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The issue of endogeneity

Strict exogeneity violated
In many empirical situations, the strict exogeneity condition (A2)
cannot hold. Consider four main cases:

◮ If, with time-series data i = t, some regressors are lagged
dependent variables, yt depends on εt , so X and ε cannot be
independent;

◮ If some regressors are observed with an error ut that is
independent of the pure regression error v , the overall error
has a component that is correlated with X ;

◮ If some regressors depend on missing or unobserved
information, there will be dependence between X and ε:
narrow-sense endogeneity;

◮ If some regressors xi ,j logically depend on the current
regressand yi , X and ε will be dependent: feedback.
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The issue of endogeneity

Endogeneity impairs OLS consistency

Considering the limit of the OLS estimate,

plimβ̂ = β + plim(N−1X ′X )−1N−1X ′ε,

it is seen that (A1), (A4), (A5) together with

A8 xi and εi are independent for all i ;

A11 εi is IID(0, σ
2);

suffices for OLS consistency and asymptotic normality, as LLN and
CLT can be applied. For outright endogeneity, however, even this
weaker set of consistency conditions will be violated. OLS will
become inconsistent.
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The issue of endogeneity

Even weaker conditions

It can be shown that with the assumptions

A7 E(xiεi ) = 0 ∀i ;
A12 εi is serially uncorrelated and E(εi ) = 0;

OLS remains consistent, assuming some technical regularity
conditions. This weak set of conditions is important for time-series
data, it admits time-changing variance and conditional
heteroskedasticity. The classical time-series concept of
predeterminedness is stronger: regressors are uncorrelated with
current and future errors. With endogeneity, even these conditions
are violated.
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The issue of endogeneity

Bias due to an unobserved omitted variable

Presume the true relationship is

yi = x ′1iβ1 + x2iβ2 + γui + νi ,

with observed regressors x1 (a vector) and x2 (a scalar) and
unobserved u. Further, assume that corr(x2, u) 6= 0. Presume the
estimated relationship is

yi = x ′1iβ1 + x2iβ2 + εi = x ′iβ + εi .

True εi = γui + νi , with cov(εi , x2i ) 6= 0. OLS imposes
cov(x , e) = 0 and γ = 0, which creates a bias:

b = β+(X ′X )−1X ′(γui+νi ) = β+(X ′X )−1X ′(γui )+(X ′X )−1X ′νi .
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The issue of endogeneity

Biased but not incorrect

Note that OLS in the regression omitting u and in the generating
model that includes u measure different objects:

◮ The coefficient β2 in the regression omitting u is the marginal
reaction of y to changes in x2 within the sample, changing u

implicitly along with x2. [Talented individuals tend to be
interested in extending their education time];

◮ The coefficient β2 in the virtual regression that includes u is
the marginal reaction of y to changes in x2 while keeping u

constant. This version may be of interest in causal
interpretations and policy implementations [By how much
would a person’s wage increase if she without increasing her
innate skills and talents enjoyed longer education].
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The issue of endogeneity

Reverse causality

Consider the simple regression model

yi = β0 + β1xi + εi .

If the researcher ignores the true relationship

xi = yi + zi ,

cov(x , ε) 6= 0 and the OLS estimate b will be biased.

Assume z is observed and cov(z , ε) = 0. Then, regressing y on z

yields an unbiased estimate, albeit for a possibly less interesting
parameter.
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The issue of endogeneity

Indirect least squares
Substituting the equation for x into the one for y yields

yi = β0 + β1(yi + zi) + εi

or

yi =
β0

1− β1
+

β1

1− β1
zi + ε∗i = γ0 + γ1zi + εi ,

a standard regression satisfying Gauss-Markov. Estimating the
coefficients γ0, γ1 by OLS as g0, g1 and retrieving the parameters
of interest from

b0

1− b1
= g0,

b1

1− b1
= g1,

implies consistent estimates for β0, β1: indirect least squares. The
method fails when the analytical equation system becomes
intractable.
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The issue of endogeneity

Structural and reduced form

In the presence of feedback or reverse causality, it is often possible
to transform the ‘bad’ equation with endogenous regressors into a
‘good’ equation with y depending on exogenous variables only.
This reduced form does not satisfy the researcher’s need, as she
may be interested in the parameters of the original structural
form.
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The issue of endogeneity

Appropriate estimation with endogenous regressors
There have been several suggestions in the literature:

◮ Indirect least squares: estimate the reduced form and
determine estimates for the structural parameters by solving
equations analytically: in most applications infeasible;

◮ Two-stage least squares: estimate reduced forms for all
endogenous variables, replace endogenous regressors by the
fitted values, i.e. linear combinations of exogenous variables,
finally regress y on the fitted values: the dominant method for
some time, now seen as a special case of IV;

◮ Instrumental variables (IV): needs exogenous variables
(‘instruments’) that correlate with endogenous regressors;

◮ Generalized method of moments (GMM): generalizes IV by
viewing it as a method of moments. Arbitrary restrictions can
be easily imposed by a general scheme.
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Instrumental variables

Instrumental variables: the idea

For the regressors x1, . . . , xK with potential endogeneity problems,
there exist K exogenous variables z1, . . . , zK , such that

cov(Z ,X ) 6= 0, cov(Z , ε) = 0.

Then, the estimator

β̂IV = (Z ′X )−1Z ′y

has good properties, such as consistency, asymptotic normality,
and even unbiasedness (for appropriate assumptions on Z ).
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Instrumental variables

IV as a method of moments
OLS can be derived from population conditions E(xjε) = 0 for all
regressors and the corresponding sample condition X ′e = 0.
Similarly, the population exclusion restrictions

E(zjε) = 0

for all instruments yield the sample conditions

1

N

N
∑

i=1

(yi − x ′i β̂IV )zji = 0,

which yields the instrumental variables estimator β̂IV as

β̂IV = (Z ′X )−1Z ′y =

(

N
∑

i=1

zix
′

i

)−1 N
∑

i=1

ziyi ,

for the K–vectors zi and xi .
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Instrumental variables

Asymptotic properties of IV

It can be shown that, under valid exclusion restrictions, with the
condition for valid instruments

plim
1

N
Z ′X = Σzx ,

a finite and nonsingular matrix, assuming (A11), and

plim
1

N
Z ′Z = Σzz ,

a finite and nonsingular matrix, it follows that

√
N(β̂IV − β)

d→ N (0, σ2(ΣxzΣ
−1
zz Σzx)

−1).
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Instrumental variables

Estimating the variance matrix

The usual suggestion is to estimate the variance of the IV estimate
by

V̂{β̂IV } = σ̂2{X ′Z (Z ′Z )−1Z ′X}−1,

with

σ̂2 =
1

N − K

N
∑

i=1

(yi − x ′i β̂IV )
2.

There are also robust variants, in the sense of White-Eicker.
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Instrumental variables

Testing for the IV assumptions

◮ The moment conditions or exclusion restrictions cannot be
tested statistically. They are identifying. Only if there are
more restrictions than parameters (generalized IV, GMM), the
over-identifying restrictions can be tested;

◮ The endogeneity of regressors can be tested on the basis of a
Hausman test: if exogeneity holds, OLS and IV approach the
same limit, as OLS is valid, consistent, and linear efficient. If
exogeneity does not hold, the limits will differ. A variant of
the Hausman test statistic is the t–statistic in an OLS
regression of y on all regressors x1, . . . , xK and on the residual
from an auxiliary regression of the doubtful regressor on
reliable variables (regressors and instruments). Insignificance
supports exogeneity.
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Generalized instrumental variables

The case of many instruments
Suppose there exist R > K instruments and R > K exclusion
restrictions E(zjε) = 0, all of which are valid in population. In the
sample, the corresponding sample moment conditions

1

N

N
∑

i=1

(yi − x ′i β̂IV )zji = 0, j = 1, . . . ,R ,

form an over-determined equation system and do not have an
exact solution. The way out is to minimize a quadratic form

QN(β) =

{

1

N

N
∑

i=1

(yi − x ′iβ)zi

}′

WN

{

1

N

N
∑

i=1

(yi − x ′iβ)zi

}

.

The positive definite weighting matrix WN may depend on N.
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Generalized instrumental variables

Under- and over-identification

Consider the three cases:

◮ R < K : R equations (exclusion restrictions) do not uniquely
determine K variables (coefficients). The solution is a
subspace, not a value. As N → ∞ the subspace will contain
the true value, but this cannot be called consistency: the case
of under-identification;

◮ R = K : R = K equations uniquely determine K coefficients.
This is the narrow-sense IV estimator, which is consistent: the
case of exact identification;

◮ R > K : there is no solution. If the R exclusions hold in
population, the quadratic form QN will converge to 0, the
generalized instrumental-variables estimator (GIVE) is
consistent: the case of over-identification.
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Generalized instrumental variables

The formal representation of GIVE

Evaluate the derivative of the expression

QN(β) =

{

1

N
Z ′(y − Xβ)

}

′

WN

{

1

N
Z ′(y − Xβ)

}

with respect to β and equate it to 0. This yields the solution

β̂IV = (X ′ZWNZ
′X )−1X ′ZWNZ

′y .

For R = K and for non-singular X ′Z , the narrow-sense IV formula
is retrieved.
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Generalized instrumental variables

Choosing the weighting matrix

It can be shown that WN = (Z ′Z )−1 minimizes the variance of
(wide-sense) GIVE. The resulting estimator

β̂IV = {X ′Z (Z ′Z )−1Z ′X}−1X ′Z (Z ′Z )−1Z ′y .

is often referred to as (narrow-sense) GIVE. Others call it the
two-stage least squares estimator, as it can be obtained in two
steps:

1. Regress X on all instruments Z . Truly exogenous regressors
are their own instruments. Keep the fitted values X̂ , which
are ‘exogenous’;

2. Regress y on X̂ . Statistics in this regression (standard errors,
R2) will be incorrect.
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Generalized instrumental variables

The variance of GIVE

Assuming the usual model y = Xβ + ε and V(ε) = σ2IN , it is
easily shown that

V(β̂IV |Z ,X ) = σ2{X ′Z (Z ′Z )−1Z ′X}−1.

The unknown σ2 can be estimated by

σ̂2 =
1

N − K

N
∑

i=1

ε̂2i ,

with ε̂ denoting the GIVE residuals.
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Generalized instrumental variables

Testing over-identifying restrictions

If there are R > K exclusion restrictions, the R − K

over-identifying restrictions may be invalid. If they are valid (the
null hypothesis), the Sargan statistic is asymptotically distributed
χ2(R − K ). It is uncertain which restrictions are rejected, however.

The Sargan statistic can be obtained as an NR2 version of a LM
test: the GIVE residuals ε̂ are regressed by OLS on all R
instruments, keep the corresponding R2.
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Generalized instrumental variables

Weak instruments

If the instruments zj are only loosely related to the endogenous
regressors, the precision of the IV/GIVE estimation will be poor.
Tests, particularly the Hausman test, will also be unreliable.

Stock and Watson recommend a rule of thumb: run
reduced-form regressions of the xj on the good (guaranteed
exogenous) regressors and on the instruments. If the F–statistic on
joint exclusion of the instruments is less than 10, the instruments
can be regarded as weak.
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Generalized method of moments

Generalized method of moments: the concept
The generalized method of moments (GMM) generalizes
IV/GIVE to nonlinear and implicit functions. Assume an economic
model is characterized by R > K moment conditions

E{f (w , z , θ)} = 0,

with f : RM1+M2+K → R
R . w contains observed variables, z are

instruments, and θ is the K—vector of parameters. Under
regularity conditions, the sample counterpart

gN(θ) =
1

N

N
∑

i=1

f (wi , zi , θ)

can be taken as close to 0 as possible, which then defines the
GMM estimator θ̂GMM .
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Generalized method of moments

GMM and the weighting matrix

Formally, looking for the value that takes the sample moment
conditions closest to an R–vector of 0s is implemented by
minimizing (numerically) the quadratic form

QN(θ) = gN(θ)
′WNgN(θ).

The minimizer θ̂GMM may depend on the choice of the weighting
matrix. One can show that the asymptotically optimal weighting
matrix is

W opt = [E{f (w , z , θ)f (w , z , θ)′}]−1.

Obviously, this matrix is not available as θ is unknown.
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Generalized method of moments

Estimating the optimal weighting matrix

Replacing the expectation operator by the sample mean and θ by a
consistent preliminary estimate θ̂0 yields the estimated optimal
weighting matrix

W
opt
N =

[

1

N

N
∑

i=1

f (wi , zi , θ̂0)f (wi , zi , θ̂0)
′

]−1

A popular suggestion for θ̂0 is GMM with the weighting matrix IR ,.
This ‘two-step GMM’ method can be iterated by updating WN

with the most recent availabe θ estimate. The iterated estimator is
asymptotically equivalent to the two-step GMM but may improve
small-sample properties.
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Generalized method of moments

Asymptotic properties of GMM

Efficient GMM estimators (two-step and iterated) have the
property that √

N(θ̂GMM − θ)
d→ N (0,V )

with
V = (DW optD ′)−1,

where

D = E

{

∂f (w , z , θ)

∂θ′

}

is the K × R matrix of derivatives. Unless f has a simple analytic
derivative, D must be determined numerically.
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Generalized method of moments

Conditions for GMM properties

The asymptotic properties require several technical conditions,
such as:

◮ The population moment conditions hold in the true generating
model;

◮ The function f (., θ) does not yield the same value for different
values of θ;

◮ The weight matrix converges to a finite and positive definite
limit;

◮ Derivatives of f (., θ) w.r.t. θ exist and their sample averages
converge to D;

◮ The limit of the sample variance matrix of f exists and is
positive definite.
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Generalized method of moments

Testing over-identifying restrictions in GMM

In analogy to GIVE, the Sargan test statistic

ξ = NgN (θ̂GMM)′W optgN(θ̂GMM)

is used to test over-identifying restrictions. Under the null, ξ is
asymptotically distributed as χ2(R − K ).
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Generalized method of moments

The history of GMM
GMM is mainly due to Lars Peter Hansen who contributed on
GMM in 1982. The idea has spread quickly in the following years
and decades, as

◮ Economic theory models routinely contain moment conditions.
Confidence in the correctness of these models may have
increased in the recent decades;

◮ Semiparametric methods avoid specification of statistical
distributions and may require the specification of functional
forms. This preference may correspond to the needs of many
economists.

GMM has gained so much ground relative to estimation methods
based on maximizing the likelihood (ML) that the expression
‘GMM revolution’ may be appropriate.
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