceedings in 2008. He also sold data to 13 other countries. Direct and indirect consquences for Liechtenstein: Strong capital outflow, trial against LGT and political pressure on Liechtenstein, which led to agreements on tax information exchange with (so far) 25 countries. Kieber's domicil is still unknown... Andreas Brunhart (January 18th, 2011)


Used data series: Visual inspection

1. Introduction 2. GARCH-models on stock prices 3. TAR-models on unemployment 4. Conclusions


Modified data series: Visual and descriptive inspection

→ Calculation of daily percentage differences (% Δ VPB, % Δ SMI, % Δ LLB):

Pattern of all three series: Leptokurtosis and volatility clustering. First indications that a GARCH-model could be fruitful.

Stock prices VPB (%Δ): First impression

Theoretical Quantile-Quantile

→ Heavy tails: Leptokurtic property of fourth moments evident (Kurtosis = 15.02 > 3)

Stock prices VPB (%Δ): First impression

- → ACF of %-change of VPB stock prices (denoted below as "PD_VPB") unveils no autocorrelation, while ACF of squared stock prices (PD_VPB²) shows significant autocorrelation and therefore heteroskedastic characteristics.
- Ordinary estimation (without GARCH-modeling) yields autocorrelated squared residuals, while non-squared residuals are not autocorrelated: Positive dependency of residuals' second moments means that variance is not constant over time (heteroskedasticity, volatility clustering). Results are shown below:

Dependent Variable: PD_VPB Method: Least Squares Date: 01/16/11 Time: 21:25 Sample (adjusted): 1/05/2006 1/04/2011 Included observations: 1256 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PD_VPB(-1)	0.043607	0.026374	1.653386	0.0985
PD_SMI	0.652914	0.048323	13.51158	0.0000
SUBPRIMECRISIS	-0.019899	0.178008	-0.111785	0.9110
DATATHEFT	-0.061710	0.106261	-0.580735	0.5615
R-squared	0.129675	Mean dependent var		-0.022798
Adjusted R-squared	0.127590	S.D. dependent var		2.460821
S.E. of regression	2.298478	Akaike info criterion		4.505551
Sum squared resid	6614.315	Schwarz criterion		4.521906
Log likelihood	-2825.486	Durbin-Watson stat		2.042928

Correlogram of squared residuals (\hat{u}_t^2)

	<u> </u>				,	
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		3 4 5	0.085 0.130 0.133 0.208	0.068 0.113 0.101 0.173	22.751 31.922 53.382 75.560 130.04 131.16	0.000 0.000 0.000 0.000
	1) 1) 1)	7 8 9 10	0.048 0.081 0.076	0.004 0.026 0.028	134.04 142.35	0.000 0.000 0.000

1. Introduction 2. GARCH-models on stock prices 3. TAR-models on unemployment 4. Conclusions

Stock prices VPB ($\%\Delta$): First impression

Dependent Variable: PD_VPB
Method: Least Squares
Date: 01/16/11 Time: 21:25
Sample (adjusted): 1/05/2006 1/04/2011
Included observations: 1256 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PD_VPB(-1)	0.043607	0.026374	1.653386	0.0985
PD_SMI	0.652914	0.048323	13.51158	0.0000
SUBPRIMECRISIS	-0.019899	0.178008	-0.111785	0.9110
DATATHEFT	-0.061710	0.106261	-0.580735	0.5615
R-squared	0.129675	Mean dependent var		-0.022798
Adjusted R-squared	0.127590	S.D. dependent var		2.460821
S.E. of regression	2.298478	Akaike info criterion		4.505551
Sum squared resid	6614.315	Schwarz criterion		4.521906
Log likelihood	-2825.486	Durbin-Watson stat		2.042928

ARCH Test:

F-statistic	19.78249	Probability	0.00000
Obs*R-squared	92.07405	Probability	0.000000

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 01/12/11 Time: 17:46 Sample (adjusted): 1/12/2006 1/04/2011 Included observations: 1251 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	2.808677	0.601979	4.665742	0.0000
RESID^2(-1)	0.088483	0.027914	3.169867	0.0016
RESID^2(-2)	0.031312	0.027928	1.121157	0.2624
RESID^2(-3)	0.092864	0.027818	3.338267	0.0009
RESID^2(-4)	0.082709	0.027928	2.961512	0.0031
RESID^2(-5)	0.172990	0.027928	6.197282	0.0000
R-squared	0.073600	Mean dependent var		5.283407
Adjusted R-squared	0.069880	S.D. dependent var		19.81501
S.E. of regression	19.11013	Akaike info criterion		8.743099
Sum squared resid	454670.5	Schwarz criterion		8.767712
Log likelihood	-5462.808	F-statistic		19.78249
Durbin-Watson stat	1.986909	Prob(F-statistic)		0.000000

ARCH tests (Engle [1982]) supports findings of sample quantile, observed distribution (leptokurtic), ACF of squared residuals: Existence of autoregressive conditional heteroskedasticity.

1. Introduction 2. GARCH-models on stock prices 3. TAR-models on unemployment 4. Conclusions

Stock prices VPB (%Δ): Estimated GARCH-model

 $\begin{aligned} & \| \% \Delta VPB_t = \alpha_1 + \beta_1 \cdot \% \Delta VPB_{t-1} + \beta_2 \cdot \% \Delta SMI_t + \beta_3 \cdot SUBPRIMECRISIS_t + \beta_4 \cdot DATATHEFT_t + \hat{u}_t \\ & u_t | \Omega_t \sim \text{iid N} (0, h_t) \\ & h_t = \alpha_2 + \sum_{i=1}^p \delta_i \cdot h_{t-i} + \sum_{j=1}^q \gamma_j \cdot u_{t-j}^2 + \beta_5 \cdot \% \Delta VPB_{t-1}^2 + \beta_6 \cdot \% \Delta SMI_{t-1}^2 + \beta_7 \cdot SUBPRIMECRISIS_t + \beta_8 \cdot DATATHEFT_t \end{aligned}$

- Dependent variable: Daily percentage change of stock price (VPB)
- Influence on performance (mean equation) AND risk (variance equation):
 - Controlling variables: Performance of Swiss Market Index (%-change of SMI) and past performance of bank's stock price (%-change of VPB)
 - Additional impact of financial crisis/subrime crisis (<u>additional effect beyond influence of</u> <u>crisis via SMI</u>): Time dummy from october 6th (2008) until october 19th (2009)
 - Additional impact of data theft (<u>separated from impact of financial crisis</u>): Time dummy from february 15th (2008) until december 31th (2010)
 - Augmented GARCH-specification of variance equation: Squared past residuals and past conditional variance are supplemented by squared control variables (same as in mean equation) and by the dummy variables ("financial crisis" and "data theft")

1. Introduction 2. GARCH-models on stock prices 3. TAR-models on unemployment 4. Conclusions

Stock prices VPB (%Δ): Estimation output

Dependent Variable: PD_VPB Method: ML - ARCH (Marquardt) - Normal distribution Date: 01/14/11 Time: 00:49 Sample (adjusted): 1/05/2006 1/04/2011 Included observations: 1256 after adjustments Convergence achieved after 42 iterations Variance backcast: ON GARCH = C(5) + C(6)*GARCH(-1) + C(7)*PD VPB(-1)*2 + C(8)

*PD_SMI(-1)^2 + C(9)*SUBPRIMECRISIS + C(10)*DATATHEFT

	Coefficient	Std. Error	z-Statistic	Prob.
PD_VPB(-1)	-0.010239	0.031656	-0.323430	0.7464
PD_SMI	0.594137	0.042882	13.85515	0.0000
SUBPRIMECRISIS	-0.019577	0.261002	-0.075007	0.9402
DATATHEFT	-0.017935	0.091245	-0.196553	0.8442

Variance Equation						
C GARCH(-1) PD_VPB(-1)*2 PD_SMI(-1)*2 SUBPRIMECRISIS	0.307309 0.645165 0.108462 0.169894 1.982111	0.084682 0.064753 0.022197 0.041518 0.497751	3.628972 9.963490 4.886225 4.092028 3.982132	0.0003 0.0000 0.0000 0.0000 0.0001		
DATATHEFT R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.454955 0.125485 0.119169 2.309545 6646.159 -2594.855	0.121831 Mean depen S.D. depend Akaike info Schwarz crit Durbin-Wats	lent var criterion terion	0.0002 -0.022798 2.460821 4.147858 4.188747 1.926045		

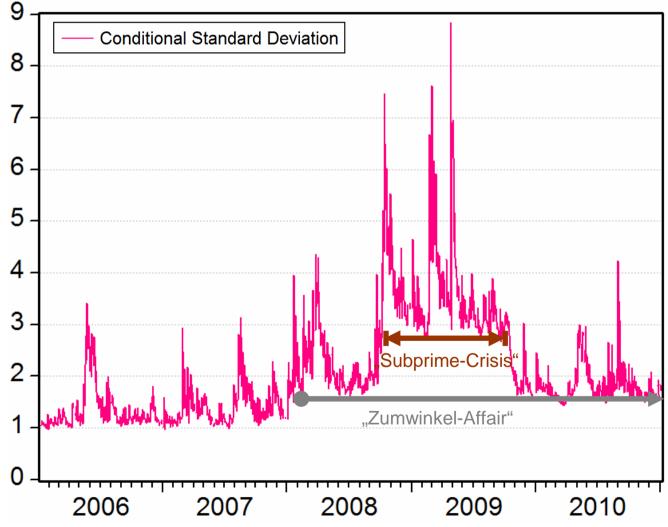
- → Impact on performance (mean equation):
 - Controlling variables:
 - ✓ No indicated autocorrelation of %-change of VPB stocks
 - ✓ %-change of SMI-Index highly significant
 - Variables of main interest:
 - ✓ Data theft had no significant influence
 - ✓ Financial/subprime crisis had no significant effect (which has not been covered by the SMI so far)
 - ind her been covered by the SMI So rai
- Impact on risk/volatility (variance equation):
 - Controlling variables:
 - ✓ %-change of VPB stock prices (one day before) has a positive significant effect on conditional variance
 - ✓ %-change of SMI-Index (one day before) has a positive significant effect on conditional variance
 - Conditional variance is positively dependent on past conditional variance
 - Variables of main interest:
 - ✓ Data theft had increasing effect on conditional variance additional to influence of financial crisis
 - ✓ Financial/subprime crisis had a strong effect that was not covered by the impact of crisis via SMI

1. Introduction 2. GARCH-models on stock prices 3. TAR-models on unemployment 4. Conclusions

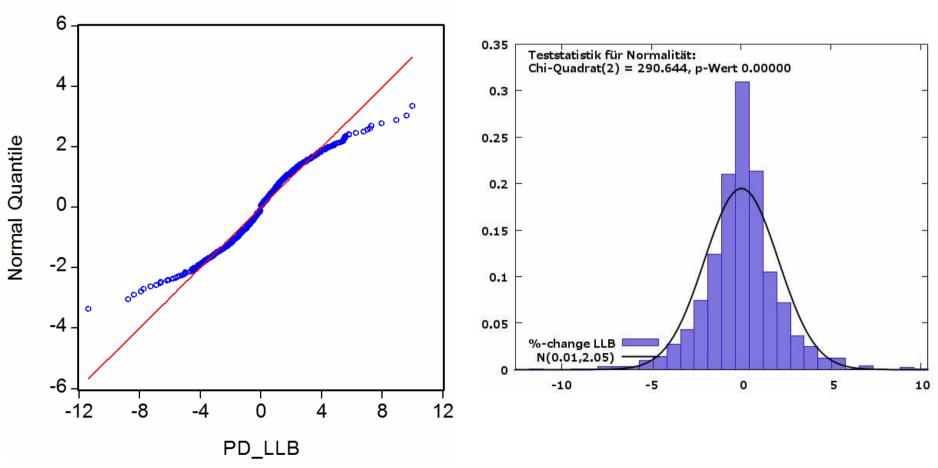
Stock prices VPB (%Δ**): Estimation output**

Dependent Variable: PD_VPB Method: ML - ARCH (Marquardt) - Normal distribution Date: 01/14/11 Time: 00:49 Sample (adjusted): 1/05/2006 1/04/2011 Included observations: 1256 after adjustments Convergence achieved after 42 iterations Variance backcast: ON GARCH = C(5) + C(6)*GARCH(-1) + C(7)*PD_VPB(-1)^2 + C(8) *PD_SMI(-1)^2 + C(9)*SUBPRIMECRISIS + C(10)*DATATHEFT

	Coefficient	Std. Error	z-Statistic	Prob.
PD_VPB(-1)	-0.010239	0.031656	-0.323430	0.7464
PD_SMI	0.594137	0.042882	13.85515	0.0000
SUBPRIMECRISIS	-0.019577	0.261002	-0.075007	0.9402
DATATHEFT	-0.017935	0.091245	-0.196553	0.8442
	Variance	Equation		
C	0.307309	0.084682	3.628972	0.0003
GARCH(-1)	0.645165	0.064753	9.963490	0.0000
PD_VPB(-1)*2	0.108462	0.022197	4.886225	0.0000
PD_SMI(-1)*2	0.169894	0.041518	4.092028	0.0000
SUBPRIMECRISIS	1.982111	0.497751	3.982132	0.0001
DATATHEFT	0.454955	0.121831	3.734311	0.0002
R-squared	0.125485	Mean dependent var		-0.022798
Adjusted R-squared	0.119169	S.D. dependent var		2.460821
S.E. of regression	2.309545	Akaike info criterion		4.147858
Sum squared resid	6646.159	Schwarz criterion		4.188747
Log likelihood	-2594.855	Durbin-Watson stat		1.926045


 \checkmark

Correlogram of squared residuals (\hat{u}_t^2)


Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.005	0.005	0.0258	0.872
ψ	II	2	-0.005	-0.005	0.0634	0.969
l li	1 (l	3	-0.014	-0.013	0.2934	0.961
l II	II	4	0.005	0.005	0.3196	0.989
- III	ј ф	5	0.010	0.010	0.4559	0.994
¢.	(()	6	-0.037	-0.038	2.2232	0.898
l III		7	-0.019	-0.019	2.6997	0.911
ılı -	1 1	8	0.000	0.000	2.6997	0.952
ı l	1 11	9	0.005	0.003	2.7277	0.974
ψ		10	0.014	0.013	2.9626	0.982

As a result of the incorporation of GARCH-equation, squared residuals feature no autocorrelation anymore.

Stock prices VPB (%Δ): Estimated conditional variance

Stock prices LLB (%Δ): First impression

Theoretical Quantile-Quantile

→ Heavy tails: Leptokurtic property of fourth moments evident (Kurtosis = 6.30 > 3)

Andreas Brunhart (January 18th, 2011)

Stock prices LLB (%Δ): First impression

- → ACF of %-change of LLB stock prices (denoted below as "PD_LLB") unveils only autocorrelation of the first lag, while ACF of squared stock prices (PD_LLB²) shows strong autocorrelation (for several lags) and therefore heteroskedastic characteristics.
- Ordinary estimation (without GARCH-modeling) yields autocorrelated squared residuals, while non-squared residuals are not autocorrelated: Positive dependency of residuals' second moments means that variance is not constant over time (heteroskedasticity, volatility clustering). Results are shown below:

Dependent Variable: PD_LLB Method: Least Squares Date: 01/16/11 Time: 21:35 Sample (adjusted): 1/05/2006 1/04/2011 Included observations: 1256 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PD_LLB(-1)	-0.055013	0.027140	-2.027017	0.0429
PD_SMI	0.416425	0.041392	10.06045	0.0000
SUBPRIMECRISIS	0.080021	0.152443	0.524923	0.5997
DATATHEFT	-0.041855	0.090990	-0.459994	0.6456
R-squared	0.078506	Mean dependent var		0.014775
Adjusted R-squared	0.076298	S.D. dependent var		2.047996
S.E. of regression	1.968317	Akaike info criterion		4.195415
Sum squared resid	4850.590	Schwarz criterion		4.211770
Log likelihood	-2630.720	Durbin-Watson stat		2.063262

Correlogram of squared residuals	$(\hat{u}_{.}^{2})$	
conclegiant of equated reclaude	$\langle u_t \rangle$	

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		4	0.110 0.101 0.120 0.149 0.128 0.185 0.015 0.099	0.063 0.067 0.084 0.103 0.064 0.131 -0.083 0.072	63.565 78.890 91.670 109.92 138.09 158.69 201.95 202.23 214.74 221.42	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Stock prices LLB (%Δ): First impression

Dependent Variable: PD_LLB Method: Least Squares
Date: 01/16/11 Time: 21:35
Sample (adjusted): 1/05/2006 1/04/2011 Included observations: 1256 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PD_LLB(-1)	-0.055013	0.027140	-2.027017	0.0429
PD_SMI	0.416425	0.041392	10.06045	0.0000
SUBPRIMECRISIS	0.080021	0.152443	0.524923	0.5997
DATATHEFT	-0.041855	0.090990	-0.459994	0.6456
R-squared	0.078506	Mean dependent var		0.014775
Adjusted R-squared	0.076298	S.D. dependent var		2.047996
S.E. of regression	1.968317	Akaike info criterion		4.195415
Sum squared resid	4850.590	Schwarz criterion		4.211770
Log likelihood	-2630.720	Durbin-Watson stat		2.063262

AR	СН	Test

F-statistic		Probability	0.000000
Obs*R-squared		Probability	0.000000
obo n oquanor	120.0122	· robubility	0.00000

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 01/13/11 Time: 19:16 Sample (adjusted): 1/17/2006 1/04/2011 Included observations: 1248 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1) RESID^2(-2) RESID^2(-3) RESID^2(-4) RESID^2(-5) RESID^2(-6) RESID^2(-7)	1.893423 0.188414 0.026926 0.041435 0.060222 0.089206 0.042265 0.145438	0.316564 0.028310 0.028512 0.028497 0.028409 0.028409 0.028406 0.028471 0.028483	5.981176 6.655276 0.944367 1.454037 2.119808 3.140347 1.484501 5.106122	0.0000 0.0000 0.3452 0.1462 0.0342 0.0017 0.1379 0.0000
RESID*2(-7)	-0.083109	0.028285	-2.938254	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.101500 0.095699 8.455117 88574.87 -4430.514 1.987927	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		3.872228 8.891254 7.114606 7.151596 17.49565 0.000000

ARCH tests (Engle [1982]) supports findings of sample quantile, observed distribution (leptokurtic), ACF of squared residuals: Existence of autoregressive conditional heteroskedasticity.

1. Introduction 2. GARCH-models on stock prices 3. TAR-models on unemployment 4. Conclusions

Stock prices LLB (%Δ): Estimation output

 $\begin{aligned} & \| \% \Delta LLB_t = \alpha_1 + \beta_1 \cdot \% \Delta LLB_{t-1} + \beta_2 \cdot \% \Delta SMI_t + \beta_3 \cdot SUBPRIMECRISIS_t + \beta_4 \cdot DATATHEFT_t + \hat{u}_t \\ & u_t | \Omega_t \sim \text{iid N} (0, h_t) \\ & h_t = \alpha_2 + \sum_{i=1}^p \delta_i \cdot h_{t-i} + \sum_{j=1}^q \gamma_j \cdot u_{t-j}^2 + \beta_5 \cdot \% \Delta LLB_{t-1}^2 + \beta_6 \cdot \% \Delta SMI_{t-1}^2 + \beta_7 \cdot SUBPRIMECRISIS_t + \beta_8 \cdot DATATHEFT_t \end{aligned}$

- Dependent variable: Daily percentage change of stock price (LLB)
- Influence on performance (mean equation) AND risk (variance equation):
 - Controlling variables: Performance of Swiss Market Index (%-change of SMI) and past performance of bank's stock price (%-change of LLB)
 - Additional impact of financial crisis/subrime crisis (<u>additional effect beyond influence of</u> <u>crisis via SMI</u>): Time dummy from october 6th (2008) until october 19th (2009)
 - Additional impact of data theft (<u>separated from impact of financial crisis</u>): Time dummy from february 15th (2008) until december 31th (2010)
 - Augmented GARCH-specification of variance equation: Squared past residuals and past conditional variance are supplemented by squared control variables (same as in mean equation) and by the dummy variables ("financial crisis" and "data theft")

1. Introduction 2. GARCH-models on stock prices 3. TAR-models on unemployment 4. Conclusions

Stock prices LLB (%Δ): Estimation output

Dependent Variable: PD_LLB Method: ML - ARCH (Marquardt) - Normal distribution Date: 01/14/11 Time: 17:00 Sample (adjusted): 1/05/2006 1/04/2011 Included observations: 1256 after adjustments Convergence achieved after 17 iterations Variance backcast: ON GARCH = C(5) + C(6)*GARCH(-1) + C(7)*PD_LLB(-1)*2 + C(8) *PD_SMI(-1)*2 + C(9)*SUBPRIMECRISIS + C(10)*DATATHEFT

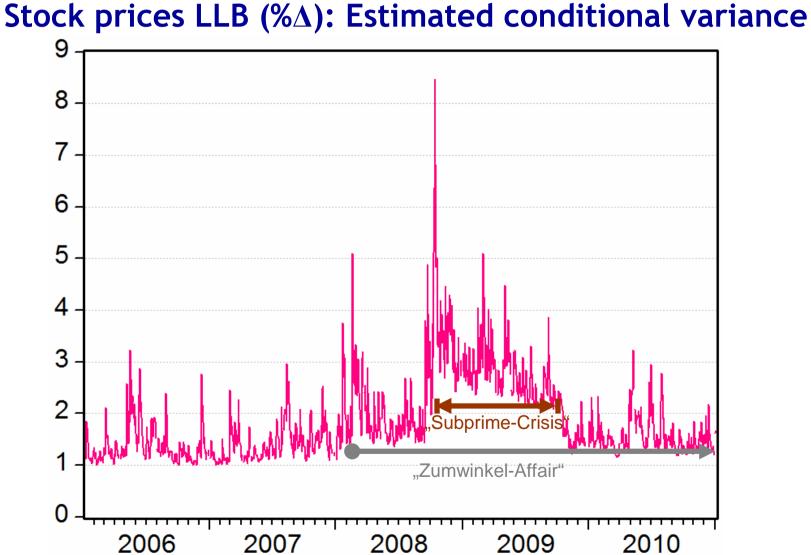
	Coefficient	Std. Error	z-Statistic	Prob.
PD_LLB(-1)	-0.086890	0.032827	-2.646936	0.0081
PD_SMI	0.416952	0.039077	10.67009	0.0000
SUBPRIMECRISIS	0.078399	0.188691	0.415490	0.6778
DATATHEFT	-0.010578	0.074336	-0.142297	0.8868

Variance Equation					
C GARCH(-1) PD_LLB(-1) ^{*2} PD_SMI(-1) ^{*2} SUBPRIMECRISIS DATATHEFT	0.421693 0.533147 0.163867 0.244959 1.224834 0.161700	0.092447 0.060467 0.022305 0.050403 0.383799 0.076432	4.561443 8.817209 7.346628 4.859966 3.191338 2.115617	0.0000 0.0000 0.0000 0.0000 0.0014 0.0344	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.077355 0.070691 1.974282 4856.648 -2470.129	Mean depen S.D. depend Akaike info Schwarz crit Durbin-Wats	lent var criterion terion	0.014775 2.047996 3.949250 3.990139 2.001918	

- → Impact on performance (mean equation):
 - Controlling variables:
 - ✓ <u>Significant autocorrelation</u> of %-change of LLB stocks
 - ✓ %-change of SMI-Index highly significant
 - Variables of main interest:
 - ✓ Data theft had no significant influence
 - ✓ Financial/subprime crisis had no significant effect (which has not been covered by the SMI so far)
- → Impact on risk/volatility (variance equation):
 - Controlling variables:
 - ✓ %-change of LLB stock prices (one day before) has positive significant effect on conditional variance
 - ✓ %-change of SMI-Index (one day before) has positive significant effect on conditional variance
 - Conditional variance is positively dependent on past conditional variance
 - Variables of main interest:
 - ✓ Data theft had (<u>small</u>) increasing effect on conditional variance additional to influence of financial crisis
 - ✓ Financial/subprime crisis had a strong effect that was not covered by the impact of crisis via SMI

Stock prices LLB (%Δ): Estimation output

Dependent Variable: PD_LLB Method: ML - ARCH (Marquardt) - Normal distribution Date: 01/14/11 Time: 17:00 Sample (adjusted): 1/05/2006 1/04/2011 Included observations: 1256 after adjustments Convergence achieved after 17 iterations Variance backcast: ON GARCH = C(5) + C(6)*GARCH(-1) + C(7)*PD_LLB(-1)^2 + C(8) *PD_SMI(-1)^2 + C(9)*SUBPRIMECRISIS + C(10)*DATATHEFT

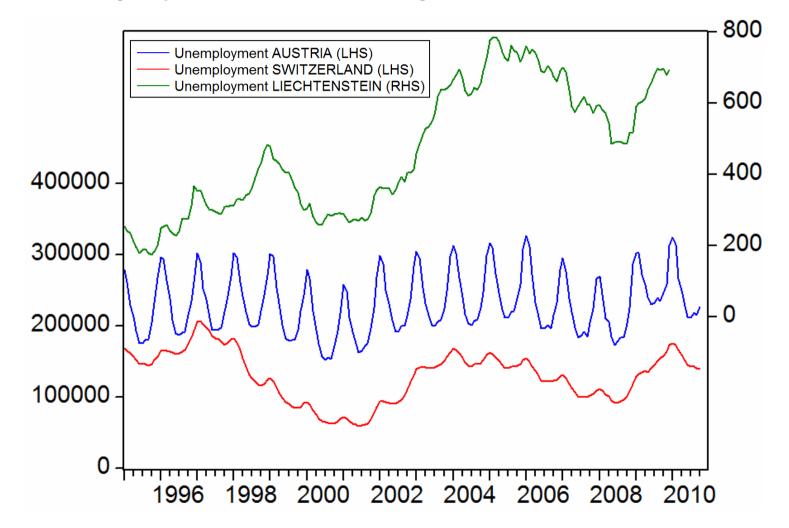

	Coefficient	Std. Error	z-Statistic	Prob.
PD_LLB(-1)	-0.086890	0.032827	-2.646936	0.0081
PD_SMI	0.416952	0.039077	10.67009	0.0000
SUBPRIMECRISIS	0.078399	0.188691	0.415490	0.6778
DATATHEFT	-0.010578	0.074336	-0.142297	0.8868
	Variance	Equation		
C	0.421693	0.092447	4.561443	0.0000
GARCH(-1)	0.533147	0.060467	8.817209	0.0000
PD_LLB(-1)^2	0.163867	0.022305	7.346628	0.0000
PD_SMI(-1)^2	0.244959	0.050403	4.859966	0.0000
SUBPRIMECRISIS	1.224834	0.383799	3.191338	0.0014
DATATHEFT	0.161700	0.076432	2.115617	0.0344
R-squared	0.077355	Mean dependent var		0.014775
Adjusted R-squared	0.070691	S.D. dependent var		2.047996
S.E. of regression	1.974282	Akaike info criterion		3.949250
Sum squared resid	4856.648	Schwarz criterion		3.990139
Log likelihood	-2470.129	Durbin-Watson stat		2.001918

 \checkmark

Correlogram of squared residuals (\hat{u}_t^2)

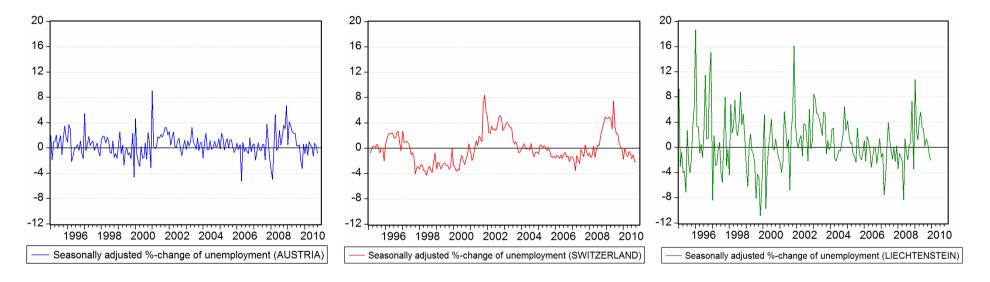
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	ı)				1.1891	
1	1	- 1			1.7011	
4' 10		-			2.9305	
ιp	l ú	5	0.053	0.050	6.8522	0.232
ı p	1 1	6			9.3559	
					9.5958	
4 1			0.000	0.000	14.635	
ų.	1	<u> </u>			15.322	

As a result of the incorporation of GARCH-component, squared residuals feature no autocorrelation anymore.

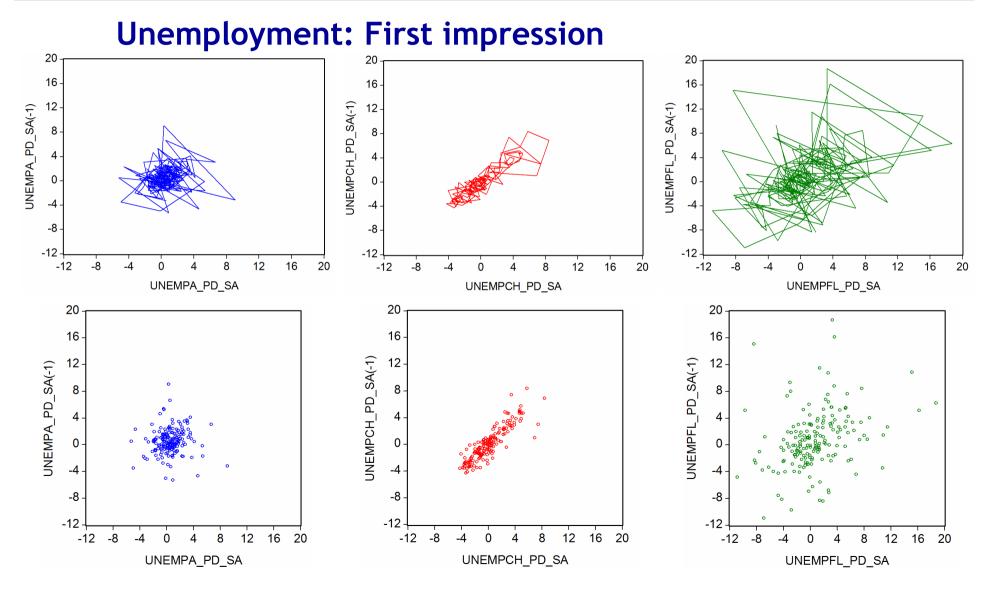

3. TAR-models on unemployment

Analysing monthly unemployment figures of Austria, Switzerland and Liechtenstein from January 1995 until December 2009:

- Threshold Autoregressive (TAR)-model after Tong [1977]
- Dependent variables: Monthly, seasonally-adjusted percentage change of number of unemployed people (Austria, Switzerland or Liechtenstein)
- Inspection whether approach applying two different regimes is more appropriate than an "ordinary" AR(MA)-model for entire sample:
 - Two different AR-models depending on past unemployment (Seasonally adjusted %- change one month before: Either greater or smaller than 0)
 - Approach of Baragona/Cucina [2009] to find TAR-specification: Genetic algorithm to evaluate the number of regimes, delay, delay parameter, lag length and estimation of model parameters¹).


¹⁾ Program downloadable: <u>http://w3.uniroma1.it/statstsmeh/index.htm</u>

Unemployment: Visual inspections



Unemployment: Data transformation

→ Calculation of %-differences and seasonal adjustment:

	%Δ A	% Δ CH	%Δ FL
Mean	0.5504	0.1151	0.7788
Median	0.4667	-0.1414	0.2553
Maximum	9.0740	8.3964	18.7077
Minimum	-5.2648	-4.2627	-10.8919
Std. Dev.	1.9010	2.4723	4.3815
Skewness	0.4281	0.6863	0.7280
Kurtosis	5.7494	3.2580	5.2864

Andreas Brunhart (January 18th, 2011)

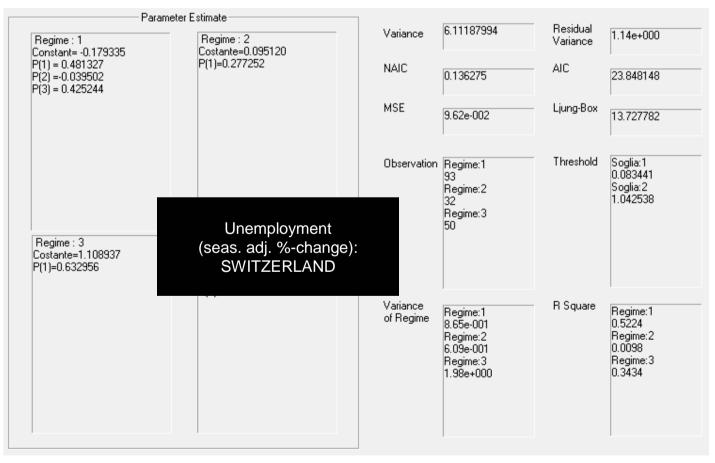
TAR-models: Estimation output

Depen	Dependent variable: %AUNEMPLOYMENT (unemployed people)						
	Austria	Switzerland	Liechtenstein				
	"Ordinary" AR-model						
С	0.517791**						
AR(1)	0.047877	0.739395***	0.336554***				
AR(2)	0.122843*	-0.010189					
AR(3)	0.211878***	0.190453**					
AR(4)							
-	TAR-model: Regime	I (%ΔUNEMPLOYME	$ENT(-1) \ge 0)$				
С			1.874499***				
AR(1)	0.126395*	0.895759***	0.136907				
AR(2)	0.190537**						
AR(3)	0.431713***						
AR(4)							
-	TAR-model: Regime 2	2 (%ΔUNEMPLOYME	ENT(-1) < 0)				
С							
AR(1)	-0.222412	0.540186***	0.262869**				
AR(2)		-0.027000					
AR(3)		0.429183***					
AR(4)							

Root Mean Squared Error	Austria	Switzerland	Liechtenstein
AR	1.7960	1.1258	4.1327
ARMA	1.8507 [(1,2) ohne c]	1.1368 [(1,1) ohne c]	4.1277 [(1,1) ohne c]
TAR	1.7275	1.0902	4.0148

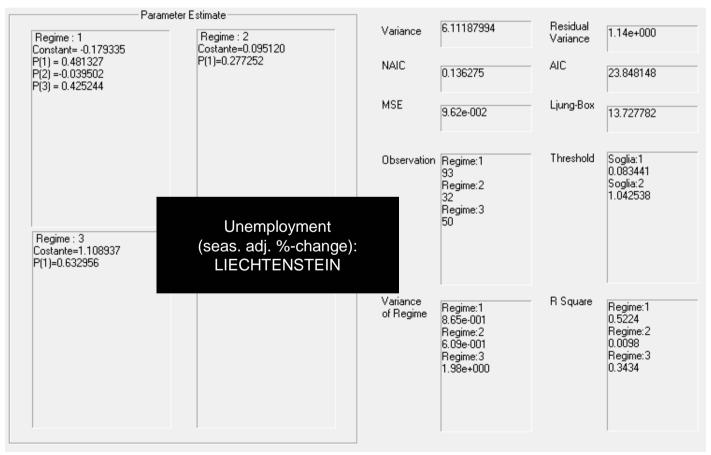
➔ No visual indication of TAR-structure (previous slide)

→ Also the estimation results do not clearly support the usage of TAR-models as a "very" superior alternative to "ordinary" AR(MA)-models, even though the TAR-models yield slightly better RMSE-scores for all three countries


TAR-models: Genetic algorithm

• Baragona and Cucina [2009] apply a algorithm (which minimizes either AIC or RMSE) to find the optimal TAR-structure and estimates

Parameter Estimate				D	
Regime : 1 Costante=-0.427040 P(1)=-0.375112	Regime : 2 Constant= 0.790163 P(1) = 0.619936 P(2) =-0.164857	Variance	3.61375717	Residual Variance	2.81e+000
		NAIC	1.027290	AIC	180.802956
Unemp	loyment	MSE	4.29e-002	Ljung-Box	5.775006
	j. %-change): STRIA Regime : 4 Constant= 0.363222 P(1) = 0.029266 P(2) = 0.267763 P(3) = 0.378705	Observation	Regime:1 38 Regime:2 45 Regime:3 30 Regime:4 63	Threshold	Soglia:1 -0.559838 Soglia:2 0.417011 Soglia:3 0.988643
		Variance of Regime	Regime:1 6.21e+000 Regime:2 1.25e+000 Regime:3 2.19e+000 Regime:4 2.17e+000	R Square	Regime:1 0.0303 Regime:2 0.1145 Regime:3 0.4690 Regime:4 0.2662

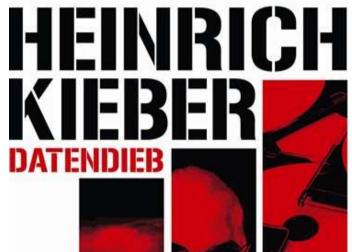

TAR-models: Genetic algorithm

• Baragona and Cucina [2009] apply a algorithm (which minimizes either AIC or RMSE) to find the optimal TAR-structure and estimates

TAR-models: Genetic algorithm

• Baragona and Cucina [2009] apply a algorithm (which minimizes either AIC or RMSE) to find the optimal TAR-structure and estimates

4.Conclusions


- The two factors of main interest, namely the additional effect of the financial crisis (not already captured by SMI) and the additional effect of the "Zumwinkel-Affair" (separated from impact of financial crisis), do not affect the performance (daily %-change in stock prices) of the two investigated banks. However, they have had a significant (cumulating) impact on risk/volatility: While the financial crisis had a strong effect on both stocks (LLB and VPB), the additional impact of the "Zumwinkel-Affair" was more intense referring to the VPB stock (yet significant for both stocks).
- The TAR-models for unemployment were just estimated as an illustration. They don't seem to be very appropriate to model the data in focus.

Thanks for your attention!

Questions and comments VERY welcome...

andreas.brunhart@gmx.li

→ Very interesting documentary about the data thief:

EIN DOKUMENTARFILM VON SEBASTIAN FROMMELT UND SIGVARD WOHLWEND

Quoted Literature

BARAGONA, R. AND D. CUCINA (2009): "Genetic search for threshold parameters in time series threshold models: algorithms and computer programs", Technical Report 10/2009, Sapienza University of Rome (Department of Statistics).

BOLLERSLEV, T. (1986): "Generalized autoregressive conditional heteroskedasticity", Journal of Econometrics 31, p.307-327.

ENGLE, R. F. (1982): "Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation", *Econometrica* 50, p.987-1008.

TONG, H. (1977): "Some comments on the Canadian lynx data (with discussion)", Journal of the Royal Statistical Society (Series A, General) 140, p.432-436.