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Maximum likelihood estimation

The concept of the likelihood

Assume a parametric model as the data-generating law, i.e. a
density depending on a parameter vector θ ∈ R

p and the
observations x ∈ R

N :
L(θ; x)

is a probability density in the second portion of arguments x for
given θ, maybe smooth with a unique mode. In the first portion θ
for given x , it is not a density. Thus, it is called the likelihood.
One may surmise, however, that, for a given x , the value θ that
makes the observed x ‘most probable’ (has it as its mode,
maximizes the likelihood) constitutes a good estimate for the
generating θ: maximum likelihood (ML). This is indeed often the
case.
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Maximum likelihood estimation

The example of a normal distribution

Assume data are randomly (independently) generated from a
normal N (µ, σ2) distribution. The full likelihood model reads

L(µ, σ2; x1, . . . , xN) =
N
∏

i=1

1√
2πσ2

exp{−(xi − µ)2

2σ2
}.

This function is easier to handle in logarithms: the log likelihood:

log L(µ, σ2; x1, . . . , xN) = −N

2
log 2π−N

2
log σ2− 1

2σ2

N
∑

i=1

(xi−µ)2.

Taking derivatives and equating them to 0 yields first-order
conditions.
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Maximum likelihood estimation

Maximum likelihood for the normal distribution
Equating the derivative for µ, ∂ log L

∂µ
, to 0 yields the arithmetic

mean

µ̂ =
1

N

N
∑

i=1

xi = x̄ .

The first-order condition for σ2,

∂ log L

∂σ2
= − N

2σ2
+

1

2σ4

N
∑

i=1

(xi − µ)2 = 0

yields, after substituting x̄ for µ,

σ̂2 =
1

N

N
∑

i=1

(xi − x̄)2.

This ML estimator for σ2 is biased in finite samples.
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Maximum likelihood estimation

Maximum likelihood for simple normal regression
The model for simple normal regression has a likelihood very
similar to the previous example:

log L(β1, β2, σ
2; x1, . . . , xN , y1, . . . , yN) =

−N

2
log 2π − N

2
log σ2 − 1

2σ2

N
∑

i=1

(yi − β1 − β2xi)
2.

The maximum with respect to β1, β2 is taken if the sum in the
third term is minimized: ordinary least squares. The maximum
with respect to σ2 appears at

σ̂2 =
1

N

N
∑

i=1

(yi − β1 − β2xi )
2 =

1

N

N
∑

i=1

e2i ,

the ML estimator for σ2 with its typical small-sample bias.
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Maximum likelihood estimation

The likelihood for multiple normal regression
The likelihood for multiple normal regression extends the simple
case slightly:

log L(β, σ2; x1, . . . , xN , y1, . . . , yN) =

−N

2
log 2π − N

2
log σ2 − 1

2σ2

N
∑

i=1

(yi − x ′iβ)
2

The first derivatives of the log-likelihood are called the scores:

∂ log L(β, σ2)

∂β
=

N
∑

i=1

yi − x ′iβ

σ2
xi

∂ log L(β, σ2)

∂σ2
=

N
∑

i=1

− 1

2σ2
+

(yi − x ′iβ)
2

2σ4
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Maximum likelihood estimation

Maximum likelihood for multiple normal regression

Equating the scores to 0 yields the OLS estimators

β̂ =

(

N
∑

i=1

xix
′

i

)−1 N
∑

i=1

xiyi = (X ′X )−1X ′y

and the ML variance estimator

σ̂2 =
1

N

N
∑

i=1

e2i

with a tendency toward a downward bias.

Microeconometrics University of Vienna and Institute for Advanced Studies Vienna



Basics Heteroskedasticity Endogenous regressors Maximum likelihood Limited dependent variables Panel data

Maximum likelihood estimation

Contributions and information matrix

Note that the log-likelihood as well as the scores are represented as
sums of terms indexed i :

log L(θ|X ) =

N
∑

i=1

log Li (θ|xi),
∂ log Li (θ|xi)

∂θ

∣

∣

∣

∣

θ̂

=

N
∑

i=1

si (θ̂) = 0.

The terms log Li and si are called the (log-likelihood and score)
contributions.

The expectation matrix of the products of score contributions is
called the information in observation i :

Ii (θ) = E

{

∂ log Li(θ)

∂θ

∂ log Li (θ)

∂θ

′
}

= E{si (θ)s ′i (θ)}.
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Maximum likelihood estimation

Why maximum likelihood?

It can be shown that, under weak regularity conditions, that

1. The ML estimator is consistent, i.e. plim θ̂ = θ;

2. The ML estimator is asymptotically normally distributed,
i.e. √

N(θ̂ − θ)
d→ N (0,V );

3. The ML estimator is asymptotically efficient, i.e. it has the
smallest variance among all consistent and asymptotically
normal estimators. V corresponds to the Cramèr-Rao lower

bound.
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Maximum likelihood estimation

Cramèr-Rao

The celebrated Cramèr-Rao inequality says that under some
‘regularity conditions’, it will hold for any asymptotically normal
and consistent estimator θ̂ that

lim
N→∞

NV(θ̂) ≥ I (θ)−1.

For the ML estimator, V = I (θ)−1, so the lower bound is attained.
This (Fisher) information (matrix) I (θ) is usually defined as the
limit for N → ∞ of

ĪN(θ) =
1

N

N
∑

i=1

E{si (θ)s ′i (θ)} =
1

N

N
∑

i=1

Ii(θ),

evaluated at the true parameter value θ.
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Maximum likelihood estimation

A typical catalog of regularity conditions

The following assumptions suffice for ML asymptotic normality:

◮ Observations are independent and identically distributed;

◮ True value is in the interior of the non-empty parameter space;

◮ True value is identified;

◮ Log-likelihood is twice continuously differentiable in θ in an
open neighborhood of the true value;

◮ Expectation of the log-likelihood exists at the true value;

◮ Average log-likelihood converges almost surely to the
expectation and uniformly in θ;

◮ Information matrix exists and is non-singular at the true value.

Some assumptions can be exchanged against others etc.
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Maximum likelihood estimation

The information matrix equality

Under some regularity conditions, the information matrix can also
be represented by the second derivatives of the log-likelihood:

I (θ) = lim
N→∞

E

{

1

N

∂ log L(θ)

∂θ

∂ log L(θ)

∂θ

′
}

= − lim
N→∞

E

{

1

N

∂2 log L(θ)

∂θ∂θ′

}

If the model is incorrectly specified, this equality may not hold.
This is why it is often used as a basis for statistical hypothesis
tests on correct specification.
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Maximum likelihood estimation

Information matrices for OLS estimation

For ML/OLS in multiple regression, the information matrix is easily
shown to be block diagonal:

ĪN(β, σ
2) =

(

1
Nσ2X

′X 0

0 1
2σ4

)

Thus, the asymptotic variance matrix has the form

NV(β̂, σ̂2) → I (θ)−1 =

(

σ2Σ−1
xx 0

0 2σ4

)

,

with Σxx = limN→∞ N−1(X ′X ).
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Specification tests

The trinity of test principles
Most parametric hypothesis tests are based on one of three
likelihood-based principles:

1. The likelihood ratio (LR) principle considers the ratio of
likelihoods maximized under the null H0 and under the general
model H0 ∪ HA;

2. The Wald principle considers the maximum likelihood under
the general model and checks whether this maximum fulfils
the restrictions that define H0. Formally, it does not require
maximizing the likelihood under H0;

3. The Lagrange multiplier (LM) or score test considers the
maximum likelihood under the null and checks the derivative
of the general likelihood (score) around the maximum.
Formally, it does not require maximizing the likelihood for the
general model.
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Specification tests

A visualization of the test trinity
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Test H0 : µ = 2. The LR test statistic (red) is based on the vertical distance, the Wald test statistic (green) on

the horizontal distance. The score test statistic (blue) measures the slope at H0.
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Specification tests

The Wald test

Assume the null is defined by a linear restriction Rθ = q within the
general space Θ ⊂ R

K for some J × K–matrix R . Then,

√
N(θ̂ − θ)

d→ N (0,V )

implies √
N(R θ̂ − Rθ)

d→ N (0,RVR ′).

Then, the statistic

ξW = N(R θ̂ − q)′{RV̂R ′}−1(R θ̂ − q),

with V̂ consistently estimating V , will be asymptotically
distributed as χ2(J) under the H0 : Rθ = q.
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Specification tests

The likelihood ratio test

Suppose θ̂ is the ML estimate for θ under the general hypothesis,
and θ̃ is the ML estimate under the null (restricted). Then, under
quite general conditions, the statistic

ξLR = 2{log L(θ̂)− log L(θ̃)}

will be χ2(J) distributed under the null. The asymptotic

equivalence of the LR, LM, and Wald tests is a general statistical
result that will also hold under very general conditions.
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Specification tests

The Lagrange multiplier test
Suppose θ′ = (θ′1, θ

′

2) and H0 : θ2 = 0. Constrained optimization
can be seen as equating the derivatives of the Lagrangian

H(θ, λ) =

N
∑

i=1

log Li(θ)− λ′θ2

to 0. Under H0, the derivatives on θ2,

λ =

N
∑

i=1

∂ log Li(θ)

∂θ2

∣

∣

∣

∣

θ̃

=

N
∑

i=1

si2(θ̃),

will be close to 0. One can show that

ξLM =
N
∑

i=1

si (θ̃)
′

{

N
∑

i=1

si(θ̃)si(θ̃)
′

}−1 N
∑

i=1

si(θ̃)

is, under H0, asymptotically distributed χ2(J).
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Specification tests

LM tests in regression form
Explicitly consider LM testing in a regression model. With
H0 : θ2 = 0, the first part

∑N
i=1 si1(θ̃) = 0, and ξLM becomes

approximately

ẽ′X (X ′ẽẽ′X )−1X ′ẽ ≈ σ−2ẽ′X (X ′X )−1X ′ẽ,

as score contributions are ẽixi/σ
2 with ẽ denoting residuals from

regressing y on the first part X1. This expression is close to NR2

from a regression of the ẽ residuals on all regressors X1 and X2.
Only if all additional variables can be assumed to be uncorrelated
with the first portion, one might also use

σ−2ẽ′X2(X
′

2X2)
−1X ′

2ẽ,

a regression of the residuals on just the additional regressors.
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Specification tests

Example 1: LM test for omitted variables

This test for the null H0 : θ2 = 0, i.e. for

H0 : y = X1θ1 + ε, HA : y = X1θ1 + X2θ2 + ε,

is run in two stages:

1. Regress y on X1; keep residuals ẽ;

2. Regress ẽ on X1 and X2; keep NR2 which is under H0

distributed χ2(J) with J = dim(X2).

This test can be seen as a restriction test (search for simplifications
within a correct model) and also as a specification test (check
correctness of specification, check validity of assumptions).
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Specification tests

Example 2: Jarque-Bera test
The test by Jarque and Bera tests for ‘H0: errors normally
distributed’. It uses the skewness (third moment) condition

E(ε3) = 0

and the kurtosis (fourth moment) condition

E(ε4) = 3{E(ε2)}2,

based on the empirical moments of residuals. It is really an
LM–test, its test statistic

ξ = N







1

6

(

1

N

N
∑

i=1

e3i
σ̂3

)2

+
1

24

(

1

N

N
∑

i=1

e4i
σ̂4

− 3

)2






is distributed χ2(2) under H0.
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Specification tests

Quasi Maximum Likelihood
Estimating parameters by Gaussian ML, although no normal
distribution is assumed or even known to be invalid, is called quasi

maximum likelihood estimation. Under regularity conditions, it
can be shown that

√
N(θ̂ − θ)

d→ N (0,V ),

with
V = I (θ)−1J(θ)I (θ)−1,

with I an information matrix defined from second derivatives and J

defined from products of scores. For correct specification, I = J.

White has suggested to test for correct specification by checking
the equality of the two definitions of information matrices:
information matrix test.
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