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What is econometrics?

The word ‘econometrics’ may have been created by Pawel

Ciompa (1910), an Austro-Hungarian (jus soli Ukrainian)
economist who used it for a theory of bookkeeping. Ragnar

Frisch (1930) extended it to the interface of economics,
statistics, and mathematics. Today, econometrics is concerned
with statistical methods applied to economic data.

Why is econometrics not to economics what biometrics is to
biology? Historical developments, the Econometric Society, the
Cowles Commission...
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What is so special about economic data?

Like data in astronomy, archeology etc., typical economic data are
non-experimental (observational). By contrast, the typical
backdrop in statistics is experimental data. Typical economic
populations are infinite (states, decisions by persons, not persons).
Macro-econometrics handles aggregate data, micro-econometrics
handles individual data.
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Concepts: economic and econometric model

An economic model reflects a theoretical issue:

Y = KαL1−α

An econometric model can be estimated from data, variables must
be observable:

yt = αkt + βlt + ut , ut = φut−1 + εt , εt ∼ iidN(0, σ2
ε
)
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Structures in economic data

◮ Cross-sectional data are indexed by individuals, households,
firms, cities, sampled at a roughly identical time. Random
sampling assumption sometimes appropriate, sometimes not
(heterogeneity, heteroskedasticity, sample selection problems);

◮ Time-series data on variables such as prices or economic
aggregates are indexed by years, quarters, months, minutes
(data frequency, sometimes irregular intervals), sampled for
the same country, firm, product. Random sampling
assumption usually inappropriate (serial correlation, structural
breaks and change);

◮ Pooled cross sections and panel or longitudinal data are
indexed in two dimensions.
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Causality and ceteris paribus

Dependence between two variables is necessary but not sufficient
for establishing causal effects. In time-series data, causality can be
established by the principle of post hoc ergo propter hoc. In
cross-section data, determining causal directions can be complex.

Some models assume that the effect of one variable x on another
variable y can be determined while keeping all other potential
influence factors constant: ceteris paribus. Often, this is not
possible, as x also affects the other factors.
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Selected textbooks of econometrics

◮ Baum, C.F. (2006). An Introduction to Modern
Econometrics Using Stata. Stata Press.

◮ Greene, W.H. (2008). Econometric Analysis. 6th edition,
Prentice-Hall.

◮ Hayashi, F. (2000). Econometrics. Princeton.
◮ Johnston, J. and DiNardo, J. (1997). Econometric

Methods. 4th edition, McGraw-Hill.
◮ Ramanathan, R. (2002). Introductory Econometrics with

Applications. 5th edition, South-Western.
◮ Stock, J.H., and Watson, M.W. (2007). Introduction to

Econometrics. Addison-Wesley.
◮ Verbeek, M. (2012). A Guide to Modern Econometrics.

4th edition, Wiley.
◮ Wooldridge, J.M. (2009). Introductory Econometrics. 4th

edition, South-Western.
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The simple linear regression model

The model
y = β0 + β1x + u

is called the simple linear regression model, the word ‘simple’
referring to the fact that there is only one regressor variable x . y is
called the dependent variable, response variable, explained
variable, or regressand. x is the explanatory variable or regressor
(covariate; the term ‘independent variable’ is discouraged). Both x
and y are observed.

The unobserved variable u is called the error term or disturbance.
The (usually unknown) fixed parameters β0 and β1 are the
intercept and the slope of the regression.
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Errors are zero on average

The classical assumption on the unobserved random variable u is
that

E(u) = 0,

as otherwise the intercept would not be identified. The current
literature prefers the stronger assumption

E(u|x) = 0 ∴ E(u) = 0,

i.e. u is mean independent of x . Mean independence implies
E(y |x) = β0 + β1x . E(y |x) is also called the population

regression function.
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Deriving OLS as method of moments estimator
In population, E(u) = 0 and cov(x , u) = 0. The sample
counterparts would be

n−1
n

∑

i=1

xi (yi − β̂0 − β̂1xi ) = 0, n−1
n

∑

i=1

(yi − β̂0 − β̂1xi ) = 0.

The latter equation implies that

ȳ = β̂0 + β̂1x̄ ,

which is inserted into the former equation
n

∑

i=1

xi(yi − ȳ + β1x̄ − β1xi ) = 0,

and finally

β̂1 =

∑n
i=1 xi (yi − ȳ)

∑n
i=1 xi (xi − x̄)

.
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The OLS estimator for simple regression

It is easily seen that β̂1 can also be written

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2
.

This is called the ordinary least squares (OLS) estimate for the
slope β1, as it is also the solution to the minimization problem

n
∑

i=1

(yi − β̂0 − β̂1xi)
2 → min.

The OLS estimate for the intercept follows from evaluation of the
equation ȳ = β̂0 + β̂1x̄
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Fitted values and residuals

The ‘systematically explained’ portion of yi is called the fitted

value ŷi :
ŷi = β̂0 + β̂1xi , i = 1, . . . , n,

while the difference between yi and fitted value is called the
residual:

ûi = yi − ŷi = yi − β̂0 − β̂1xi , i = 1, . . . , n.

By construction, OLS minimizes the sum of squared residuals

(SSR)
n

∑

i=1

û2i =
n

∑

i=1

(yi − β̂0 − β̂1xi)
2

among all possible β̂0, β̂1.
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OLS residuals

xi

yi (xi,yi)

The vertical distance between the value yi and the height of the point on
a fitted OLS line β̂0 + β̂1xi is called the residual (green) ûi . The distance
to the unknown population regression function (magenta) β0 + β1x is the
error term ui .
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Interpretation of intercept and slope

The intercept (β0 or β̂0) is the value for y predicted when x = 0 is
assumed: E(y |x = 0) = β0. The interpretation does not always
make sense.

The slope (β1 or β̂1) is the marginal reaction of y to an
infinitesimal change in x :

∂E(y |x)

∂x
= β1.

The slope is usually of central interest in regression analysis.
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Low-level properties of OLS I
Some OLS properties do not need any further statistical
assumptions. The OLS estimate can always be calculated, as long
as the denominator is not 0:

n
∑

i=1

(xi − x̄)2 6= 0,

i.e. not all observed xi are the same. A fitted line would be
vertical, and the slope would become infinite.

By definition/derivation, it holds that

n
∑

i=1

ûi = 0,

i.e. the average of the residuals is 0. Note that
∑n

i=1 ui is not
necessarily 0, whereas Eui = 0.
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Low-level properties of OLS II

By definition/derivation, it holds that

n
∑

i=1

xi ûi = 0,

i.e. regressors and residuals are orthogonal. Regressors and
residuals have zero sample correlation. Note that population errors
and regressors are also uncorrelated.

Interpretation is that if this correlation were non-zero, the residuals
would contain some information on y that could be added to the
systematic part and could reduce the SSR.
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The variance decomposition
OLS decomposes the variation in y into an explained portion and a
residual part:

n
∑

i=1

(yi − ȳ)2 =

n
∑

i=1

(ŷi − ȳ)2 +

n
∑

i=1

û2i ,

in short
SST = SSE + SSR ,

i.e. the total sum of squares equals the explained sum of

squares plus the residual sum of squares.

Proof uses the orthogonality
n

∑

i=1

ûi (ŷi − ȳ) = 0,

which follows from the orthogonality of û and x .
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Goodness of fit

The share of the variation that is explained defines a popular
measure for the goodness of fit in a linear regression,

R2 =
SSE

SST
= 1−

SSR

SST
.

This R2, really some approximate square of the sample correlation
coefficient of ŷ and y , is also called the ‘coefficient of
determination’. Clearly, it holds that

0 ≤ R2 ≤ 1.

R2 = 1 if all observations (xi , yi ) are ‘on the regression line’. It is
not possible to state without context, what value determines a
‘good’ R2.
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Assumptions for good OLS properties

The really interesting properties of the OLS estimator can be
expounded in the context of a statistical model only:

◮ unbiasedness Eβ̂ = β;

◮ consistency β̂ → β as n → ∞;

◮ efficiency, i.e. minimal variance among comparable estimators.

Such properties require assumptions on the data-generating model.
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Linearity in parameters

The first assumption just defines the considered model class:

SLR.1 In the population, y depends on x according to the scheme

y = β0 + β1x + u.

In the following y will be called the dependent variable, x the
explanatory variable (regressor), β0 is the population intercept, β1
the population slope. β0 and β1 are parameters of the model.

This assumption is called ‘linearity in parameters’ or ‘linearity of
the regression model’. It is void without further specifications for
the error term u.
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Random sampling

SLR.2 The available random sample of size n,
{(xi , yi ), i = 1, 2, . . . , n}, follows the population model in
(SLR.1).

This assumption is violated whenever the sample is selected from
certain parts of the population (e.g., only rich households, only
females, no unemployed), and when there is dependence among
observations (e.g., if observation i + 1 is at least as large as
observation i , or if there is dependence over time). This
assumption implies that uj and ui are independent for i 6= j .
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Do not regress on a constant covariate

SLR.3 The values for the explanatory variable xi , 1 ≤ i ≤ n, are not
all identical.

We cannot study the effects of education on wages in a sample of
persons with identical education. The case y1 = y2 = . . . = yn
does not make much sense either, but it entails a horizontal
regression line β̂1 = 0 and is harmless.
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Errors are zero on average

SLR.4 The error u has expectation zero given any value of the
explanatory variable, in symbols

E(u|x) = 0,

which is stronger than simply Eu = 0. Traditionally, x has often
been assumed as identical across samples (xi is a fixed
‘non-stochastic’ value in potential new samples for all i). Then,
(SLR.4) is equivalent to Eu = 0.
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Unbiasedness of OLS

Theorem
Under the assumptions (SLR.1)–(SLR.4), the OLS estimator is
unbiased, in symbols

E(β̂0) = β0, E(β̂1) = β1.

Proof: First consider β̂1 and substitute for yi from (SLR.1)

Eβ̂1 = E

∑n
i=1 xi(yi − ȳ)

∑n
i=1 xi(xi − x̄)

= β1 + E

∑n
i=1 xi(ui − ū)

∑n
i=1 xi(xi − x̄)

.

The latter term is 0 conditional on x , according to (SLR.4), and
thus unconditionally 0. (SLR.2) and (SLR.3) are needed implicitly.
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Unbiasedness also for the intercept

Now consider β̂0, which is defined via

β̂0 = ȳ − β̂1x̄ .

We now know that Eβ̂1 = β1, thus

E(β̂0|x) = E(ȳ |x)− E(β̂1|x)x̄

= β0 + β1x̄ − β1x̄ = β0,

because of assumption (SLR.4).
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Homoskedasticity

SLR.5 The error u has a constant and finite variance, conditional on
x , in symbols

var(u|x) = σ2.

This assumption is stronger than var(u) = σ2. It is called the
assumption of (conditional) homoskedasticity. If var(u|x)
depends on x , the errors are said to be heteroskedastic. The
assumption is often violated in cross-section regressions (richer
households have more variation in their consumer preferences).
Note that (SLR.5) also implies var(y |x) = σ2.
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The variance of the OLS estimator

Theorem
Under assumptions (SLR.1)–(SLR.5), the variance of the OLS
slope estimate is

var(β̂1) =
σ2

∑n
i=1(xi − x̄)2

=
σ2

SSTx

,

while the variance of the intercept is

var(β̂0) =
σ2

∑n
i=1 x

2
i

n
∑n

i=1(xi − x̄)2
,

in both cases conditional on x.

Here, SSTx =
∑n

i=1(xi − x̄)2, a total sum of squares for x .
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Interpretation of the variance formulae
The variance of the slope

σ2

∑n
i=1(xi − x̄)2

increases in σ2 and decreases in varx . The slope estimate becomes
more precise if there is less variation in the errors (points are close
to the regression line) and if there is stronger variation in the
regressor variable (more information). Also, assuming that the
sample variance of x converges, the slope coefficient becomes more
precise with increasing n.

The variance of the intercept increases with
∑n

i=1 x
2
i , the

uncentered sum of squared regressors. The precision of the
intercept estimate decreases when the regressor values are far away
from the origin.
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Deriving the variance of the OLS slope

Proof of the theorem: note that we consider var(β̂1|x), not the
unconditional variance. Thus, in particular,

var(β̂1|x) = E{

∑n
i=1(ui − ū)(xi − x̄)
∑n

i=1(xi − x̄)2
|x}2

=
E[{

∑n
i=1(ui − ū)(xi − x̄)}2|x ]

{
∑n

i=1(xi − x̄)2}2

= σ2

∑n
i=1(xi − x̄)2

{
∑n

i=1(xi − x̄)2}2

= σ2 1
∑n

i=1(xi − x̄)2
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Estimating the error variance

The variance formulae for the coefficient estimates are not
operational as σ2 is an unknown parameter and has to be
estimated.

Theorem
Under assumptions SLR.1–SLR.5, the SSR scaled by n − 2 is an
unbiased estimator for the error variance σ2, in symbols

Eσ̂2 = E

(∑n
i=1 û

2
i

n − 2

)

= σ2.

Proof is technical and omitted. The theorem yields an unbiased
estimator for varβ̂j , j = 0, 1, but not for the standard error σ.
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Homogeneous regression

Instead of building on the model y = β0 + β1x + u, one may also
start from

y = β1x + u

and thus force the regression line through the origin. The
corresponding OLS estimator is

β̃1 =

∑n
i=1 xiyi

∑n
i=1 x

2
i

.

This homogeneous regression is surprisingly rarely used.
Statistical entities for this model are grounded in central moments
instead of the usual variances and are for this reason not
comparable to the inhomogeneous model (e.g., R2).
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