### Students

**Due to my retirement (on October 2010) I don’t take any Master- and Ph.D. students.**

Bachelor students:

Former Students:

**Here my former students are listed and grouped into**

**Bachelor students:
Sridhar Bulusu: **Quantum information and entropy, SomSem 2015

**Martin Pimon:**Quantum theory based on information and entropy, SomSem 2015

**Christoph Regner:**Information as foundation principle for quantum mechanics, SomSem 2015

**Stephan Huimann:**The appearance of a classical world in quantum theory, WinSem 2014/15

**Ilvy Schultschik:**EPR paradox, nonlocality and the question of causality, SomSem 2014

**Carla Schuler:**Entanglement, Bell inequalities and decoherence in neutral K-meson systems, WinSem 2013/14

**Eva Kilian:**Quantum Zeno effect and interaction-free measurements, WinSem 2013/14

**Ferdinand Horvath:**Information theoretical reconstructions of quantum theory, SomSem 2013

**Petra Pajic:**Quantum cryptography, SomSem 2013

**Michael Partener:**Einstein, Podolsky and Rosen paradox, Bell inequalities and the relation to the de Broglie-Bohm theory, SomSem 2013

**Lukas Schneiderbauer:**Entanglement or separability, WinSem 2012/13

**Daniel Samitz:**Particle oscillations, entanglement and decoherence, WinSem 2012/13

**Christian Knobloch:**Neutron interferometry, WinSem 2011/12

**Matthias Müllner:**Entanglement witness and geometry of qubits, SomSem 2011

**Xiaxi Cheng:**Bell’s theorem and experimental tests, SomSem 2011

**Georg Graner:**Quantenteleportation unter der Aspekt: Was ist Messen?, SomSem 2011

**Bogdan Pammer:**Geometry of entanglement, SomSem 2011

**Peter Kraus:**Scalar fields, SomSem 2010

**Diploma students:**

**Gabriele Uchida:** Geometry of GHZ type quantum states, October 2011 – April 2013

**Philipp Köhler:** Entanglement under global unitary operations, March 2010 – September 2011

**Tanja Traxler:** Decoherence and entanglement of two qubit systems, March 2010 – July 2011

**Philipp Thun-Hohenstein:** Quantum phase and uncertainty, April 2009 – February 2010

**Nicolai Friis:** Relativistic effects in quantum entanglement, June 2008 – February 2010

**Hatice Tataroglu:** Nichtlokale Korrelationen in Kaonischen Systemen, March 2009 – February 2010

**Andreas Gabriel:** Quantum entanglement and geometry, June 2008 – August 2009

**Alexander Ableitinger:** Decoherence and open quantum systems, March 2006 – March 2008

**Philipp Krammer:** Quantum entanglement, 2005

**Katharina Durstberger:** Geometric phases in quantum theory, 2002

**Eva Plochberger:** Phenomenological applications of anomalies and the U(1) problem, 2000

**Emmanuel Kohlprath:** Diffeomorphism anomaly and Schwinger terms in two dimensions, 1999

**Beatrix C. Hiesmayr:** The puzzling story of the K0\barK0-system or about quantum mechanical

interference and Bell inequality in particle physics, 1999

**Konrad Richter:** Gravitational anomalies and the families index theorem, 1998

**Christian Rupp:** Berry Phase, Schwinger term and anomalies in quantum field theory, 1998

**Dominique Groß:** Die Nichtlokalität in der Quantenmechanik, 1997

**Andreas Tröster:** Nonabelian anomalies and the Atiyah-Singer index theorem, 1994

**Ulfert Höhne:** Vacuum concepts in quantum field theory, 1991

**Christoph Adam:** Functionalanalytic and differentialgeometric aspects of anomalies and the method of Fujikawa, 1990

**Peter Hofer:** ‘Equivalent potentials’ to QCD with gluon condensate, 1990

**Ph.D. students:**

**Philipp Krammer:** Entanglement beyond two qubits: geometry and entanglement witnesses, March 2006 – October 2009

**Katharina Durstberger:** Geometry of entanglement and decoherence in quantum systems, March 2002 – November 2005

**Emmanuel Kohlprath:** Topics in classical, quantum and string gravity, 2002

**Beatrix C. Hiesmayr:** The puzzling story of the neutral kaon system or what we can learn from entanglement, 2002

**Tomas Sykora:** (Charles University Prague) Schwinger terms in quantum theory, 2001

**Peter Reinsperger-Hofer:** Different aspects of a confinement model with nonlocal stochastic gluon condensates, 1994

**Christoph Adam:** Anomaly and topological aspects of 2-dimensional QED, 1993

**Gerald Kelnhofer:** Consistent and covariant Schwinger terms in anomalous gauge theories, 1991

### Posters

**Quantum Entanglement, the Universe and Everything**

Download (10 MB)

**Geometric Entanglement Witness and Bound Entanglement**

Download

**Decoherence and the Transition from Quantum to Classical Physics**

Download

**Das PSI an sich**

Download

**Entangled or Separable? The Free Choice of the Factorization Algebra**

Download

**Residual Entanglement of Accelerated Fermions is not Nonlocal**

Download

### Interests in Quantum Field Theory

**Anomalies and Schwinger Terms, Cohomology, Geometry and Topology in Quantum Field Theory**

The basis of modern QFT – gauge theory – is the principle of gauge symmetry. There an anomaly – the violation of a classically conserved current – signals the breakdown of the gauge symmetry and, in consequence, the ruin of the consistency of the theory.

Avoiding, on one hand, the anomaly – which may be possible – leads to severe constraints on the physical content of the theory. But, on the other hand, anomalies are also needed to describe certain experimental facts. It is this double-feature which makes anomalies so important for physics.

**Anomalies**

- Singlet anomalies (Adler-Bell-Jakiw-type)
- Non-Abelian anomalies of Yang-Mills theories (Bardeen-type)
- Gravitational anomalies (Einstein-, Lorentz-, Weyl-type)
- Anomalous commutators of the gauge algebra Schwinger terms

**Theoretical Framework
**

- Pertubation theory, point splitting methods, dispersion relations
- Functional integral methods (a la Fujikawa)
- Differential geometry, BRS-algebra and fibre bundles
- Cohomology in gauge space, Stora-Zumino descent equations
- Topology, Atiyah-Singer index theorems

**The spaces of gauge connections**

The deformed disk A(t,θ) in Sp*A* (affine space of all gauge connections) is projected down to a sphere S2 in Sp*A/G* (moduli space – physical space). The topological origin of the non-Abelian anomaly is that the fermion determinant represents a section of a nontrivial line bundle over Sp*A/G* – the determinant bundle. In other words, the variation in the determinant phase along ∂D2 = S1 does not allow the determinant to be a single-valued functional over Sp*A/G*.

For reference, see R. A. Bertlmann, Anomalies in Quantum Field Theory, Oxford University Press.