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Abstract. The problem of the weakest possible boundary conditions for the positive-energy 
theorem is discussed. Examples of asymptotically flat (in some sense) metrics violating 
this theorem are given. A class of metrics which have well defined infinite ADM mass is 
presented. 

One of the relatively recent major advances in general relativity was the proof of the 
positive-energy theorem [ 1,2]. In order to make Witten’s proof mathematically 
rigorous, Choquet-Bruhat [3] and Reula [4] (cf also [5]) have established the existence 
of solutions of Witten’s equation under fairly weak conditions. The purpose of this 
letter is to discuss the weakest possible boundary conditions in the positive-energy 
theorem. This issue is clearly related to the following two problems. 

(a) Under what conditions can the ADM mass, finite or infinite, be defined in a 
meaningful way? 

(b) Can this mass, even though defined at spatial infinity, change in time? 
As was shown in [6] (cf also [7]) the ADM mass of a fixed Cauchy data set is finite 

and well defined if the four-dimensional metric solution of Einstein equations satisfies 
the following conditions?: 

It is not difficult to show that if (1) is satisfied between two boosted hypersurfaces 
Z1 and Z2 (with I;, a t = constant hypersurface), the ADM 4-momentum of Z2 is the 
Lorentz-transformed 4-momentum of C,, and does not change if Z2 is time translated 
with respect to Z, (these results both follow from the Stokes theorem and the Einstein- 
von Freud identity (cf [8] or, e.g., [6]) applied to a ‘cylindrical hypersurface’ spanned 
on dZ1 and ax2) .  The coordinate invariance of the pr (cf [9] for probably the first 
fairly complete analysis of this problem in the ADM language) under coordinate 
transformations of the form 

x” + x” + 5” (x)  5” (x )  = O,( F Y )  Y > +  (2) 

t The signature is +2, latin indices run from 0 to 3, greek ones from 1 to 3, q,,” is the flat Minkowski metric, 
d V,, dSPv and dS, are the tensor-density-valued forms d V,, = E , , , ~ ~  dx“ A dxP A dxY/6,  dS,,, = E , , , , ~  dx”  A 

dxP/2, dS, = dS,,, E ~ , ~ ~ =  1. We use the notat ionf=O,(rP) ,  p E R, if in the asymptotically flat ‘end’ under 
consideration f satisfies Ifl C( 1 + r )@-“ ,  for some positive 
constant C, rz  = Z(x’)*, x’ are any asymptotically rectangular coordinates, O ( r P )  = O,(rP). It is also 
convenient to write f =  O,,(rP) i f f =  O ( r P ) ,  a,, f = O(rP-’), . . . ,a,,, . . . a,,f= O ( r P - n ) .  ro is always under- 
stood to be In r. 

C (  1 + r)@, la,fl C(1+ r)P-’, . . . , . . . dtnJ 
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most easily follows from the following argument: if ( l a )  is satisfied pp can be written 
in the form 

1 =constant 

where Xp is any asymptotically constant vector. It is easily found that under conditions 
(1) and (2), in the limit r + CO, the integrand of (3) changes by a complete divergence: 

(the Einstein-von Freud identity shows that there is no change of pp related to the 
change of surfaces of integration in the limit). 

If one assumes that h , , = 0 2 ( r - " ) ,  not only O,(r -" ) ,  an even simpler proof of 
coordinate invariance can be given: under (1) the ADM pw can be written in the 
Ashtekar-Hansen form [lo]?: 

ppXp = lim (1 (-det g) l /2~wvapXpxYRnPpu dxP A dx" 
r + m  r=constant 

d((-det g)'/2&,,,px"XpgaYT~p dxp)  ( 3 2 ~ ) - '  
+ 2  I r=constant ) 

= lim (i (-det g)l/2R,,apXpx" dS"@)(16~) - '  (4) 

(I 
+ 3  I r = constant 

r+m r=constant 

xp  are the coordinate functions. Since RpYap is assumed to be O(r-2-a) ,  the change 
of the integrand induced by the transformation (2) identically vanishes in the limit 
r + CO. The expression (4) is particularly suitable for the proof of the equality of the 
ADM and Komar masses when X is a translational Killing vector$: 

p,X' = lim XIP;"lyxY(-det g)'I2 dSa,)(16r)-l 

X[".P](-det g)Il2 dS", 

'+Os r=constant 

=lim (2 j 
r+oo r=constant 

(X[">@xY1(-det g)1'2);y dSmp) (16~) - '  

= lim (I X[";P1(-det g)'I2 dS,, 
r+m r=constant 

where we have used RpveDXw = Xps",; cf also [ll] and [12]. 
If one is interested in a fixed Cauchy hypersurface, it is clear that some of the 

boundary conditions (1) are spurious because the ADM mass can be defined purely in 

t Equation (4) is obtained by rewriting the Ashtekar-Hansen expression for pF in physical coordinates, 
with a= (x~x"). 

BY a translational ~ i l ~ i n g  vector we mean a &]ling vector satisfying X" = 2" + Y", Y' = 0 2 ( r - e ) ,  X",, = 0, 
in the asymptotically flat 'end' under consideration, with X" being components of X in some asymptotically 
rectangular coordinates. 

0 
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terms of Cauchy data. In this case to have a finite and unambiguously defined mass 
it is sufficient to require 

lim r 1 l 2 ( g ,  - 6,) = lim r3 /2g i j , k  = o 

g G , k  E L 2 ( Z )  3R(g,) E L’(Z).  (6) 

( 5 )  r - m  r -m 

As has been shown by Denissov and Solovyev [13], condition ( 5 )  cannot be weakened 
(more precisely, any weakening of ( 5 )  must exclude metrics which differ from the flat 
one by terms of the form k,( 8, q ) / r ’ l 2  unless some supplementary conditions forbidding 
coordinate transformations of the form x i  -f xi  +f’( 0, q ) r l ’ *  are imposed on the metric 
and the coordinate system). Neither can the boundary conditions ( l a )  be weakened 
(in the sense of the above statement) while retaining a meaningful notion of energy- 
momentum, which we shall show by means of counterexamples. Let us first note the 
following?. 

Proposition 1 .  If T’”, satisfies the dominant energy condition ( T , , n w X u ~ O  for all 
timelike future directed n p  and X u )  and conditions (1) are satisfied, we have 

I 2 1/2 
( a )  m 2 a  ( Z ( P  1 1 
( b )  m = O  iff TpY=O g,Ly - 7,”. - 

Outline ofprooJ: Square-integrability of Pv and of the first derivatives of g,, together 
with the integrability of TO, ensure existence of solutions of Witten’s equation [4] (cf 
also [5]); the equality of the spinorial expression with its leading term (in the limit r 
going to infinity) holds if, moreover, rakglJ E Lm(Z) ,  rP” E Lm(Z) ,  rTo, E L 2 ( Z )  and 
To,  = O ( r - 2 )  (this can be established by following the proof of lemma 1, § IV in [3], 
where the inequality IIf/rll L z ( x ) S  C((Vfl1 L 2 ( z )  [14] (cf also [5]) should be made use 
of). The conditions ( l a )  finally ensure the equality of the leading term of the spinorial 
boundary integral and of the von Freud superpotential. 

The boundary conditions (1 a )  require the existence of a four-dimensional coordin- 
ate system and it seems natural to ask whether one can reasonably speak of asymptotic 
flatness requiring only the existence of a foliation of M by hypersurfaces satisfying 
(5) and ( 6 ) .  The Kasner metrics [15], solutions of vacuum Einstein equations, show 
that such a requirement is too weak for the introduction of a meaningful notion of 
energy: 

ds2 = -dt2+ t Z p l  dx2+ t 2 p 2  dy2+ t 2 p 3  dz2 PI +P2  + P 3  = P: + p :  +Pi = 1. (7)  
It follows from (7) that each hypersurface t =constant carries a flat metric for 

which an ‘instantaneous coordinate system’ satisfying ( 5 )  and (6) exists, but they cannot 
be patched together to a coordinate system in which ( l a )  is satisfied. The Cauchy 
data ( g ” ,  P”) for the Kasner metrics, on t = constant hypersurfaces, consist of a flat 
metric 6, and a covariantly constant tensor P”-the ADM energy is zero although one 
would expect such Cauchy data to have infinite energy. Clearly point (b )  of proposition 
1 is not fulfilled by these metrics. A much finer example exhibiting similar features is 
given by the Schwarzschild metric in Lemaitre coordinates [ 151: 

ds2=-dt2+(dY/dp dp)2+ Y2dR2 

Y = (3 ( m / 2 ) 1 ’ 2 t  + p 3 / 2 ) 2 / 3  = p + ( 2 m / p )  ’ l 2 t  + O( P - ~ ) .  

dR2 = do2 + sin2 0 d q 2  
(8) 

t This result has been independently established by P Bizoh and E Malec (private communication) 
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Again the hypersurfaces t=constant are flat, so the ADM mass is zero. Boundary 
conditions (1) just fail to be satisfied-they would be if a were allowed to be 4. It 
must be emphasised that ( 5 )  and (6) are satisfied simultaneously for all t, and not only 
in ‘instantaneous spatial coordinates’ as for the Kasner metrics. 

An example of a metric (satisfying Einstein vacuum equations) with a negative 
ADM mass is given by the flat metric in which an unusual time coordinate T = t - aril2 
has been introducedt: 

ds2 = -dT2 - a dT dr/r’/*+ (1 - a 2 / 4 r )  dr2+ r2 dn2.  (9) 

The ADM mass of the metric (9) is clearly equal to -a2/& A common feature of the 
above three examples is that Pi, is not square integrable, and that is why Witten’s 
argument fails (no solutions of Witten’s equation with the required asymptotic 
behaviour exist). (It may be of some interest to note that, in terms of powers of fall-off 
in r, P, for the metrics (8), (9) and (19) is just at the limit of square integrability.) 
This shows that the condition of square integrability of Pij in the positive-energy 
theorem cannot be weakened if the ADM mass is finite. We have the following 
proposition, which can be thought of as an extension of the positive-energy theorem. 

Proposition 2. Suppose that the Cauchy data (gij, P,) ,  satisfying the constraint equations 
with sources, satisfy also 

g ,  - 6, = 0 1 ( f a  1 a > ;  ( loa)  

g p  E L 2 ( Z )  

( 1 6 ~ ~  + POPi’) = W. 

The ADM mass, evaluated in any coordinate system in which (10) holds, is infinite. 

Remark. To weaken the hypothesis on a one has to assume some supplementary 
conditions which ensure the infiniteness of m in any admissible coordinate system-a 
possible requirement is, for example, 

with lim C ( R ) = m  (11) 

B ( R )  being a coordinate ball of radius R and Ro is understood to be In R ((11) will 
hold if, e.g., P ,  - r-l-a+e).  Along the same lines, the square integrability of g,jPv can 
be replaced by some conditions which imply a slower fall-off of g,P”, as compared to 
(P,P”)1/2. It must be noted that for a <f the Hamiltonian (cf [6]) does not coincide 
with the standard ADM expression, because it is not only the linearised terms in it that 
contribute. Condition (11) ensures also that both the ADM or the Dirac form of m 
give the same infinite answer; supplementary conditions on N and N‘ can guarantee 
that the same is true for the von Freud superpotential. Only trivial modifications of 
the proof of proposition 2 are required if a < f and (1 1) are assumed. The hypotheses 
of proposition 3 below can be weakened in a similar way. 

R-m 
( 1 6 ~ ~  + PvPv)  2 C(R)R-’*+’ LR) 

t The singularity of T at r = 0 is irrelevant and can be removed by smoothing 7 for small r-we are primarily 
interested in the large-r behaviour of the metric. 
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Proof: 

m = - ( 1 / 1 6 ~ )  lim (det ggv)), j(det g)-1/2 dS, 

= ( 1 / 1 6 ~ ) ( I  (de tg) ’ / ’R+T.r te rms’  

r-m I 
T\B(R)  

- I (det gg”), j(det g)-1/2 dSi 
JB(R) 

( p  + P, j .Po/16~)(de t  g)1/2 d3x+ ‘something finite’. (12) 

The infinite value of the integral (1Oc) may result from an infinite matter energy 
or from an ‘infinite gravitational kinetic energy’. As is shown by the metrics (8) and 
(9), the loss of square integrability of Pv can be an artefact due to a poor choice of 
the t foliation. One can exhibit some supplementary conditions which will ensure that 
m = CO is an invariant property of the spacetime, at least under coordinate transforma- 
tions of the form (2)t .  It is simple to show, using TFY;U = 0, that if ( l a )  holds (with 
any a > 0) and if 

T W ,  = O( F P )  p > 3 - a  (13) 

we have the implication 

T’I,,X” dV, =a (14) I T@’,X” dV, = I x”=constant y”=constant 

for all X p  and y’* satisfying X’* - 8; = O1(r-=), y’* = x* + l p ( x )  and 6” = a,( r ’ - = ) .  
This shows in particular that m = 00 is indeed an invariant property if (13), (1Oc) and 
(1 a )  with a > 1 hold. An interesting situation arises when the gravitational field has 
by itself an infinite amount of energy. 

Proposition 3. Suppose that the metric, solution of four-dimensional Einstein equations 
(possibly with sources) in a, Cl 1 {( t ,  x): t a + br},  a > 0,  b > 0, satisfies 

g.. V - 6.. tl = O l ( r - * )  

gvP“ = O,( r - = )  

a >; 

T,, = O( r - * - X )  x > l - a  ( 1 5 4  

(cf, e.g., [16] for the compatibility of (15a) with the Einstein equations). The property 
m = CO is invariant under coordinate transformations of the form 

x @ + y @  = x ” + l ” ( x )  6” = O,( r l - 7 )  Y > O  (16) 

if they preserve (1 5 ) .  

t Even under the usual boundary conditions ( l a )  with a = 1 there still does not exist a proof that p,, is 
indeed well defined-the missing element being that all coordinate transformations preserving ( l a )  are of 
the form (2). It may be of some interest to note that such a result can be shown to be true if all the derivatives 
axa/ayp (or a y p / a x a )  are assumed to be bounded. 
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Outline ofproof: The proof consists of showing that if the transformation (16) preserves 
(15), f" must be O2(r1-'), +=min(a,2p)>; .  The square integrability of P,, is 
preserved by such transformations-m is either finite or infinite for all foliations 
xo = constant related by these coordinate transformations. To establish this last estimate 
one proceeds as follows: first, it is elementary to show that preservation of (15a) 
requires y z p .  Equations (15b) and (15c) then lead to equations of the type: 

f ' , J k  = O1(r-'-+) (17a) 

A t o =  Ol(r-'-'). (17b) 
From (17), the maximum principle for (17b) and the existence theorems for the 
Laplacian in weighted Hoelder spaces (cf [17]) one obtains the required result. 

Remarks. (1) The C; class of the coefficients of the metric and the CL class of g,P" 
can be weakened to Hoelder classes Ck' and C:' respectively, for some p > 0 (cf [ 171). 

(2) The author believes that the condition p > is not essential and can be relaxed. 
The method outlined above does not seem to work for p <: due to the presence of 
terms h , ,  af ' /at  in the right-hand side of (17b)-a bootstrap of equations obtained 
from (17) by time differentiating seems to require some further restrictions on h,,,-'. 

What has been said allows a reasonable discussion of boundary conditions which 
lead to a (finite) ADM mass varying in time. For the purpose of such a discussion we 
shall assume that, at least in the 'end' of M under consideration, there exists a coordinate 
system ( t ,x ' )  such that ( 5 )  and (6) are satisfied for tE(--E, E),  with some E > O .  
Assuming that differentiation under the integral is allowed and that lim ag,,/at = 0 = 
lim r312 a2g,/at axk ,  one has 

(3R)N'+(NPi'),,)(det g)II2 dSi 

(3RjNJ+ N,jPv -8.rrNJi)(det g)l12 dS, (18) 
= 

If p is integrable and satisfies p z IJI, it is reasonable to assume J' = O( r - 3 - E ) .  Let us 
also suppose 3R', = O( r -2-a) ,  with a > i, and Pv = O( r - I w p ) .  To have dm/dt # 0 either 
N-' - r a  or N,, - r p - ' (  + N - r P ) .  Such weak boundary conditions on N and N '  seem 
to be compatible with four-dimensional asymptotic flatness only if a very unnatural 
xo = constant foliation of the spacetime is given. An example is provided by the flat 
metric on R4, where a strange time T = t / (  1 + ar'I2) has been introduced: 

ds2 = -( 1 + ar ' /2)2  dT2 - U T (  a + r-1'2) dT d r  + (1 - ~'a' /4r)  dr2+ r2 dn2.  (19) 
The metric (19) has negative ADM mass - r2a2/8 .  It must be noted that P = Pug" is 
again not square integrable. If the condition P E  L2(Z)  is added one has to limit oneself 
to p > 3, and these two requirements exclude examples of the type (19). It may well 
be possible that such restrictions lead to a family of metrics with unambiguously 
defined mass changing in time. 

In a paper of fundamental importance Christodoulou and O'Murchadha [ 161 have 
provided physicists with a large amount of asymptotically flat spacetimes satisfying 
the Einstein vacuum equations. One of the features of the Christodoulou- 
O'Murchadha metrics is that they satisfy boundary conditions of the form ( l a ) ,  with 
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any a > 0. In this letter we have pointed out some conditions which allow us to speak 
meaningfully of energy-momentum, whether finite or infinite, for large subset of this 
set of metrics. We have also shown that certain hypotheses allow us to weaken the 
positive-energy theorem to non-square-integrable Pij and that these conditions are the 
best possible. We have finally pointed out that care must be taken when claiming that 
the ADM mass does not change in time, if one specifies the boundary conditions satisfied 
by and g ,  only. We wish to emphasise that, although all our examples (except the 
Kasner metrics) are coordinate artefacts, they show also that the ADM mass cannot be 
generically given an intrinsic meaning for metrics for which the weaker asymptotics 
is a real feature. 

The boundary conditions ensuring m = 00 we have presented are disappointing in 
a sense-in classical field theories in a Minkowski background (for which a positive 
Hamiltonian density usually exists) the concept of energy can play the useful ontological 
role of Ockham’s razor: in Maxwell’s electrodynamics monochromatic plane waves 
are solutions which cannot ‘really exist’ because they have infinite energy. The boun- 
dary conditions we have presented are certainly incompatible with such solutions as 
the pp  gravitational waves, to which one would like to assign an infinite energy. Can 
such an assertion be given rigorous mathematical sense? 

Note added. Once this letter was written the author was informed that part of the results presented here 
have independently been noted or established by N O’Murchadha (1986 J.  Math. Phys. at press). 
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