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A B S T R A C T

Many crucial problems in general relativity concern the asymptotic
behavior of solutions to the Einstein equations, both in time and space.
These are commonly studied under the assumption of symmetry
conditions on the spatial slices of the spacetime, which greatly simpli-
fies the analysis. In this thesis we investigate several such problems
without relying on spatial symmetry.

The introduction of a conformal boundary at infinity is a useful tool
to study the asymptotic behavior of spacetimes at large distances. This
naturally leads to the question of what the possible configurations
of this boundary are. In the first part of this thesis we start with
asymptotic data, given on the conformal boundary, and construct
stationary spacetimes solving the Einstein equations with a negative
cosmological constant coupled to a wide variety of matter fields. Here
the boundary is timelike and corresponds to the limit of large radii. As
there are only mild restrictions on the asymptotic data, our solutions
possess no spatial Killing vector fields in general. Spacetimes of this
type are of interest both within general relativity, as they show strik-
ingly different behavior than ones with positive or zero cosmological
constant, and within the context of the AdS/CFT conjecture.

Another class of asymptotic problems of interest, at the “opposite
end” of spacetimes, concerns their behavior near singularities. We
know from the singularity theorems of Penrose and Hawking that
singularities are a generic feature of general relativity, but their de-
tailed structure is still unclear. Here we construct nakedly singular
vacuum spacetimes without symmetries from asymptotic data at the
singularity. Within the framework of the BKL conjecture, which aims
to give a detailed description of generic singularities, their behavior
is of the non-chaotic type, which provides the building blocks for the
more complicated chaotic behavior expected in the general case.

A related issue of recent interest is the possible existence of lower
regularity extensions through the singular boundary, which is con-
nected to the cosmic censorship conjecture. For a class of “expanding
singularities” (which includes spacetimes without any symmetries)
we analyze the properties of C0-extensions across the singularity by
extending methods used in the Schwarzschild case.
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Z U S A M M E N FA S S U N G

Viele wichtige Probleme in der Allgemeinen Relativitätstheorie betref-
fen das asymptotische Verhalten, sowohl in der Zeit als auch im Raum,
von Lösungen der Einstein’schen Feldgleichungen. Solche Probleme
werden meistens unter der Annahme von Symmetrien der raumar-
tigen Schnitte studiert, was die Analyse stark vereinfacht. In dieser
Dissertation betrachten wir mehrere solche Probleme ohne räumliche
Symmetrien.

Die Definition einer konformen Grenzfläche im Unendlichen ist ein
nützliches Werkzeug um das asymptotische Verhalten von Raumzeiten
zu studieren. Es stellt sich die Frage was die möglichen Konfigura-
tionen dieser Grenzfläche sind. Im ersten Teil dieser Dissertation
konstruieren wir stationäre Lösungen der Einsteingleichungen mit
negativer kosmologischer Konstante, gekoppelt an verschiedene Mate-
riefelder, die ein vorgeschriebenes Verhalten im Unendlichen zeigen.
Die konforme Grenzfläche ist in diesem Fall zeitartig und entspricht
dem Limes hoher Entfernung vom Zentrum. Da die asymptotischen
Daten weitgehend frei sind haben die konstruierten Lösungen im
allgemeinen keine räumlichen Killing Vektorfelder. Raumzeiten dieser
Art sind von Interesse, sowohl vom Standpunkt der allgemeinen Rela-
tivitätstheorie, da sie stark unterschiedliches Verhalten als im Fall von
positiver oder verschwindender Kosmologischer Konstante zeigen, als
auch im Rahmen der AdS/CFT Vermutung.

Eine andere Klasse von asymptotischen Problemen, sozusagen am
“gegenüberliegenden Ende” von Raumzeiten, ist ihr Verhalten in der
Nähe von Singularitäten. Die Singularitätentheoreme von Penrose und
Hawking zeigen dass Singularitäten ein generisches Phänomen der
allgemeinen Relativitätstheorie sind, aber ihre detaillierte Struktur ist
noch immer unklar. Hier konstruieren wir vakuum Raumzeiten ohne
Symmetrien basierend auf asymptotischen Daten an einer nackten
Singularität. Im Rahmen der BKL-Vermutung, die eine detaillierte
Beschreibung generischer Singularitäten anstrebt, zeigen unsere Lö-
sungen sogenanntes nicht-chaotisches Verhalten. Dieses bildet den
Baustein für das kompliziertere chaotische Verhalten das im allgemei-
nen Fall erwartet wird.

Ein verwandtes Problem ist die mögliche Existenz von Erweite-
rungen niedrigerer Regularität durch die singuläre Grenzfläche, im
Zusammenhang mit der Cosmic Censorship Vermutung. Wir untersu-
chen die Eigenschaften von C0-Erweiterungen durch die Singularität
für eine Klasse von “expandierenden Singularitäten” (diese enthält
Raumzeiten ohne Symmetrien) indem wir Methoden, die für den
Schwarzschild-Fall entwickelt wurden, erweitern.
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1
I N T R O D U C T I O N

1.1 general relativity

Albert Einstein’s theory of general relativity [45] provides the most
accurate mathematical model of gravity known to date. The funda-
mental interaction of gravity dominates the universe on large scales,
governing the movement of planets, stars, and galaxies. Our best
cosmological models, which describe the evolution of the universe as
a whole, are formulated within the framework of general relativity.
On smaller scales, such as those relevant to our day-to-day life, the
other fundamental interactions—electromagnetism, the weak-, and
the strong nuclear force—are much stronger than gravity. As the nu-
clear forces are short ranged and large bodies tend to collect positive
and negative electric charges in equal measure, only gravity remains
important at larger scales.

There is, as of yet, no theory which combines these quantum forces
with the classical description of gravity given by general relativity.
In their respective domains, however, both agree with experimental
evidence to incredible precision. General relativity improves upon
the Newtonian theory of gravity both in a quantitative sense, by e.g.
allowing more precise calculation of orbital motion, and qualitatively,
by encompassing entirely new phenomena such as black holes and
gravitational waves.

More fundamentally, general relativity is a geometric theory. In
contrast to Newtonian mechanics, gravity is not described as a force
acting on bodies which move on a fixed background, like actors on
a stage. Instead the stage becomes one of the actors as the fixed
notions of space and time combine to form a dynamical spacetime. Test
bodies moving under the influence of gravity simply follow straight
lines, albeit a notion of “straightness” defined by the curvature of the
underlying spacetime.

Using the mathematical tools of differential geometry, the theory
of general relativity can be formulated in a remarkably concise and
elegant way. Spacetime is described as a Lorentzian manifold, consisting
of a set of points which represent events occurring at a specific time
and place, and additional structure which specifies the relation of
these events to each other. The crucial element is the metric tensor
gµν which determines the causal relationships between events and
makes it possible to calculate the (proper) time experienced by any
observer. The trajectories of test bodies in general relativity are given
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introduction

by geodesics, which are extremal curves of the proper time defined
from gµν.

General relativity subsumes the earlier theory of special relativity,
which postulates a fixed metric tensor gµν = ηµν, the Minkowski metric,
and, in fact, reduces to it in the limit of small curvature. For any
spacetime it is possible to choose coordinates such that gµν = ηµν and
∂αgµν = 0 at one point. The existence of these local inertial coordinates
represents the equivalence principle, which states that local experiments
are unaffected by the position or velocity of the laboratory.

The source of the curvature of spacetime is the energy momentum
tensor Tµν, which describes the distribution of energy and momentum
in the universe. The relation between the metric tensor gµν, and Tµν is
given by Einstein’s field equations

Rµν −
1
2

Rgµν + Λgµν =
8πG

c4 Tµν . (1)

Here the Ricci tensor Rµν and the Ricci scalar R describe the curvature
of spacetime, and are defined in terms of the metric gµν. The constant
Λ is the cosmological constant which corresponds to an energy density
of empty spacetime. The constants c and G are the familiar speed of
light and (Newtonian) gravitational constant, respectively.

Taking into account the symmetries of the various tensors, in the
standard 1 + 3 dimensions, (1) consists of 6 partial differential equa-
tions for 10 unknowns. The remaining 4 degrees of freedom corre-
spond to the gauge invariance of the theory under diffeomorphism, i.e.
the freedom of choosing coordinates to label the points of spacetime.

In contrast to many other equations of physical interest the Einstein
equations are nonlinear. This means, for instance, that it is not possible
to simply superimpose the gravitational fields of two bodies to obtain
their combined effect. A fascinating consequence of this complicated
structure is that even the vacuum Einstein equations, obtained by
setting Tµν ≡ 0 in (1), admit a wide variety of non-trivial solutions.
Our results in Chapter 4 (for specific choices of the free data) and
Chapter 6 show existence of large classes of such vacuum solutions
with prescribed asymptotic behavior.

1.2 symmetries

The use of symmetries to simplify complicated problems is a com-
mon approach in physics. As in many other areas, symmetries play
an important role in general relativity: Exact solutions, such as the
Schwarzschild and Kerr spacetimes, were found by searching for
metrics consistent with a symmetry assumption. In cosmology, the
assumption of a spatially homogeneous and isotropic universe is
the basis for the highly successful ΛCDM models. In general, the
end state of dynamical evolution is expected to be a stationary, i.e.
time-symmetric, configuration.
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1.3 asymptotic problems

Symmetries in general relativity are described by isometries, that is,
for a spacetime (M, g), by diffeomorphisms φ : M → M satisfying
φ∗g = g. Such symmetries may be discrete or continuous, i.e. part of
a family parametrized by some continuous variables. The continuous
symmetries of a spacetime form a Lie group, whose connected compo-
nent of the identity is generated by Killing vector fields (KVFs). A KVF
ξα satisfies

Lξ gαβ = ∇αξβ +∇βξα = 0 , (2)

and the set of all KVFs form a Lie algebra using the vector field
commutator. Any Killing vector field locally generates a continuous
symmetry, and, if the vector field is complete, this extends to a full
one parameter family of isometries.

1.3 asymptotic problems

The complicated nonlinear structure of the Einstein equations makes
it impossible to give general solutions which encompass all possible
situations. Many exact solutions are known, but these generally
describe very specialized situations and cannot be expected to shed
light on generic behavior. To apply the theory beyond these solutions
one needs to either use numerical methods, i.e. to approximate (1)
by a discrete system of equations that can be solved by a computer,
or to simplify the problem. Common forms of simplification include
restricting to symmetric configurations or only considering specific
features of solutions instead of their complete form.

For many questions of physical interest it is sufficient to consider
only the asymptotic behavior of solutions. Here “asymptotic behavior”
can mean either the long-term evolution towards the past or future
or the behavior at large distances from a more complicated central
region. For example, one might be interested whether some matter
configuration collapses to form a black hole or approaches some
other stationary state. In many cases it is not necessary to treat the
potentially complicated behavior at intermediate times in order to
draw conclusions about the final state.

Stability results, such as the celebrated proof of the stability of
Minkowski space, are one example of such an asymptotic problem.
Starting from a known solution, consider arbitrary small perturbations
of the associated initial data on a spacelike slice. If the perturbations
can be shown to decay in time, assuming they are initially small
enough, this characterizes the asymptotic behavior of an open set of
initial data.

A different approach is to directly construct (i.e., to prove existence
of) new solutions which show a desired type of asymptotic behavior.
This is often easier than starting from initial data, but makes it harder
to answer questions of genericity (c.f. Section 3.3.2 below). We use
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such an approach in Chapters 4 and 6 below, although the asymptotic
boundary in these cases lies in a spacelike instead of timelike direction.

1.4 outline

This thesis consists of two parts:

• The first part contains the papers [31] (in collaboration with Pi-
otr Chruściel and Erwann Delay) and [70], attached as Chapters
4 and 5. These include the crucial results from a sequence of
papers [24, 31, 25, 70] by the same authors and [26] (in collabo-
ration with Chruściel, Delay, Kriegl, Michor, and Rainer) which
together construct a class of stationary spacetimes with nega-
tive cosmological constant containing a wide variety of matter
fields. The solutions are parametrized by data given at con-
formal infinity and include both black holes and geodesically
complete spacetimes. Except for the timelike Killing vector field
of stationarity they posses no symmetries.

• The second part concerns the nature of singularities. In Chapter 6

(published as [71]) we construct a class of spacetimes containing
timelike singularities which show so-called non-chaotic or AVTD
(Asymptotically Velocity Term Dominated) behavior. The metric
behaves asymptotically like a spatially homogeneous Kasner
metric at each point, but with coefficients that vary in space (see
Section 3.3.2). This extends the results of the author’s master
thesis (published as [69]) to the timelike case. As in [69] the
construction does not use any symmetry assumption. In analogy
to the first part the solutions are parametrized by free functions
which define the asymptotics of the metric at the singularity.

In Section 3.3.3 we provide a new analysis of the only known
inhomogeneous solutions showing the more complicated chaotic
behavior.

In Chapter 7 (in collaboration with Piotr Chruściel, published as
[29]) we investigate C0 extensions across a class of singularities
we call “expanding singularities”, i.e. where space is “stretched”
as the singularity is approached, similar to what happens in
the Schwarzschild or Kasner spacetimes. We use methods in-
troduced by Sbierski in his proof of the C0-inextendibility of
Schwarzschild [96], but do not restrict to the case of spherical
symmetry. Our results apply, e.g., to the spacetimes constructed
in [69], which have no symmetries.

In Chapters 2 and 3 we give relevant background for each part and
reproduce the main theorems of the later chapters.

4



1.5 overview of the attached papers

1.5 overview of the attached papers

Here we list the papers attached as Chapters 4 to 7 and give their
publication status and abstracts. See page 7 for a statement on the
co-authored papers.

1. “Non-singular spacetimes with a negative cosmological constant:
IV. Stationary black hole solutions with matter fields”,

P. T. Chruściel, E. Delay, and P. Klinger,

published in Classical and Quantum Gravity 35.3 (2018), p.
035007,

doi: 10.1088/1361-6382/aa9e0c, arXiv: 1708.04947.

Abstract. We use an elliptic system of equations with complex coef-
ficients for a set of complex-valued tensor fields as a tool to construct
infinite-dimensional families of non-singular stationary black holes,
real-valued Lorentzian solutions of the Einstein–Maxwell–dilaton–
scalar fields–Yang-Mills–Higgs–Chern-Simons– f (R) equations with
a negative cosmological constant. The families include an infinite-
dimensional family of solutions with the usual AdS conformal structure
at conformal infinity.

2. “Non-degeneracy of Riemannian Schwarzschild-anti de Sitter
metrics: Birkhoff-type results in linearized gravity”,

P. Klinger,

submitted to Journal of mathematical Physics (2018-06-14),

arXiv: 1806.05023.

Abstract. We prove Birkhoff-type results showing that L2 solu-
tions of the linearized Einstein equations around Riemannian Kottler
(“Schwarzschild-anti de Sitter”) metrics in arbitrary dimension and
horizon topology, which are not controlled by “master functions” are
pure gauge. Together with earlier results this implies that the TT-gauge-
fixed linearized Einstein operator for these metrics is non-degenerate
for open ranges of the mass parameter.

3. “Timelike singularities and Hamiltonian cosmological billiards”,

P. Klinger,

published in Classical and Quantum Gravity 33.11 (2016), p.
117002,

doi: 10.1088/0264-9381/33/11/117002, arXiv: 1512.03302.

Abstract. We construct a large class of vacuum solutions of the
Einstein equations without any symmetries and with controlled asymp-
totics near a timelike singularity. The solutions are obtained by a
Fuchs analysis of the equations which evolve the metric in a spacelike
direction. We further observe that the change of sign of some of the
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terms (walls) in the associated Hamiltonian invalidate the “cosmologi-
cal billards” heuristic arguments for the existence of singularities of
the mixmaster type in the current context.

4. “The annoying null boundaries”,

P. T. Chruściel, and P. Klinger,

published in Journal of Physics Conference Series 968.1 (2018),
p. 012003,

doi: 10.1088/1742-6596/968/1/012003, arXiv: 1801.06037.

Abstract. We consider a class of globally hyperbolic space-times with
“expanding singularities”. Under suitable assumptions we show that
no C0-extensions across a compact boundary exist, while the boundary
must be null wherever differentiable (which is almost everywhere) in
the non-compact case.
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Univ. Prof. Dr. Piotr T. Chruściel
Gravitational Physics, Head
Boltzmanngasse 5
A 1090 Wien, Austria

November 23, 2018

PhD Committee
Faculty of Physics
University of Vienna

Dear Colleagues,

Paul Klinger’s thesis consists of an introduction to the topic, written by him, and
several research papers, some of which were written together with co-authors.
One of these papers is the product of a collaboration with Prof. Erwann Delay
of the Université d’Avignon and me. Paul has contributed materially to all our
joint papers (most of which are not included in this thesis), both to the ideas
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responsible for various parts of the papers, as they developed over many months
in a collaborative process, with substantial and often key input from Paul. The
paper ”The annoying null boundaries”, written in collaboration between Paul
and me, is based mostly on his initiative and ideas. The papers solely authored
by Paul are entirely his own work.
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Professor of Gravitational Physics
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2
S TAT I O N A RY S PA C E T I M E S W I T H N E G AT I V E
C O S M O L O G I C A L C O N S TA N T

In Chapters 4 to 5 we construct stationary solutions to the Einstein
equations with a negative cosmological constant and various types
of matter fields. This chapter motivates these works and provides
background information. In Section 2.1 we show how our results fit
into the related literature. Section 2.2 defines stationary and static
spacetimes and gives some of their properties. Section 2.3 discusses
the case of negative cosmological constant and some of the new phe-
nomena occurring there. In Section 2.4 we introduce the concept of
the conformal boundary. This is important as our new solutions are
parametrized by data given on this boundary. Finally, Section 2.5
describes the general approach used in our construction and gives
references for the analytical details.

2.1 previous work and new results

In the case of zero cosmological constant there are strong rigidity
theorems restricting the possible stationary and static configurations
(see Section 2.3.1 below). It was believed that this would hold indepen-
dently of the value of the cosmological constant [6]. Boucher, Gibbons,
and Horowitz [16] gave arguments suggesting uniqueness of anti-de
Sitter under strong conditions on the asymptotic behavior.

The question of the correct notion of asymptotic convergence is
non-trivial (c.f. [36]), however, in contrast to the Λ = 0 case, such an
additional assumption is essential: In [6, 5] Anderson, Chruściel, and
Delay constructed static solutions to the vacuum Einstein equations
with negative cosmological constant which had no Killing vectors
except for the one given by the staticity condition.

The result was generalized to stationary (vacuum) spacetimes, and
to static spacetimes with Maxwell fields by Chruściel and Delay in
[30, 33] using somewhat different methods. In contrast to [6, 5] these
new results are valid only for asymptotic data that is close to that
of a seed metric, e.g. the Anti-de Sitter solution, which satisfies a
non-degeneracy condition.

In [24], together with Chruściel and Delay, we extend these results
to stationary spacetimes with a wider variety of matter fields. These
include Maxwell with a Chern Simons term, a Dilaton coupled to
the Maxwell field and additional minimally coupled scalar fields.
Instead of the U(1) Maxwell field we can also construct solutions with
more general Yang-Mills and Higgs fields. As the matter fields are
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stationary spacetimes with negative cosmological constant

determined by the asymptotic data we can set any combination of
them to zero by giving trivial data and choosing vanishing coupling
constants. The inclusion of matter fields means that the results of
[16] do not apply, i.e. it is possible to construct geodesically complete
solutions with the same asymptotic behavior as AdS but which contain
only the Killing vector of stationarity. Our results include a class of
“Boson stars”, solutions of the Einstein-complex scalar field equations
where the metric is time-independent but the scalar field is multiplied
with a time dependent phase factor exp(iωt).

In [24] we had to assume a negative mass for the scalar field. In
[26], together with Chruściel, Delay, Kriegl, Michor, and Rainer, we
use similar techniques in the vicinity of an eigenmode of the scalar
field equations on the fixed background seed solution. This leads to
Boson star solutions for positive mass scalar fields.

In [31] (Chapter 4) with Chruściel and Delay we construct stationary
black hole solutions with the same matter fields as in [24]. As before,
the construction relies on a non-degeneracy property of the seed met-
rics. We show this property for generalized Kottler (Schwarzschild-de
Sitter) metrics for a subset of horizon geometries and mass parameters
in [25] with Chruściel and Delay. The results of [70] (Chapter 5) extend
this range of parameters.

Our final result, for Anti-de Sitter or generalized Kottler seed met-
rics, states (c.f. Chapter 4, Theorem 4.8 and Chapter 5, Theorem A)

Theorem 2.1.1. Consider a n + 1 ≥ 4 dimensional generalized Kottler
metric g̊ of the form

g̊ = −
(

r2 + K− 2µ

rn−1

)
dt2 +

dr2

r2 + K− 2µ
rn−1

+ r2γK , (3)

where γK is a metric of constant sectional curvature K ∈ {−1, 0, 1} and the
mass parameter µ satisfies

• µ 6= µc := 12
25

√
3
5 and µ > µmin(n, K) for n = 3,

• µ ∈ (µmin(n, K), µ(n, K)) for n > 3, where µ(n, K) > µmin(n, K)
solves a polynomial equation,

with

µmin(n, K) :=





0 K ∈ {0, 1} ,

− 1
n

(
n

(n−2)

)−n/2
K = −1 .

(4)

We further assume that the associated Riemannian metric g̊ has no har-
monic one forms in L2, that V ′′(0) is not an L2-eigenvalue of the operator
∆g̊

1 and that

W(0) = 1 , V (0) = 0 = V ′(0) , V ′′(0) > −n2/4 , (5)

1 See Chapter 4, Remark 4.10 for comments on the kernel conditions.
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2.2 stationary and static spacetimes

where V and W are the potential of the scalar field and the dilaton coupling,
respectively 2.

For all k ∈ N \ {0}, α ∈ (0, 1), a ∈ R with |a| small enough, every
smooth real-valued θ̂ ∈ Ck+2,α(∂M, T1) and Û ∈ Ck+2,α(∂M) and

1. V ′′(0) < 0 with Â ∈ Ck+2,α(∂M, T1), and Φ̂ ∈ ρσ−Ck+2,α(∂M)

(where σ− = n/2−
√

n2/4 + V ′′(0)) which are sufficiently small
smooth fields on ∂M, or

2. Φ̂ ≡ 0, and Â ∈ Ck+2,α(∂M, T1) which is a sufficiently small smooth
field on ∂M,

there exists a unique, modulo diffeomorphisms which are the identity at the
boundary, nearby stationary Lorentzian solution of the Einstein-Maxwell-
dilaton-scalar fields-Chern-Simons equations, or of the Yang-Mills-Higgs-
Chern-Simons-dilaton equations with a trivial principal bundle, so that, in
local coordinates near ∂M, we have

g→ρ→0 g̊ , V →ρ→0 V̊ , θ →ρ→0 aθ̂ ,

U →ρ→0 aÛ , A→ρ→0 Âadxa , Φ→ρ→0 Φ̂
(6)

with all convergences in g̊-norm. The hypothesis of non-existence of harmonic
L2-one-forms is not needed if Â ≡ 0 ≡ Û, in which case the Maxwell field
or the Yang-Mills field are identically zero.

Parallel to these analytic constructions, similar solutions were inves-
tigated using numerical methods. Static Einstein-Yang-Mills solutions,
including both geodesically complete and black hole ones, are con-
structed numerically in [105] for spacetime dimension 5, in [14] for
dimension 4, and in [90] for all dimensions. Similar solutions for the
Einstein-Maxwell-Chern-Simons equation were investigated in [15].
Stationary Boson stars were recently constructed numerically in [18].
Some of these numerical solutions are included in the classes we ob-
tain in [31] (Chapter 4) and [26]. However, due to our restriction to
asymptotic data which is close to that of vacuum anti-de Sitter space,
we do not recover all of them.

Rotating Boson star solutions with a black hole were constructed nu-
merically in [42], for a massless scalar field. Our use of a periodic time
function in [31] means that we cannot construct black hole solutions
with a time-dependent scalar field.

2.2 stationary and static spacetimes

The concepts of stationarity and staticity make rigorous the notion
of a spacetime that does not change in time. This is not an a priori
trivial concept as it depends on a notion of time, which is not uniquely

2 See the action in equation 4.13 of Chapter 4 for the definition of W and V .
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stationary spacetimes with negative cosmological constant

defined in general relativity. Spacetimes of this type are of interest as
they are natural candidates for endpoints of dynamical evolution.

A spacetime is called strictly stationary if it contains a globally time-
like Killing vector field (KVF). The full Schwarzschild spacetime is not
strictly stationary as the KVF ∂t (in standard coordinates) is spacelike
in the interior of the black hole. It is, however, stationary, meaning that
it contains a Killing vector that is timelike for large enough r. This
asymptotic notion of stationarity is only defined for spacetimes with
an asymptotic end, e.g. asymptotically flat or asymptotically (anti-)
de Sitter ones.

Let us assume we are in a region of spacetime where there exists
a timelike Killing vector ξ = ξµ∂µ. Then we can always find (local)
coordinates such that the metric g takes the form

g = −V(x)2(dt + θi(x)dxi)2 + gij(x)dxidxj , (7)

where ∇t = ξ, i.e. t is defined by integrating along the integral
curves of ξ, and the indices i, j take values in {1, . . . , n} with n + 1 the
spacetime dimension.

A stronger condition than stationarity is staticity: If there exists a
spacelike hypersurface Σ such that the KVF ξ of a (strictly) stationary
spacetime is everywhere normal to Σ the spacetime is called (strictly)
static. This corresponds to θi ≡ 0 in the coordinates (7).

The Kerr solution, which describes a rotating black hole, is an
example of a stationary spacetime which is not static. The mixed
dxidt terms in the metric cause effects such as Lense-Thirring frame
dragging which do not occur in the static case.

The solutions we construct in Chapter 4 include both strictly station-
ary geodesically complete ones, and stationary black hole solutions
for which the Killing vector field becomes null on the horizon. For
appropriate choices of the asymptotic data we obtain static solutions
instead.

2.3 negative cosmological constant

There is strong observational evidence that the cosmological con-
stant Λ in our universe is positive. Assuming a standard ΛCDM
cosmological model, this follows both from direct measurements
of the accelerating expansion of the universe using supernova ob-
servations and from analysis of inhomogeneities in the cosmic mi-
crowave background (CMB). The most recent Planck collaboration
data, obtained from CMB observations using the Planck space tele-
scope, shows ΩΛ = 0.6889(56) [89], corresponding to a cosmological
constant Λ = 1.1056× 10−52 m−2.

The case of negative Λ is nevertheless interesting, both from a phys-
ical and mathematical point of view. On the physical side there has
been a lot of interest in spacetimes with negative cosmological con-
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2.3 negative cosmological constant

stant in recent years due to the so-called AdS/CFT correspondence [78,
106]. This is a conjectured relationship between theories of quantum
gravity on asymptotically AdS spacetimes and conformal field theories
defined on the conformal boundary of these spaces (see Section 2.4
for a definition of the boundary). Classical solutions of general rela-
tivity which are asymptotically AdS are useful in this context, as they
should correspond to a low energy limit of the quantum theory. The
AdS/CFT correspondence is a major field of research in theoretical
high energy physics, but rigorous results are still scarce. We will not
go into more details here, as this thesis focuses on classical general
relativity.

On the mathematical side the Λ < 0 case is of interest as it shows
strikingly different phenomena from the Λ = 0 or Λ > 0 cases.
For instance, there are time periodic solutions close to anti-de Sitter
space (such solutions were found numerically in [79] and similar
ones constructed rigorously in [27]), while asymptotically flat ones
do not exist [2]. The Λ < 0 case also allows for a much wider
variety of possible stationary solutions, including both black holes and
geodesically complete ones.

2.3.1 Uniqueness theorems for Λ = 0 and differences in the Λ < 0 case

In the case of zero cosmological constant it was shown by Lichnerowicz
that geodesically complete asymptotically flat stationary vacuum solu-
tions must be Minkowski [75]. Anderson [4] removed the condition of
asymptotic flatness, showing

Theorem 2.3.1. [4, Theorem 0.1] Let (M, g) be a geodesically complete,
chronological, stationary vacuum space-time. Then (M, g) is the Minkowski
spacetime or a quotient of the Minkowski spacetime by a discrete group of
isometries of R3, commuting with the symmetry group of stationarity.

Similar results for black holes go under the name black hole uniqueness
or no-hair conjecture, i.e. the problem of classifying all asymptotically
stationary, asymptotically flat (or hyperbolic) black hole spacetimes.
This is of interest as the end-state of black holes is expected to be in
this class, including astrophysical black holes formed by gravitational
collapse.

In the Λ = 0 case it turns out that, up to some technical assumptions,
all four-dimensional, asymptotically stationary, asymptotically flat
vacuum black hole spacetimes lie in the Kerr (or Kerr-Newman for
Einstein-Maxwell) family (see [32] for a review). This implies that
they can be described using only three parameters: mass, angular
momentum, and charge. 3

3 In fact this property is of great importance for the detection of gravitational waves:
Detectors such as LIGO use waveform templates—analytical and numerical predic-
tions of the expected waveforms from sources such as the collision of two black
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stationary spacetimes with negative cosmological constant

For the case of Einstein-Maxwell the relevant theorem was proven
by Costa, Chruściel, and Nguyen [77, 35]:

Theorem 2.3.2. Let (M, g) be an asymptotically stationary, asymptotically-
flat (and therefore Λ = 0), I+-regular, electrovacuum, four-dimensional
analytic spacetime. If the event horizon is connected and either mean non-
degenerate or rotating, then the exterior of the event horizon is isometric to
the domain of outer communications of a Kerr–Newman spacetime.

It is conjectured that the assumptions of analyticity and the condi-
tions on the horizon can be dropped. A similar theorem of Alexakis,
Ionescu, and Klainerman does not require analyticity but only holds
for spacetimes close to Kerr [1].

The situation is completely different if the cosmological constant
is negative: Anderson, Chruściel, and Delay [6] showed that there
are infinite dimensional families of static black hole solutions without
any additional Killing vectors. In Chapter 4 we construct a much
larger family of asymptotically stationary (instead of static) black hole
solutions, including both vacuum solutions and ones with various
matter fields. Our results could therefore be interpreted as a black
hole “non-uniqueness” theorem.

Even in the Λ = 0 case black hole uniqueness does not hold in
higher dimensions, or for all types of matter fields: The 4 + 1 di-
mensional “black ring” spacetimes of Emparan and Reall [46], with
horizon topology S1 × S2 cannot be distinguished from the standard
Myers-Perry solutions (with S3 horizon) by their conserved charges.
In 3 + 1 dimensions large families of black holes with non-abelian
Yang-Mills fields [101] and complex scalar fields [62] have been found.

The Birkhoff theorem

The Birkhoff theorem is a result in the opposite direction of those men-
tioned above. Instead of assuming stationarity or staticity and ob-
taining some symmetry of the spatial slices, it shows that spherical
symmetry implies staticity. The classical form of the Birkhoff theorem
(first proven by Jebsen [66]) states that a spherically symmetric solu-
tion of the vacuum Einstein equations is static, and, in fact, isometric
to the Schwarzschild solution. Equivalent results apply for nonzero
cosmological constant, leading to the Schwarzschild-(anti-)de Sitter or
Nariai solutions [44].

In Chapter 5 we show analogous results to the Birkhoff theorem
in the context of linearized gravity. These are needed to prove the
non-degeneracy property of (generalized) Kottler metrics, which are
used as seed metrics in Chapter 4.

holes—to extract the signal from noise which is orders of magnitude greater. As the
parameter space of possible configurations of black holes is of low dimension it can
be covered using a reasonable number of such templates.
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2.4 conformal compactification

2.4 conformal compactification

The spacetimes we construct in Chapter 4 are parametrized by their
asymptotic behavior at large radii. A convenient way to represent this
behavior is the conformal method of Penrose [87, 86]. We start with an
n + 1 dimensional spacetime (M, g), called the physical spacetime. The
idea is to construct an unphysical spacetime (M̃, g̃) which includes the
boundary at infinity as a regular part of the manifold. The metric g̃ is
obtained by conformally rescaling g, in order to “pull in” the infinity
and to attach a boundary there.

More precisely, we consider an embedding φ :M→ M̃, where M̃
is an n + 1 dimensional manifold with boundary. From now on we
identify subsets A ⊆M with their images φ(A) ⊂ M̃.

We call a function ρ : M̃ → R a defining function for the boundary
∂M of φ(M) in M̃ if ρ vanishes on ∂M, ρ > 0 on M̃ \ ∂M, and
dρ is nonzero on ∂M. If there exists a smooth defining function ρ

of the boundary ∂M such that g̃ := ρ2g is a Ck metric on M̃ then
we call (M, g) conformally compact of class Ck. This is a well defined
concept, as it is independent of the choice of defining function ρ.
The set {ρ = 0} = ∂M ⊂ M̃ is called the conformal boundary. The
induced metric on the conformal boundary depends on the defining
function used, but its conformal class [ρ2g|∂M] does not. It is called
the conformal infinity.

Let us consider a simple example: The anti-de Sitter metric in
standard coordinates is given by

g = −(1 + r2)dt2 +
1

1 + r2 dr2 + r2γ

where γ is the round metric on S2. A conformal transformation with
ρ = 1/r gives

g̃ =− 1 + r2

r2 dt2 +
1

r2(1 + r2)
dr2 + γ

=− (1 + ρ2)dt2 +
1

1 + ρ2 dρ2 + γ ,

i.e. the compactified metric is smooth up to the boundary and is given
by g̃|∂M = −dt2 + γ there.

Note that, unless the coordinate t is periodic, M̃ is not actually com-
pact. In our applications we will only apply the conformal compactifi-
cation to stationary spacetimes, where the metric does not depend on
t in any case. We will switch between periodic t coordinate and t ∈ R

where convenient.
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stationary spacetimes with negative cosmological constant

2.4.1 Asymptotically hyperbolic manifolds and the Fefferman-Graham ex-
pansion

In Chapters 4 to 5 we will consider conformal compactifications of Rie-
mannian manifolds. Mazzeo showed that Riemannian metrics which
are conformally compact of class at least C2 are asymptotically hyper-
bolic, i.e. their sectional curvature approaches −1 (if ρ is normalized
to |dρ|2g̃|∂M = 1) as ρ → 0 [80]. This is the reason why the meth-
ods we use to construct solutions only apply to the case of negative
cosmological constant.

If we assume that a conformally compact metric is, in addition,
Einstein, i.e. Rij ∝ gij, then asymptotic hyperbolicity fixes the constant
of proportionality to

Rij = ngij ,

where n + 1 is the dimension of the manifold.
Fefferman and Graham introduced a method of expanding con-

formally compact metrics in a formal power series in ρ, possibly
containing logarithmic terms [47]. The precise dependence of the reg-
ularity of asymptotically hyperbolic Einstein metrics on the dimension
was shown in [28]:

Let us assume that we have a d-dimensional, C2 conformally com-
pact Riemannian Einstein manifold (M, g) with smooth conformal
infinity. Riemannian metrics satisfying Rij ∝ gij are always real ana-
lytic [41], so the compactified metric is smooth in the interior. Thus, its
overall regularity is determined by the behavior at the boundary. We
consider a neighborhood OY = [0, 1)×Y ⊂ M̃ of a compact boundary
component Y. By the results of [28], if ρ2g|∂M is smooth, then there
exists a diffeomorphism which leaves the boundary invariant such
that, in OY, g̃ takes the form

g̃ = ρ2g =

{
dρ2 + ϕ(ρ) , for d = 3 and d even ,

dρ2 + ϕ(ρ, ρn log ρ) , for d ≥ 5 odd ,
(8)

where ϕ is a family of metrics on Y that is smooth in all its arguments.
Therefore, for d = 3 and for even d, (M, g) is conformally compact of
class C∞ while for odd d ≥ 5 it is only of class Cd−1 in general.

2.5 method

As Chapter 4 is one in a series of papers [30, 33, 24] not all steps of
the construction are discussed in detail. Here we give an overview of
the method and refer to previous works where appropriate.

The main innovation in Chapter 4 is the method of transforming
the problem of constructing real Lorentzian solutions of a PDE system
to constructing complex Riemannian ones. This is described in detail
there.
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2.5 method

Let us assume that we are already in the Riemannian setting. We
start with a static vacuum solution and use an implicit function theo-
rem argument to construct stationary non-vacuum solutions close to
it. We recall

Theorem 2.5.1 (Implicit function theorem for Banach spaces [72]).
Consider a C1 map f : U × V → C, where U ⊂ A, V ⊂ B and C are
Banach spaces. If the partial derivative of f with respect to the second
factor in U × V is invertible at a point p = (pu, pv) ∈ U × V such that
f (p) = 0 then there exists an open neighborhood O ⊂ U of pu and a function
g : O→ C such that f (x, g(x)) = 0 for all x ∈ O.

We will work in weighted Hölder spaces Ck,α
s (M; E), where E is

some tensor bundle, following the definitions of [73, Section 3]. The
weight s gives the decay behavior of the tensors by

Ck,α
s (M; E) := ρsCk,α

0 (M; E) = {ρsu | u ∈ Ck,α
0 (M; E)} , (9)

where Ck,α
0 (M; E) are the standard (unweighted) Hölder spaces of k-

times differentiable tensors such that the highest derivative is Hölder
continuous of degree α. Note that there are multiple inequivalent
definitions of the Hölder norm on tensor fields, depending on how
tensor values are transported to different points. The definition in [73]
relies on constructing Möbius charts which map from (M, g) to subsets
of hyperbolic space.

The behavior of the components of a tensor field in these spaces
depends on the tensor rank, due to the metric terms appearing in the
norm: For example a 2-covariant tensor field u ∈ Ck,α

s has components
uαβ = O(ρs−2) in coordinates near the boundary.

We use the implicit function theorem in these spaces to construct
solutions of the Einstein equations with specified asymptotics. This
works as follows: If the equations are of the form E(g) = 0 we
consider solutions g = g̊ + ĝ + ḡ where g̊ is a given seed metric (e.g.
the anti-de Sitter or Schwarzschild-anti de Sitter metric), ĝ are the
given asymptotics that parametrize the desired solution and ḡ is the
remaining part that is solved for. We define f (g̊ + ĝ, ḡ) := E(g). As
the seed metric satisfies the equations we have f (g̊, 0) = 0. If we
can show that ∂ĝ f (g̊ + ĝ, 0)|ĝ=0 is an isomorphism then the implicit
function theorem guarantees that for all ĝ that are small enough there
exists a ḡ such that f (g̊ + ĝ, ḡ) = 0.

The main difficulty in the construction is proving the isomorphism
property. This requires adding gauge terms to both the Einstein
and matter equations to obtain an elliptic system. The gauge terms
themselves satisfy an elliptic system as a consequence of the Bianchi
equations and the continuity equation for the energy momentum
tensor. These equations ensure that the gauge terms vanish if they
decay fast enough as ρ → 0. As they are defined as differences
between the Christoffel symbols of the new and seed solutions, this
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stationary spacetimes with negative cosmological constant

is equivalent to certain asymptotic conditions on the behavior of the
new metric.

The gauge-fixed version of the linearized Einstein operator turns
out to be the Lichnerowicz Laplacian (Equation (3.5) in Chapter 4). We
can thus apply results of Lee [73] in the setting of asymptotically
hyperbolic Riemannian manifolds. This is described in detail in [30]
for the Einstein equations and similarly in [33, 24] for the matter
fields. The results of Lee require that the seed manifold satisfy certain
additional conditions, e.g. for the Einstein equations the L2 kernel
of the Lichnerowicz Laplacian needs to vanish. We call manifolds
which satisfy this condition “non-degenerate”. The class of non-
degenerate seed solutions includes Anti-de Sitter space, which allows
us to construct new solutions with asymptotics close to those of AdS.
In [25] and Chapter 5 we show that Schwarzschild anti-de Sitter
spacetimes, and their counterparts with other horizon topologies, also
satisfy this property, at least for some values of the mass parameter.

We thus obtain, for suitable seed metrics and asymptotic data,
solutions of the gauge-fixed Einstein-matter equations. Plugging
the resulting behavior of the metric- and matter functions into the
definition of the gauge fixing terms shows that they have the required
decay, i.e. they must vanish. Therefore the constructed solutions
satisfy the (Riemannian) Einstein(-matter) equations, and, finally, their
Lorentzian counterparts satisfy the original Lorentzian equations.
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3
T H E B E H AV I O R O F S I N G U L A R I T I E S

3.1 history & motivation

Singularities are one of the most perplexing features of general rela-
tivity. Their investigation has accompanied the development of the
theory since its conception: Even the first known non-trivial solution,
the Schwarzschild spacetime, which was discovered less than a month
after Einstein presented general relativity for the first time, is singular.

In standard Schwarzschild coordinates the solution contains two
apparently singular sets: The horizon at r = 2m and the central singu-
larity at r = 0. It took a long time until the nature of these infinities
was understood 1: At first the coordinate singularity at the horizon was
seen as a physical singularity. Painleve [83] and Gullstrand [58] inde-
pendently discovered solutions which extended smoothly through the
horizon, but it was not realized at the time that these were just exten-
sions of the Schwarzschild solution in different coordinates. Georges
Lemaître was the first to find a coordinate transformation that removed
the coordinate singularity at r = 2m, although its interpretation was
still unclear at that time [74]. Synge [100] found a different set of such
coordinates, which actually cover the full maximal analytic extension
of the Schwarzschild spacetime, though in a less elegant way than the
now standard coordinates of Kruskal and Szekeres.

At that point only a few exact solutions of the Einstein equations
were known, and it was unclear if singularities would occur outside
of these highly non-generic symmetric examples. The singularity
theorems of Penrose and Hawking showed that, indeed, singularities
are an essential feature of the theory [88, 59]. There are various
versions of these theorems, but they share a common structure (see
the review [97]). Under the assumption of

1. a causality condition,

2. an energy (or, equivalently, curvature) condition,

3. and an initial or boundary condition,

they show that the spacetime is geodesically incomplete, i.e. that there
exist causal geodesics which stop at some finite value of the affine
parameter and cannot be extended further. The classical result is the
Penrose singularity theorem, which states

Theorem 3.1.1 (Penrose singularity theorem [88], in the formulation
of [97]). If a spacetime contains a non-compact Cauchy surface Σ and a

1 For a more detailed account of the historical interpretation of singularities see [43].
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closed future trapped surface, and satisfies the null energy condition (i.e.
Rµνuµuν ≥ 0 for all null vectors uµ) then it is future null geodesically
incomplete.

Here the causality condition is given by the existence of a Cauchy
surface (which implies the spacetime is globally hyperbolic and therefore
topologically I × Σ for some interval I ⊂ R) and the null energy con-
dition provides the curvature condition, which ensures that geodesics
are focused. The initial condition is provided by the existence of a
“closed future trapped surface”, which captures the intuitive notion
that a singularity is formed when the gravitational attraction becomes
strong enough. Such a surface is defined as a compact spacelike 2-
surface without boundary such that the future-directed null geodesics
which start orthogonally to the surface pointing inward and outward
converge. The importance of the singularity theorems comes from
the fact that trapped surfaces are preserved under small perturba-
tions, and therefore singularities occur generically, not just in highly
symmetric situations.

The conclusion of these theorems, the existence of incomplete
geodesics, is a very different concept of a singularity than that occur-
ring in the Schwarzschild solution, where we can directly see that
curvature invariants are unbounded. Unfortunately the singularity
theorems do not give any more information about the behavior of
the metric near the singularity, e.g. they don’t say anything about the
behavior of curvature invariants there. It is therefore of interest to
further investigate the behavior of singularities in the general case.

3.2 causal character of singularities

One might start by trying to classify singularities according to their
causal character. As singularities are not themselves part of the space-
time manifold the standard approach to assigning a causal character
to subsets does not work. Instead we call a singularity timelike if it
lies both in the future and in the past of points in the spacetime. More
precisely a singularity is timelike if the future of a past incomplete
geodesic is contained in the future of some point in the manifold.
This definition excludes the big bang singularity, as there is no point
“before” it.

Such singularities are sometimes called “naked” (e.g. in [84]), but
this is not equivalent to the standard definition. A naked singularity
is usually defined to be a singularity that is visible from infinity, i.e.
one that can be reached by past directed causal curves starting at
future null infinity [104]. On the other hand, timelike singularities
can be hidden behind event horizons such that they are not visible
at infinity. (An artificial example of such a singularity can be con-
structed by simply removing some points inside the event horizon
from the Schwarzschild spacetime.) In [85] Penrose calls them “locally

20



3.2 causal character of singularities

naked” to make the distinction clear. Timelike singularities are thus
compatible with the weak cosmic censorship conjecture (which states
that there are no naked singularities) but violate the strong cosmic
censorship conjecture, which is the topic of Section 3.4. In Chapter
6, we construct timelike AVTD (see Section 3.3.2 below) singularities
without symmetries. This provides the first examples of spacetimes
without any symmetries in this class.

Singularities which are not timelike should be either spacelike or
null. To distinguish between these cases one needs to somehow extend
the manifold to also include the endpoints of previously incomplete
curves, and to define the causal character of this boundary. The
simplest method to achieve this, which works at least for highly
symmetric exact solutions, is the conformal method of Penrose (see
Section 2.4). Various extensions and generalizations of this method
have been proposed (see [51] for a review) but there is no strategy that
works in general.

It might seem plausible that the existence of a sequence of spacelike
hypersurfaces {r = const.} for some time function r, approaching a
singularity “at” {r = 0} (as, e.g., in the Schwarzschild case), means
that the singularity is spacelike, but this does not suffice: If we assume
we have some extension of the manifold which is isometric in the
interior, the boundary could well be null. The hypersurfaces could
simply tilt as they approach the singularity and become null in the
limit. In fact this is the main difficulty in Sbierski’s proof of the
C0-inextendibility of the Schwarzschild spacetime across the r = 0
singularity in [96], and the inspiration for the title of Chapter 7. In
the Schwarzschild case spherical symmetry is crucial to conclude the
argument.

The singularities in two of the most important exact solutions, the
Schwarzschild and Kerr spacetimes, show very different behavior:
At the Schwarzschild singularity curvature invariants blow up and,
by [96], the metric cannot be continued even in the continuous class.
In contrast, the physically relevant boundary of the Kerr spacetime
is a (null) Cauchy horizon, which is not a curvature singularity. As
the spacetime can be extended through the Cauchy horizon the null
character of this boundary is well defined.

It is expected that a perturbation of Kerr would turn the Cauchy
horizon into a singular boundary, but the type of that boundary was
unclear until recently. In [38] Dafermos and Luk show that, starting
with characteristic initial data which is close to that on the Kerr event
horizon, the causal structure of interior Kerr, including the Cauchy
horizon, is preserved. They conjecture that the boundary in fact
becomes a weak null singularity, characterized by the existence of an
extension with continuous metric up to the boundary but singular
in the sense that the Christoffel symbols are no longer locally square
integrable there. As there is a metric defined on the boundary, it is

21



the behavior of singularities

clear what it means for it to be null. The results of [38], together
with the conjectured but widely believed stability of the exterior Kerr
solution, imply that there is an open set of intial data (given on
spacelike Cauchy surfaces) such that the maximal globally hyperbolic
development is bounded by a null surface.

3.3 mixmaster and bkl

A completely different theory of generic singularities is provided
by the Belinski-Khalatnikov-Lifschitz (BKL) framework. This encom-
passes a vast spectrum of heuristic and numerical results, but rather
fewer rigorous ones, mostly confined to symmetric or at least non-
generic situations.

The basic idea is given by the slogan that generic singularities are
spacelike, local, and oscillatory. The BKL approach grew out of the work
of the three authors in the 60’s and 70’s [76, 9, 8]. These papers ar-
gue heuristically that close to a (spacelike) singularity the Einstein
equations simplify enormously, as spatial derivative terms become
irrelevant compared to time derivatives. Dropping the spatial deriva-
tives turns the Einstein equations into a system of ODEs at each point,
similar to the equations for (anisotropic) spatially homogeneous space-
times. This picture is supported by various heuristic arguments (e.g.
the cosmological billiards approach [39]) and by numerical simulations
[11, 53, 52]. In fact, these simulations have shown that the situation
is somewhat more complicated than envisioned by BKL, as spatial
derivatives can become significant again for short periods of time,
during so-called “spikes”.

3.3.1 Homogeneous Bianchi cosmologies

Assuming the BKL framework applies, the analysis of spatially ho-
mogeneous spacetimes gives information about the behavior in the
inhomogeneous case. Such spacetimes are characterized by the exis-
tence of a group of isometries acting simply transitively (i.e. such that
for every two points there exists a unique group element mapping
one to the other) on each spatial slice. This means that there exists a
Lie-algebra of Killing vector fields ξi, with commutators

[ξi, ξ j] = γk
ijξk , (10)

where the structure constants γk
ij can be decomposed as

γk
ij = n̂k`εij` + aiδ

k
j − ajδ

k
i , (11)

with ε the antisymmetric Levi-Civita symbol and n̂k`, ai constants. The
Jacobi identity for the commutator implies

n̂k`a` = 0 . (12)
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3.3 mixmaster and bkl

Bianchi classified the three-dimensional Lie-algebras into 11 (or 9, or
10 depending on how they are counted) classes, according to the signs
of the eigenvalues of n̂k` (denoted n̂i ∈ {−1, 0, 1} here) and whether
ai 6= 0 [12, 13].

The simplest anistropic solutions are the Kasner spacetimes in
Bianchi class I (ai = 0, ni = 0). They are given explicitly by the
metric

−dt2 + ∑
i

t2pi(dxi)2 , (13)

where the pi are called Kasner exponents and satisfy ∑i pi = ∑i p2
i = 1.

In spacetime dimension 3 + 1 these conditions imply that, unless
one of the pi is equal to 1 and the others vanish, there is exactly
one negative Kasner exponent. This corresponds to one direction
of space that expands as the singularity is approached, while the
orthogonal directions contract. The Kasner spacetimes contain a
curvature singularity at {t = 0} where the Kretschmann scalar K :=
RαβγδRαβγδ = 16t−4(p2

3− p3
3) diverges. While the Bianchi classification

only applies to spacetime dimension 3 + 1, the Kasner solution exists
for all dimensions.

The Kasner solution is important, as it provides a building block
for the more complicated behavior in the higher Bianchi classes, and,
conjecturally, for that of inhomogeneous singular spacetimes. For the
homogeneous case this is made clear using the dynamical systems
approach of Wainwright and Ellis [102]. Their analysis uses variables
which are normalized with respect to the overall expansion of the
spacetime. This was first done by Wainwright and Hsu in [103], where
they introduced the variables Σi, Ni, and θ which satisfy a system of
first order evolution equations following from the Einstein equations.

The variable θ represents the overall expansion, and its evolution
equation decouples from the remaining ones. It can be separately
integrated after the others are determined. The constraint equations
fix one of the Σi, leaving two which can be expressed as Σ+ := −Σ1/2,
Σ− := (Σ3 − Σ2)/(2

√
3). Thus there are five variables of interest: Σ+,

Σ−, and the three Ni.
In these variables the Kasner solutions correspond to the circle

Σ2
+ + Σ2

− = 1 of fixed points in the {Ni = 0} plane. Bianchi II
solutions (ai = 0 and one ni equal to 1 with the others vanishing) lie
in the hemispheres Σ2

+ + Σ2
− + N2

k = 1 for k = 1, 2, 3. The trajectories
of these solutions are straight lines in the Σ+, Σ− variables which start
and end on the Kasner circle. In the language of dynamical systems
theory Bianchi II solutions follow heteroclinic orbits, i.e. their future
and past asymptotics are given by two different fixed points – in this
case by two Kasner solutions.

The most general solutions in the Bianchi class, and therefore the
ones that are expected to model generic singularities in the BKL pic-
ture, are those of Bianchi classes VIII and IX. An overview of what is
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known about these classes is provided by [60] (most of the conclusions
about Bianchi IX mentioned there also apply to Bianchi VIII by later
results of Brehm [17]). They show more complicated behavior consist-
ing of a sequence of near-Kasner states and Bianchi II transitions. It is
widely believed (but unproven) that this behavior is chaotic, and, more
specifically, that generic Bianchi VIII and IX solutions asymptotically
switch between (almost) Kasner states according to a discrete map,
the so-called “Mixmaster map”, which maps the Kasner circle to itself
according to the Bianchi II trajectories.

The behavior of the Mixmaster map itself is well understood: For a
generic starting point on the Kasner circle it leads to a non-periodic
sequence of Kasner states which are dense on the Kasner circle. What
is less well understood is how this is related to the behavior of the
full dynamical system for the Bianchi VIII and IX solutions. The
expectation is that generic solutions should asymptotically “shadow”
a sequence of Bianchi II transitions which connect Kasner states related
by the Mixmaster map. This would imply that the α-limit set 2 of such
solutions includes the whole Kasner circle. The best results in this
direction are the attractor theorems of Ringström for Bianchi IX [92]
and their generalization to Bianchi VIII by Brehm [17]. They show
that generic solutions in these classes have at least three α-limit points
on the Kasner circle, but they don’t rule out the possibility that the
solution converges to a periodic orbit.

3.3.2 Results in the inhomogeneous case

There are far fewer rigorous results in the inhomogeneous case. The
only known class of inhomogeneous solutions which show Bianchi IX
type behavior is that of Berger and Moncrief, which we will analyze
in Section 3.3.3. This is only a finite dimensional space of solutions
and therefore doesn’t give much information about the generic case.

There are several heuristic approaches which aim to formalize the
arguments of BKL. Chitre [19] and Misner [81] introduced the so-
called cosmological billiards approach, which was later extended by
Damour, Henneaux, and Nicolai [39] (this last reference provides a
good overview). They start with a Hamiltonian formulation of the
Einstein equations. The Hamiltonian can, for each spatial point, be
brought to the form of that of a particle in an auxiliary space (whose
position represents some functions appearing in the metric) moving
in a complicated potential. Assuming that the limiting behavior of the
metric is as conjectured by BKL, this potential simplifies enormously in
the limit. In fact it approaches the sum of a number of sharp potential
walls, which constrain the region where the particle can move. In the
interior region the particle travels along straight lines, corresponding

2 A point x lies in the α-limit set of a solution u(t) if there exists a sequence ti → 0
such that u(ti)→ x.
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3.3 mixmaster and bkl

to Kasner behavior of the metric. On contact with the walls it is
reflected elastically, which corresponds to the transition to a new
Kasner phase. This type of “billiards” behavior is well understood, e.g.
it is known that a finite volume of the allowed region leads to chaotic
trajectories. The heuristic part of the argument is contained in the step
from the full Hamiltonian to the simplified asymptotic one.

A different approach is that of Heinzle, Uggla, and Röhr [61]. They
extend the dynamical systems approach for homogeneous models,
described in the previous section, to the inhomogeneous case. Various
subsets of the full phase space can be identified, which correspond,
e.g., to the assumption of locality by BKL.

More rigorous results are available in cases which show a simpler
type of behavior, called asymptotically velocity term dominated (AVTD).
Solutions of this type asymptotically show Kasner-like behavior at
each spatial point, with the Kasner exponents depending on the spatial
location. As they are mostly constructed from asymptotic data (using
Fuchsian methods) their behavior before this phase is not clear. It
seems likely that there are AVTD solutions which undergo a number
of Bianchi II type transitions at each point before settling down to a
final Kasner state.

In the cosmological billiards picture AVTD behavior occurs if some
of the potential walls are suppressed, e.g. by imposing symmetries or
asymptotic conditions. This allows the existence of trajectories which
continue indefinitely without hitting a wall, i.e. ones which stay in one
Kasner state (at each spatial point) until the singularity. In this setting
the billiards equations can be used to obtain rigorous results [69].

AVTD-type behavior is not expected to be generic, but occurs in
several different cases:

• When there is some symmetry present:

– The Gowdy spacetimes, which are characterized by a 2-
dimensional symmetry group with spacelike orbits that are
orthogonal to the vector field ∂t. The coordinate t is the
area time function, given at each point by the area of the
group orbit passing through that point. AVTD behavior
was shown for the subclass of polarized Gowdy spacetimes
in [64, 34] and for general ones in [67, 93].

– More general classes of T2-symmetric spacetimes which
do not fulfill the orthogonality condition [63, 37, 3]. Note
that it is expected that generic T2 solutions show chaotic
BKL behavior; these papers analyze different non-generic
subclasses.

– Some subclasses of U(1)-symmetric spacetimes [65, 23, 22].

• When asymptotic conditions are imposed, e.g. the spacetimes
we constructed in [69] which are determined by asymptotic
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the behavior of singularities

conditions (see also their counterparts with timelike singularities
in Chapter 6).

• In high spacetime dimension (d ≥ 12) [40].

• If specific types of matter are present, e.g. a stiff fluid or scalar
field [7] or p-form fields for some values of the coupling constant
[40].

In Chapter 6 we construct AVTD solutions with timelike singular-
ities. Our result states (c.f. Chapter 6, Theorem 1 for more detailed
asymptotics)

Theorem 3.3.1. For any choice of J ∈ {1, 2, 3} and analytic functions β2
◦,

β3
◦ and P 2

◦ 1 depending on coordinates xi , i ∈ {1, 2, 3}, and for any two
analytic functions, p2

◦ and p3
◦ depending on xi, which satisfy the inequalities

0 < p2
◦ < (

√
2− 1)p3

◦ . (14)

we obtain a solution of the vacuum Einstein equations with arbitrary cosmo-
logical constant given by the metric

g = e−2 ∑3
a=1 βa

dτ2 +
3

∑
a=1

mJ
ae−2βaN a

iN a
j dxidxj . (15)

Here mJ
a = 1− 2δJa, βa and N a

i , i, a ∈ {1, 2, 3} depend on all coordinates
τ, xi and behave asymptotically as

βa = βa
◦ + τpa

◦ + O(e−τν) and N a
i = δa

i + O(e−τν) , (16)

where ν is a positive constant, the βa
◦’s and pa

◦’s depend only upon xi and
N a

s i = 0 for a ≥ i. The functions p1
◦ and β1

◦, which are not part of the
initial data, are determined from the asymptotic constraint equations.

Finally the Kretschmann scalar behaves as

RαβγδRαβγδ =

(
16e4(β1

◦+β2
◦+β3

◦)
(

p2
◦p3
◦
)2

(p2◦ + p3◦)2

(
(p2
◦)

2 + p2
◦p3
◦ + (p3

◦)
2)

+ O(e−ντ)

)
eτ4(p1

◦+p2
◦+p3

◦)

,

and therefore, since p2
◦p3
◦ > 0, the curvature diverges as τ → ∞.

Most of the results mentioned above, including Theorem 3.3.1, are
obtained using Fuchsian methods. The construction starts with asymp-
totic data, given as some number of free functions which specify the
asymptotic behavior of the metric. Using Fuchsian results (see e.g.
[20, Appendix V.3] for the analytic case and [3] for lower regularity) it
can be shown that solutions with the specified asymptotics exist. It is
tempting to think that, if the number of free functions is high enough,
the solutions represent the general behavior in these classes. To ac-
tually prove that it is generic in the standard sense would, however,
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3.3 mixmaster and bkl

require mapping asymptotic data to Cauchy data given on a spacelike
Cauchy surface, which is extremely difficult. In fact the only case
where genericity has been established is the class of Gowdy space-
times, where this is shown in the proof of strong cosmic censorship
by Ringström [93].

There is a recent result by Rodnianski and Speck proving the exis-
tence of an open (but not full measure) set of initial data leading to
AVTD behavior in high spacetime dimension (d ≥ 38) [94]. They show
the nonlinear stability of Kasner solutions which are close to locally
rotationally symmetric (i.e. where the difference between the Kasner
exponents is small enough). The Fuchsian results mentioned above
suggest that this might hold also for large data and down to d ≥ 12.

3.3.3 The Berger-Moncrief construction

The only known examples of inhomogenous solutions to the vacuum
Einstein equations which show the chaotic behavior expected in the
general case are those constructed by Berger and Moncrief in [10].
This is a three-parameter family of solutions with only one Killing
vector which is obtained by applying a solution-generating technique
of Geroch [54] to a spatially homogeneous Bianchi IX metric. It is, of
course, highly non-generic and in fact behaves somewhat differently
than the expectation for a generic BKL-type solution: As all the time
dependence comes from that of the original Bianchi IX metric, the
bounces between different Kasner epochs happen simultaneously at
all spatial points (in a suitable slicing). The heuristic arguments of
BKL (and numerical simulations) predict that in the generic case the
timing of bounces would be independent at each spatial point.

The Berger-Moncrief construction starts with a Bianchi IX metric in
the form

g = −A(t)B(t)C(t)dt2 + A2(t)(σ̂1)2 + B2(t)(σ̂2)2 + C2(t)(σ̂3)2 (17)

on R× S3, where the (time-independent) one forms σ̂i are adapted to
the symmetry of the spacetime and the singularity is approached as
t→ 0. In [10] the associated inhomogeneous solutions are investigated
using numerical methods. The authors numerically solve the Bianchi
IX equations, obtaining functions A, B, C, and apply the solution gen-
erating transformation. To analyze the behavior of the inhomogeneous
metric they compare the norm γg of the single preserved Killing vec-
tor of the new solution with the norm γ of the corresponding Killing
vector in the original homogeneous solution. The time evolution of γ

and γg is qualitatively similar, showing the typical oscillatory behavior.
However, γg depends on the spatial coordinates in a non-trivial way.

Using the later results of Ringström [92] and Brehm [17], it is now
possible to do a similar analysis based on analytical knowledge of
the behavior of Bianchi IX solutions. Our aim here is to translate
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the behavior of singularities

those results, formulated in terms of the Wainwright-Hsu variables, to
the quantities A, B, and C defined above. The following argument is
based on [91].

We will use the time coordinate τ, defined in Section 21 of [92], in-
stead of the t appearing in (17), but this does not affect the conclusions.
In these coordinates the singularity is located at τ = −∞.

From the proof of Lemma 21.2 in [92] we see that

A ∝ (n2n3)
−1/2 , B ∝ (n1n3)

−1/2 , C ∝ (n1n2)
−1/2 , (18)

where ni := θNi are the quantities defined there. Let us consider the
expression

√
N1n2n3. Using the Wainwright-Hsu equations [92, (9)]

we find that

d
dτ

√
N1n2n3 =

√
N1n2n3 (Σ2

+ + Σ2
− − 1) . (19)

Lemma 3.6 of [17] states that the product N1N2N3 converges to
0 exponentially as τ → −∞. Therefore, by [92, Lemma 7.3], Σ2

+ +

Σ2
− − 1 is bounded above by an exponentially decaying function, so

the positive part of Σ2
+ + Σ2

− − 1 is integrable up to the singularity.
Corollary 18.1 of [92] shows that generic, i.e. non-NUT, Bianchi IX
solutions have at least 3 α-limit points on the Kasner circle. In fact, by
Proposition 6.1 of [92], the Bianchi II transitions leading to these limit
points are themselves part of the α-limit set. During such transitions
Σ2
+ + Σ2

−− 1 < 0 and, since there are infinitely many of them and they
take a finite amount of τ time,

τ0∫

−∞

(Σ2
+ + Σ2

− − 1)dτ = −∞ . (20)

Together with (19) this shows that
√

N1n2n3 → ∞ as τ → −∞ (t→ 0).
As the Ni are bounded by [92, Theorem 19.2], we find

√
n2n3 → ∞, i.e.

A→ 0. The same argument applies for B and C.
On the other hand, for each ratio A/B, B/A, C/B,. . . there exists a

sequence of times such that it diverges. This follows from the fact that
the α-limit set includes Bianchi II transitions (for which two of the Ni
are zero).

We now come back to the class of non-homogeneous solutions
constructed in [10]. There for each choice of h := (a, b, c) ∈ R3 a new
metric gh is obtained which inherits one of the Killing vectors of g.
The metric gh is not spatially homogeneous and lives either on R× S3

as the original one, or on another S1 bundle over R× S2.
The components of the new metric are not purely algebraic expres-

sions of A, B, and C as they contain a quantity β(h)a, defined in [10],
which is determined by solving a Poisson equation on S2. However,
the component gh(∂ψ, ∂ψ) =: γg, i.e. the norm of the inherited Killing
vector ∂ψ, does not depend on β(h)a.
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3.4 strong cosmic censorship and C0-inextendibility

For the original spatially homogeneous Bianchi IX metric g we have

γ := g(∂ψ, ∂ψ) = C2 cos2 θ + (B2 cos2 ϕ + A2 sin2 ϕ) sin2 θ , (21)

after replacing the one forms σ̂i with their representations in Euler
angle coordinates.

The expression for gh(∂ψ, ∂ψ) is somewhat complicated, but using
A, B, C → 0 we find

gh(∂ψ, ∂ψ)→
A2B2(C2 cos2 θ + (B2 cos2 ϕ + A2 sin2 ϕ) sin2 θ)

c2(BA′ + AB′)2 . (22)

Bianchi IX solutions spend most of their time near the Kasner circle,
where A′/A etc. is approximately constant, and there the previous
expression simplifies to

gh(∂ψ, ∂ψ) ∝∼ C2 cos2 θ + (B2 cos2 ϕ + A2 sin2 ϕ) sin2 θ , (23)

i.e. exactly the same as in the homogeneous case. This is consistent
with the numerical results in Figure 1 of [10].

It is clear that the behavior of (at least this component of) the metric
is similar to that of the original mixmaster solution. As it is still open
if these are chaotic in a stronger sense than provided by the attractor
theorem of Ringström [92] (i.e. having at least three α-limit points on
the Kasner circle) not much more can be said here.

There are similar solution generating procedures to those used in
[10] which transform solutions of the vacuum Einstein equations to so-
lutions of the Einstein-Maxwell system with nonzero electromagnetic
field (see [99, Part IV, Chapter 34]). Applying these to a Bianchi IX
seed should give solution of a similar type to the Berger-Moncrief ones
in this setting. As the equations are more complicated, their behavior
would probably have to be investigated using numerical methods.

3.4 strong cosmic censorship and C0-inextendibility

The fundamental theorems of Choquet-Bruhat and Geroch [48, 21]
establish existence of a unique, maximal, globally hyperbolic develop-
ment (MGHD) of initial data for the vacuum Einstein equations, given
on a spacelike hypersurface. However, just because this development
is maximal in the class of globally hyperbolic spacetimes doesn’t mean
that it can’t be extended outside this class. This leads to the question of
what happens at the boundary, if any, of the maximal globally hyper-
bolic development. The strong cosmic censorship conjecture, introduced
by Penrose [85], proposes an answer to this question.

It states, roughly speaking,

Conjecture 3.4.1 (cosmic censorship). The maximal globally hyper-
bolic development of generic asymptotically flat or compact initial
data is inextendible in some suitable sense.
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the behavior of singularities

This is connected to the notion of predictability: The MGHD is
exactly the maximal set for which the Einstein equations uniquely de-
termine the evolution of the metric. If strong cosmic censorship holds
this would mean that we cannot leave this region of predictability, at
least not without crossing a singularity of some type.

The above formulation of the conjecture leaves open what type of
inextendibility we should expect. In general, a spacetime (M, g) is ex-
tendible if there exists a spacetime (M̃, g̃) and an isometric embedding
φ : M→ M̃ such that φ(M) is a proper subset of M̃. An extension is
Ck if g̃ is a Ck metric.

One option for Conjecture 3.4.1 might be C2-inextendibility, which
is implied by the blowup of curvature invariants. However this for-
mulation would exclude situations where the Einstein equations still
guarantee the existence of solutions: The bounded L2 curvature con-
jecture, proven by Klainerman, Rodnianski, and Szeftel [68], shows
that a solution of the Einstein equations can be continued as long as
the curvature and first derivatives of the second fundamental form
stay locally square integrable. Pointwise blowup of the second deriva-
tives of the metric would violate the C2 definition of strong cosmic
censorship while still satisfying this condition. On the physical side,
a natural condition for a singular boundary of a spacetime is that
observers trying to cross it would be destroyed, e.g. by infinite tidal
forces. This is also not guaranteed by C2-inextendibility [82].

The strongest reasonable sense of inextendibility would be C0-
inextendibility, i.e. extensions where the metric is only assumed to be
continuous. The study of such extensions was initiated by Sbierski
in [96], where he proved the C0-inextendibility of the Minkowski and
Schwarzschild spacetimes (a simplified version of the proof is given in
[95]). The idea of the proof is based on the following observation [96,
Lemma 2.17]: If an extension exists then it contains a timelike curve
crossing from the original manifold into the new region.

This naturally splits the proof of the inextendibility of Schwarzschild
into two parts: One part considers curves leaving through null or time-
like infinity and the other those leaving across the r = 0 singularity.
For the first case the essential ingredient is the fact that the timelike
diameter (the supremum over the distance beween points) of sets
of the form I−(p) ∩ I+(q), where p is a point on the boundary and
q lies in the interior, is infinite. For curves leaving through r = 0
Sbierski introduces the notion of a spacelike diameter, defined as the
supremum over Cauchy surfaces of the (Riemannian) diameter in each
surface. As the tt component of the Schwarzschild metric blows up
on approach to the singularity the distance between points separated
in the t direction diverges.

In both cases a contradiction is obtained by considering a small
neighborhood of the point where the timelike curve crosses the bound-
ary. It is always possible to choose coordinates there such that the
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3.4 strong cosmic censorship and C0-inextendibility

metric is close to Minkowski. This can be used to show that timelike
or spacelike diameters are bounded, contradicting the results obtained
in the interior region.

The main difficulty in the proof, which was glossed over in the
above, is to identify the sets whose diameter is investigated in the
interior and boundary neighborhood. This involves showing that, in
the r = 0 case, the future of a point in the interior which is sufficiently
close to the boundary lies completely within the small neighborhood
mentioned above. Sbierski’s argument to this effect relies on the high
degree of symmetry present in the interior Schwarzschild spacetime.
It seems that this is an essential condition which cannot be removed
without the development of new methods.

In Chapter 7 we investigate C0-extensions of spacetimes without
assuming symmetry conditions. We define the concept of a “(globally)
expanding singularity” which is characterized by the type of behavior
seen in the Schwarzschild case, i.e. an unbounded stretching of space
in at least one direction.

More precisely, a globally expanding singularity is defined by

Definition 3.4.2 (Chapter 7, Definitions 1.1). We shall say that a glob-
ally hyperbolic space-time (M = (0, ∞)×S , g), with a Cauchy time
function t such that {t = const.} = S , contains a globally expanding
singularity towards the past if for every open set A ⊂ S there exists a
sequence ti decreasing to zero such that the (Riemannian) diameter of
{ti} × A within {ti} ×S tends to infinity as ti → 0.

(For the slightly more involved notion of an expanding singularity
see Chapter 7, Definitions 2.4.)

The simplest example of a (globally) expanding singularity is the
Kasner spacetime (13). As it is spatially homogeneous the methods of
Sbierski apply directly and show its C0-inextendibility. However, as
described in Section 3.3.2 above, there is a large class of AVTD-type
spacetimes which show Kasner-like behavior but are not spatially
homogeneous. In particular these include the spacetimes we construct
in [69], which have no symmetries at all.

We find that C0-extensions of such spacetimes are only possible
across non-compact (almost-everywhere-)null boundaries of a particu-
lar structure:

Theorem 3.4.3 (Chapter 7, Theorem 1.2, Proposition 1.3 & 1.4). Suppose
that (M , g) contains a globally expanding singularity towards the past.
Then in every continuous past extension of M the boundary ∂ι(M ) of the
image of M in the extension is non-compact, achronal, and null at all its
differentiability points.

Further, every spacelike hypersurface in the extension which intersects the
boundary ∂ι(M ) also intersects ι(M ) itself.

Here a past extension is one that can only be reached by past-directed
timelike curves starting in the original manifold (see Chapter 7, Defi-
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nition 2.3). As achronality implies Lipschitz continuity the boundary
is differentiable almost everywhere by Rademacher’s theorem. For
further results on more general extensions see Section 3 of Chapter 7.

It would be of interest to consider also extensions across timelike
boundaries, such as the timelike singularities we construct in Chapter
6 or the ring singularity past the Cauchy horizon of the Kerr spacetime.
A difficulty in this case is that the futures and pasts of points cannot be
used to identify subsets between the original and extended manifold.

There are a number of recent results on C0-(in)extendibility, inspired
by [96]: In [49] Galloway and Ling introduce a class of C0-extendible
spacetimes (called “Milne-like”) and prove inextendibility of some
FLRW spacetimes in the spherically symmetric class. In [50] Galloway
Ling and Sbierski show that global hyperbolicity together with time-
like geodesic completeness implies C0-inextendibility. The proof uses
similar methods as that of the inextendibility of Minkowski space
in [96] but requires much less restrictive conditions. Graf and Ling
show in [55] that timelike geodesic completeness alone implies C0,1-
inextendibility (i.e. no extensions with Lipschitz continuous metric).
In [56] Grant, Kunzinger, and Sämann investigate C0-inextendibility
from the viewpoint of synthetic Lorentzian geometry.
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Abstract
We use an elliptic system of equations  with complex coefficients for a set 
of complex-valued tensor fields as a tool to construct infinite-dimensional 
families of non-singular stationary black holes, real-valued Lorentzian 
solutions of the Einstein–Maxwell-dilaton-scalar fields-Yang–Mills–Higgs–
Chern–Simons- f (R) equations  with a negative cosmological constant. The 
families include an infinite-dimensional family of solutions with the usual 
AdS conformal structure at conformal infinity.

Keywords: black holes, stationary spacetime, negative cosmological constant

1. Introduction

There is currently considerable interest in the literature in space-times with a negative cosmo-
logical constant. This is fueled on one hand by studies of the AdS-CFT conjecture and of the 
implications thereof: Indeed, this problem is of immediate physical interest in the context of 
the weakly coupled supergravity limit of the AdS/CFT correspondence. On the other hand, 
these solutions are interesting because of a rich dynamical morphology: existence of peri-
odic or quasi-periodic solutions, and of instabilities. All this leads naturally to the question 
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2

of existence of stationary solutions of the Einstein equations  with Λ < 0, with or without 
sources, and of properties thereof.

This manuscript is the fourth in a series of papers, starting with [13], which are devoted 
to proving existence of a large class of solutions to the Einstein equations with negative cos-
mological constant by perturbation of known ones. All of these papers are further related 
by the fact that the field equations can be transposed to an elliptic system on a conformally 
compact Riemannian manifold. The system is solved by an implicit function theorem argu-
ment under a non degeneracy hypothesis. This can be traced back to earlier work of Graham 
and Lee [20] on constructing Einstein metrics on (n + 1)-dimensional balls with Sn boundary, 
as generalized to more general infinities by Lee [25] (compare [7] for more general symmet-
ric spaces). Using such methods, in [14, 15] we have constructed infinite dimensional fami-
lies of non-singular strictly stationary space times, solutions of the Einstein equations with 
a negative cosmological constant and with various matter sources. These families include an 
infinite-dimensional family of solutions with the usual AdS conformal structure at conformal 
infinity. The construction there did not provide any black hole solutions, as strict stationarity is 
incompatible with existence of horizons. However, black hole solutions are of special interest. 
In fact, various such solutions have already been constructed numerically: For example, static 
Einstein–Yang–Mills black holes have been constructed in space-time dimension five in [29], 
with four-dimensional solutions constructed in [9], and higher dimensional ones in [28]. In 
[27] an explicit five-dimensional such solution has been given. Rotating Einstein–Maxwell-
Chern–Simons solutions have been presented in [10]. In [19] a family of five-dimensional 
black holes was constructed satisfying the Einstein-complex scalar field equations, with a 
stationary geometry and time-periodic scalar field; compare [5].

The object of this work is to provide a rigorous existence proof for large families of such 
solutions. The idea is to use a ‘Wick rotation’ to construct suitable solutions of a system of 
elliptic equations with complex coefficients for a complex valued ‘Riemannian metric’. In a 
nutshell, we show that Lee’s theorem on existence of perturbed Poincaré–Einstein Riemannian 
metrics [25, theorem A] can be extended to complex valued ‘metrics’, and to more general 
equations, and that this can be used to construct stationary Lorentzian black hole solutions 
with large classes of matter sources. This proceeds as follows:

We wish to construct a Lorentzian metric g in any space-dimension n � 3, with Killing 
vector X = ∂/∂t, satisfying the Einstein–Maxwell-Chern–Simons-Yang–Mills-dilaton-scalar 
fields equations, with a stationary geometry but possibly time-periodic complex fields, or the 
f (R) equations. In adapted coordinates the metric can be written as

g = −V2(dt + θidxi
︸︷︷︸
=:θ

)2 + gijdxidx j

︸ ︷︷ ︸
=:g

,
 (1.1)

∂tV = ∂tθ = ∂tg = 0 . (1.2)

Let us introduce a complex parameter a ∈ C and consider the complex-valued tensor field

g = −V2(dt + aθ)2 + g , (1.3)

satisfying (1.2). We will say that a complex valued symmetric tensor field g is a complex met-
ric if g is symmetric and invertible. Replacing dt by −i dt  in (1.3), where i =

√
−1 , we obtain 

a complex metric with Riemannian real part:

g := V2(dt + aiθ)2 + g . (1.4)
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Under such a substitution the field equations  transform in a controlled way, for example 
t-independent vacuum metrics lead to t-independent, possibly complex valued, tensor fields 
satisfying the vacuum equations, etc.

Working near a (real-valued) static Einstein metric ̊g = V̊2dt2 + g̊ satisfying a non-degen-
eracy condition (as defined in the paragraph after equation (3.5) below) we will

 (1) construct complex metrics reminiscent of (1.4) which solve the vacuum Einstein equa-
tions for small |a|, and

 (2) show that V, g and θ are real-valued if a ∈ R.

(Incidentally, we will also show that g, and hence g, is analytic in a, an interesting prop-
erty of the stationary metrics at hand which has does not seem to have been noticed so far.) 
After ‘undoing the Wick rotation’ leading from (1.3) to (1.4), we will show that the resulting 
Lorentzian space-time has a smooth event horizon at suitable zeros of V.

The construction guarantees that V has zeros when V̊  did, and leads indeed to the desired 
Lorentzian black-hole solution of the Einstein, or Einstein-matter equations.

Our non-degeneracy condition is satisfied by large classes of metrics, including all four-
dimensional Kottler metrics except the spherical ones with a single critical value of the mass 
parameter [16] (see also [4, proposition D.2]). It is clear that the method opens further pos-
sibilities, which remain to be explored. For example, the technique is used in [17] to construct 
boson star solutions.

2. Elliptic equations with complex principal symbol

Consider an n-dimensional (real) manifold M. Complex-valued tensor fields over M are 
defined as sections of the usual (real) tensor bundles over M tensored with C. In other words, 
all coordinate transformations are real but we allow tensors to have complex components. We 
emphasise that the ‘Wick rotation’ above is not considered to be a coordinate transformation, 
but a useful device mapping one set of equations and fields to another, more convenient, one.

As already mentioned, we will say that a two-covariant complex valued tensor g is a com-
plex metric if g is symmetric and invertible.

Let Φ = (ΦA), A = 1, . . .N , be a collection of complex valued fields, forming a section of 
a complex bundle over M. Let g be a complex metric and consider a collection of N equa-
tions of the form

gij∂i∂jΦ
A = FA(g, ∂g,Φ, ∂Φ), (2.1)

with some functions FA which will be assumed to depend smoothly upon their arguments. 
This can be rewritten as the following collection of 2N equations for 2N real fields (�Φ,�Φ):

�gij∂i∂j�ΦA = �
(
FA(g, ∂g,Φ, ∂Φ)

)
+ �gij∂i∂j�ΦA, (2.2)

�gij∂i∂j�ΦA = �
(
FA(g, ∂g,Φ, ∂Φ)

)
−�gij∂i∂j�ΦA. (2.3)

We will say that (2.1) is elliptic if the system (2.2) and (2.3) is elliptic in the usual sense 
for PDEs involving real-valued functions. The principal symbol of (2.2) and (2.3) is bloc- 
diagonal, built out of blocs of the form

(�gijkikj −�gijkikj

�gijkikj �gijkikj

)
. (2.4)

This is an isomorphism for k �= 0 if and only if
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(�gijkikj)
2 + (�gijkikj)

2 > 0. (2.5)

Hence, if �gij  is positive-definite then (2.1) will be elliptic regardless of �gij . More impor-
tantly for us, when �gij  is small enough all the usual elliptic estimates, as needed for our 
analysis below, apply to (2.2) and (2.3), and hence to (2.1). Likewise, isomorphism properties 
for a real-valued g carry over to nearby complex-valued g’s. As we will be using an implicit 
function theorem around real valued Riemannian metrics, our perturbation of �gij , as well 
as �gij  will always be sufficiently small for the estimates and the isomorphism properties to 
remain valid.

3. The setup

We work in space-time dimension d := n + 1 and we normalise the cosmological constant to

Λ = −n(n − 1)
2

; (3.1)

this can always be achieved by a constant rescaling of the metric.
Let ∇̊ denote the covariant derivative associated with the metric ̊g, set

λµ :=
1√
det g

∇̊α(
√
det ggαµ). (3.2)

(In (3.2) the derivative ∇̊ is of course understood as a covariant derivative operator acting on 
tensor densities.) Denoting by Rµ

αβγ the Riemann tensor of g, similarly for the Ricci tensor, 
we set

RH
αβ := Rαβ +

1
2
(
gαµ∇̊βλ

µ + gβµ∇̊αλ
µ
)
. (3.3)

Then the linearisation with respect to the metric, at g = g̊, in dimension d  =  n  +  1, of the map

g̊ �→ RH
αβ + (d − 1)gαβ

is the operator

P̊ :=
1
2
(∆̊L + 2n), (3.4)

where the Lichnerowicz Laplacian ∆̊L  acts on symmetric two-tensor fields h as

∆̊Lhαβ := −∇̊γ∇̊γhαβ + R̊αγhγβ + R̊βγhγα − 2R̊αγβδhγδ . (3.5)

We will say that a metric ̊g is non-degenerate if ∆̊L + 2n has no L2-kernel. This should not 
be confused with the notion of non-degenerate black holes, also called extreme black holes, 
which is the requirement of non-zero surface gravity.

Large classes of non-degenerate Einstein metrics are described in [1, 2, 4, 25], see also 
remark 4.10 below.

It follows immediately from the openness of the set of invertible operators that if g̊ is a 
real-valued non-degenerate Riemannian metric, then all nearby (in a suitable topology, as 
determined by the problem at hand) complex valued metrics will also be non-degenerate.

The following is well-known (see, e.g. the proof of theorem A at the end of [25], compare 
[20] for the Poincaré ball):

Proposition 3.1. Suppose that ̊g is non-degenerate and that P̊h = 0, for a tensor field h 
satisfying
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|h|̊g = o(1) (3.6)

as the conformal boundary is approached. Then h ≡ 0.

Our solutions will be perturbations of a space-time (M , g̊) with a static metric ̊g solving 
the vacuum Einstein equations with a negative cosmological constant. By definition of static-
ity, near every point in (M , g̊) at which the Killing vector is timelike there exist coordinates 
in which the metric takes the form (1.1) and (1.2) with θ ≡ 0,

g̊ = −V̊2dt2 + g̊ijdxidx j

︸ ︷︷ ︸
=:̊g

, ∂tV̊ = ∂t̊g = 0 .
 (3.7)

The solutions we are about to construct will be defined in the domain of outer communica-
tions, where the representation (3.7) is in fact global.

In this work we will consider two cases:

 H1. V̊  is strictly positive, M  is diffeomorphic to R× M , where the coordinate t along the R  
factor labels the static slices of ̊g in M . We set

M = S1 × M,

  thus time translations in M  become rotations of the S1-factor of M.

  In this case our analysis below provides an alternative proof of the results in [13, 15].

 H2. We allow g̊ to describe a static vacuum black-hole metric with a Killing horizon with 
non-zero surface gravity and with global structure similar to that of the domain of outer 
communications in the Schwarzschild–anti de Sitter (S–AdS) black holes. More precisely, 
we assume that the Lorentzian manifold M  takes the form

M = R× [R0,∞)× n−1N ,

  for some R0  >  0, where n−1N  is a compact (n − 1)-dimensional boundaryless manifold. 
We require that R× {R0} × n−1N  coincides with the zero-level set of V̊  which, in a 
suitable extension of M , becomes an event horizon with non-zero surface gravity. The 
coordinate t along the R-factor labels the static slices of M . We further assume that after 
a ‘Wick rotation’, where dt2 is replaced by −dt2, the resulting Riemannian metric

g̊ := V̊2dt2 + g̊. (3.8)

  extends to a smooth metric on

M = R2 × n−1N ,

  with the action of the flow of the vector field

X := ∂t (3.9)

  being rotations of the R2 factor.

  In this case our analysis generalises the results in [13, 15] to black-hole solutions.

An example of H2 above is given by the (n + 1)-dimensional Schwarzschild–anti  de Sitter 
metrics with non-vanishing surface gravity, where n−1N  is the (n − 1)-dimensional sphere 
Sn−1 and M = R2 × Sn−1. More generally, the (n + 1)-dimensional Birmingham metrics [8], 
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where n−1N  is an (n − 1)-dimensional Einstein manifold, with non-extreme horizons are of 
this form.

4. The construction

To avoid a discussion of the technicalities associated with the matter fields, we will start by 
describing in some detail the construction of the vacuum solutions. Note, however, that the 
argument is essentially the same in both cases, once the isomorphisms needed to handle mat-
ter fields have been established. The key difference is in the boundary conditions: the vacuum 
stationary solutions are determined by their asymptotic data at the conformal boundary, and 
might have a non-standard conformal infinity when these data are not the usual AdS ones6. On 
the other hand, our non-vacuum solutions are determined by both the asymptotic data for mat-
ter fields and for the metric, which allows existence of nontrivial solutions with the manifestly 
standard AdS conformal structure at timelike infinity.

4.1. Vacuum solutions

We denote by ρ a coordinate near ∂M  which vanishes at ∂M , and by C�,α(∂M, T1) the space 
of one-forms on ∂M  of C�,α-differentiability class.

We have the following:

Theorem 4.1. Let n = dimM � 3, k ∈ N� {0}, α ∈ (0, 1), and consider a static Lorentzi-
an real-valued Einstein metric ̊g of the form (1.1) and (1.2) as described in section 3, such that 
the associated Riemannian metric g̊ is C2 compactifiable and non-degenerate, with smooth 
conformal infinity. We further assume that the hypotheses H1 or H2 of section 3 hold. For all 

a ∈ R with |a| small enough and every smooth real-valued θ̂ ∈ Ck+2,α(∂M, T1) there exists 
a unique, modulo diffeomorphisms which are the identity at the boundary, nearby stationary 
Lorentzian real-valued vacuum metric of the form (1.1) and (1.2) such that, in local coordi-
nates near the conformal boundary ∂M ,

V − V̊ = O(ρ), θi = aθ̂i + O(ρ), gij − g̊ij = O(1). (4.1)

The Lorentzian solutions with V  >  0 (case H1) are globally stationary, in the sense that 
they have a globally timelike Killing vector. We show in section 5 below that the Lorentzian 
solutions with V vanishing (case H2) describe smooth black holes.

Remark 4.2. Large families of static vacuum metrics g satisfying the conditions of the 
theorem have been constructed in [3, 4]. In particular if g is non-degenerate, then the nearby 
metrics as constructed in [3, 4] also are.

Remark 4.3. The decay rates in (4.1) have to be compared with the leading order behavior 
ρ−2 both for V̊2 and ̊gij in local coordinates near the conformal boundary. A precise version 
of (4.1) in terms of weighted function spaces reads (our notation for function spaces follows 
[25])

(V − V̊) ∈ Ck+2,α
1 (M), (g − g̊) ∈ Ck+2,α

2 (M,S2), (4.2)

6 Note that some non-trivial asymptotic data are compatible with the usual locally conformally flat structure of the 
conformal boundary. An example is provided by the Demiański–Carter ‘Kerr–anti-de Sitter’ solutions, see [22,  
appendix B].
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θ − aθ̂ ∈ Ck+2,α
2 (M, T1), (4.3)

and the norms of the differences above are small in those spaces. If the boundary data are 
smooth, then the solution has a complete polyhomogeneous expansion at the conformal 
boundary.

Proof. We start by solving on M the ‘harmonically-reduced Riemannian Einstein equations’,

RH
αβ + ngαβ = 0, (4.4)

for a complex-valued tensor-field g, with the asymptotic conditions

V − V̊ = O(ρ), θk = iaθ̂k + O(ρ), gk� − g̊k� = O(1). (4.5)

Here we have extended θ̂  from ∂M  to S1 × ∂M by imposing invariance under rotations of the 
S1 factor.

The existence of a solution, for all a ∈ C with |a| small enough, follows by rewriting the 
equations as in (2.2) and (2.3) (with (ΦA) = (gµν)), and applying the implicit function theo-
rem. This can be done because of our hypothesis of non-degeneracy of ̊g; see [4, 13] for the 
analytical details. In particular (4.2) and (4.3) hold.

The implicit function theorem guarantees that the solutions sufficiently close to ̊g with the 
asymptotics (4.5) are uniquely determined by aθ̂ . We denote by g(a) this solution.

The usual argument, spelled-out in detail e.g. in [15, section  4], applies to show that 
λµ ≡ 0, so that:

Lemma 4.4. The complex metrics g(a) solve the Riemannian Einstein equations. □ 

We continue by showing that:

Lemma 4.5. The complex metrics g(a) are invariant under rotations of the S1 factor of M 
in the case H1, or of the R2 factor in the case H2.

Proof. Let us denote by P(a) the operator obtained by linearising (4.4) at g(a); compare 
(3.4). The Lie derivative of (4.4) with respect to X gives

P(a)LXg(a) = 0, (4.6)

where LX  is the Lie-derivative with respect to the vector field X generating rotations of the S1 
factor of M in the case H1, or of the R2 factor in the case H2; we have also used the fact that 
LX g̊ = 0. It follows from (4.2) and (4.3) and polyhomogeneity of the solutions that

LXV ∈ Ck+1,α
1 (M), LXg ∈ Ck+1,α

2 (M,S2), (4.7)

LXθ ∈ Ck+1,α
2 (M, T1). (4.8)

This, together with proposition 3.1, implies LXg ≡ 0, as desired. □ 

Denoting by t the usual angular coordinate on the R2 factor (H2 case), or the parameter 
along S1 (H1 case), we can thus write the metrics g(a) in coordinates adapted to the flow of X 
in the form

g(a) := V(a)2(dt + aiθ(a)kdxk)2 + g(a)ijdxidx j . (4.9)
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Lemma 4.6. In coordinates as in (4.9), the functions V(a), gij(a) and θ(a)i are even func-
tions of a.

Proof. Let ψ : M → M denote the map which, in the coordinates of (4.9) changes t to 
its negative, leaving the remaining coordinates unchanged. Then ψ is a smooth isometry of 
(M, g̊). The metric ψ∗g(a) satisfies the same equation, with same asymptotic data, as g(−a), 
and is close to ̊g for |a| sufficiently small, so that uniqueness gives

ψ∗g(a) = g(−a), (4.10)

which implies the claim. □ 

Lemma 4.7. The metrics g(a) are holomorphic functions of a.

Proof. It is standard to show that the metrics g(a) are continuously differentiable functions 
of a. Differentiating (4.4) with respect to a  gives

P(a)
∂g(a)
∂a

= 0,

where ∂/∂a is the usual complex-derivative operator with respect to the complex conjugate a  

of a. The vanishing of the asymptotic data for ∂g(a)
∂a  gives ∂g(a)

∂a ≡ 0. □ 

Now, if a ∈ iR, we can repeat the above construction in the space of real-valued Riemannian 
metrics. Uniqueness implies then that the corresponding metrics iR � a → g(a) are real-val-
ued. Hence all the coefficients g(xα)µνk in the convergent Taylor expansions

g(a, xα)µν =
∑

k∈N
g(xα)µνk(ia)k

 (4.11)

are real. Lemma 4.6 implies that V(a), the gij(a)’s, and the θ(a)i’s are real for real a. It follows 
that for real a the real-valued Lorentzian metrics

g(a) := −V(a)2(dt + aθ(a)kdxk)2 + g(a)ijdxidx j (4.12)

satisfy all our claims. □ 

4.2. Matter fields

We now seek solutions to the Einstein–Yang–Mills–Higgs–Maxwell-dilaton-scalar fields-
Chern–Simons equations defined by the action

S =

∫
dn+1x

√− det g
16πG

[
R(g)− 2Λ− W(Φ)|F|2 − 1

2
(∇Φ)2 − V (Φ)

]
+ SCS.

 

(4.13)

Here R(g) is the Ricci scalar of the metric g, W and V  are smooth functions, |F| is the gauge-
invariant norm of a possibly non-Abelian Yang–Mills field, Φ is allowed to be a section of a 
bundle associated to the possibly non-Abelian gauge-group, with ∇Φ depending if desired 
upon the Yang–Mills gauge potential. Finally, in even space dimension n, SCS is the Chern–
Simons action which, in the Abelian case, takes the form:
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SCS =





0, n is odd;
λ

16πG

∫
A ∧ F ∧ · · · ∧ F︸ ︷︷ ︸

k times

, n = 2k, (4.14)

for a constant λ ∈ R . In the general (non-Abelian) case SCS is given by [11, equation (3.5)]

SCS =
λ

16πG

∫
Tr

(
k∑

i=0

Ck,iA ∧ [A, A]i ∧ Fk−i

)
, (4.15)

when n  =  2k and

Ck,i =
(−1)i(k + 1)!k!

2i(k + 1 + i)!(k − i)!
. (4.16)

We obtain:

Theorem 4.8. Let n = dimM � 3, k ∈ N� {0}, α ∈ (0, 1), and consider a static Lor-
entzian real-valued Einstein metric g̊ of the form (1.1) and (1.2) as described in section 3, 
such that the associated Riemannian metric ̊g is C2 compactifiable and non-degenerate, with 
smooth conformal infinity, has no harmonic one-forms which are in L2 and V ′′(0) which is 
not an L2-eigenvalue of the operator ∆g̊. We further assume that the hypotheses H1 or H2 of 
section 3 hold and that

W(0) = 1, V (0) = 0 = V ′(0), V ′′(0) > −n2/4. (4.17)

For all a ∈ R with |a| small enough, every smooth real-valued θ̂ ∈ Ck+2,α(∂M, T1) and 
Û ∈ Ck+2,α(∂M) and

 (1) V ′′(0) < 0 with Â ∈ Ck+2,α(∂M, T1), and Φ̂ ∈ ρσ−Ck+2,α(∂M) (where 
σ− = n/2 −

√
n2/4 + V ′′(0)) which are sufficiently small smooth fields on ∂M , or

 (2) Φ̂ ≡ 0, and Â ∈ Ck+2,α(∂M, T1) which is a sufficiently small smooth field on ∂M ,

there exists a unique, modulo diffeomorphisms which are the identity at the boundary, nearby 
stationary Lorentzian solution of the Einstein–Maxwell-dilaton-scalar fields-Chern–Simons 
equations, or of the Yang–Mills–Higgs–Chern–Simons-dilaton equations with a trivial princi-
pal bundle, so that, in local coordinates near ∂M , we have

g →ρ→0 g̊, V →ρ→0 V̊ , θ →ρ→0 aθ̂,

U →ρ→0 aÛ, A →ρ→0 Âadxa, Φ →ρ→0 Φ̂
 

(4.18)

with all convergences in ̊g-norm. The hypothesis of non-existence of harmonic L2-one-forms is 

not needed if Â ≡ 0 ≡ Û , in which case the Maxwell field or the Yang–Mills field are identi-
cally zero.

Remark 4.9. The remarks in [15, section 7] concerning the energy and the asymptotics of 
the solutions remain valid word-for-word in the current setting.

Remark 4.10. For the convenience of the reader we repeat here the comments from [15] 
concerning the kernel conditions in the theorem.
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First, it is shown in [15, appendix C] that the condition of non-existence of L2-harmonic 
forms is satisfied near anti-de Sitter space-time in any case.

Next, it has been shown by Lee [24, theorem A] that there are no L2-eigenvalues of ∆g̊ 
when the Yamabe invariant of the conformal infinity is positive, in particular near anti-de Sit-
ter and Schwarzschild anti-de Sitter space-time. Furthermore, and quite generally, V ′′(0) = 0 
is never an eigenvalue by the maximum principle. Finally, again quite generally, the L2 spec-
trum of −∆g for asymptotically hyperbolic manifolds is [n2/4,+∞[ together with possi-
bly a finite set of eigenvalues, with finite multiplicity, between 0 and n2/4 [21] (compare 
[26]), so our non-eigenvalue condition is true except for at most a finite number of values of 
V ′′(0) ∈ (−n2/4, 0) for all asymptotic geometries. □ 

Proof. This follows directly from the arguments of [15]: The indicial exponents of the rel-
evant equations remain unchanged, as terms containing θ, which are here multiplied by ia, 
are of lower order in ρ. Note that the solutions obtained below using the implicit function 
theorem might a priori depend upon the ‘periodic time coordinate’ t, but this is irrelevant for 
the calcul ation of the indicial exponents.

We start by sketching the argument in the case of a single real-valued scalar field Φ, which 
satisfies the equation

∇α∇αΦ− V ′(Φ) = 0.

Its indicial exponents are σ± = n/2 ±
√

n2/4 + V ′′(0), unchanged from those in [15], as 
gtt = −V−2 = O(ρ2) so that terms arising from t derivatives are of lower order. We assume 
−n2/4 < V ′′(0) < 0 so that the solutions show the desired asymptotics. By [15, theorem 
D.1], using the assumption that V ′′(0) is not an L2 eigenvalue of ∆g̊, it follows that the lineari-

sation (∆g̊ − V ′′(0)) is an isomorphism from Ck+2,α
σ−+s  to Ck,α

σ−+s for small s  >  0.

Then LXΦ ≡ 0 by the same argument as in the proof of lemma 4.5 above: Applying LX  to 
the equations and using LX g̊ = 0 gives

{
P(a)LXg = LX

(
q1[V − V̊ , g − g̊, θ,Φ]

)
,

(∆g̊ − V ′′(0))LXΦ = q2[V , g, θ,Φ].
 (4.19)

Here q1 is a linear combination of the energy-momentum tensor of the scalar field and its 
trace times the metric, and is at least quadratic in its arguments and their derivatives, so that 
LXq1 is a linear first-order differential operator in (LXg, LXΦ). Furthermore, each term in 
q2 is linear in Φ or its derivatives and contains an LX  derivative of one of the arguments. Φ 

behaves asymptotically as in [15], i.e. Φ = ρσ−Φ̂ + o(ρσ−) and, using LXΦ̂ = 0, we have 
LXΦ = o(ρσ−). As the coefficients of LXΦ and LXg, and of their first derivatives, on the 
right-hand side of (4.19) are small in the relevant spaces (e.g. the coefficients of the LXΦ 
terms on the right-hand side of the second equation are small in Ck,α

0 ), we can use proposi-
tion 3.1 and the isomorphism properties of (∆g̊ − V ′′(0)) described above to conclude that 
LXg ≡ 0 and LXΦ ≡ 0.

Next, we show that V , g, θ,Φ are even functions of a: ψ∗(g(a),Φ(a)) satisfy the same 
equations as (g(−a),Φ(−a)), with identical asymptotic data (since Φ̂ is independent of a, the 
only relevant terms are the asymptotic data for g(a)0j = −iag(a) jkθ(a)k  which are unchanged 
under (t, a) �→ (−t,−a)) and by uniqueness we have Φ(a) = ψ∗Φ(a) = Φ(−a), similarly for 
V, g, θ.
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Therefore Φ(a), V(a), gij(a), θi(a) are real for real a by the same argument as for V(a), 
gij(a), θi(a) above.

Rather similar considerations apply for the whole system of Einstein–Maxwell-dilaton-
Yang–Mills–Higgs–Chern–Simons-scalar fields equations: The matter equations arising from 
the action (4.13) are





1
V
√

det g
∂µ(V

√
det gWFµν) + Bν

CS = 0,
1

V
√

det g
∂µ(V

√
det ggµν∂νΦ)− W ′(Φ)|F|2 − V ′(Φ) = 0,

 
(4.20)

where7

Bν
CS =

{
0, n is odd;
− λ

2k+2 ε
να1β1···αkβk Fα1β1 · · ·Fαkβk , n = 2k. (4.21)

After replacing dt by −idt, the asymptotic data for the Riemannian solution, say F̂(a), take 
the form F̂(a) = d(−iaÛdt + Âidxi). They are clearly invariant under

t �→ −t and a �→ −a. (4.22)

The only other asymptotic data that are possibly affected by (4.22) are those associated 
with the inverse metric components g(a)0j . These change sign under each of a �→ −a and 
t �→ −t . It follows

ψ∗(F(−a), g(−a),Φ(−a)) = (F(a), g(a),Φ(a)),

which again implies that (U(a), A(a),Φ(a), V(a), θ(a), g(a)) are even functions of a. As be-
fore, analyticity holds and we conclude that all these fields are real for real a.

Note that the implicit function theorem in the Riemannian regime produces essentially 
complex electric fields for real a and non-zero Û’s, which will however be mapped to real 
ones when one returns to the Lorentzian setting. □ 

4.3. f (R) theories

Our method allows the construction of black-hole solutions to specific f (R) theories: As 
described in e.g. [18, section  2.3] these can be reduced to the Einstein-scalar field equa-
tions with a specific potential V (Φ) by a conformal transformation, if the function f fulfills 
certain conditions. These conditions are satisfied simultaneously with our assumptions on V  
(in theorem 4.8) if

f ′ > 0, f ′′ �= 0, f ′−1(1) < 0, f ( f ′−1(1)) = f ′−1(1)/2. (4.23)

(this is shown in detail in [15, section 5.5]). An example of a function f which fulfills these 
conditions is

7 One can check by a direct time-and-space decomposition of the equations that the ‘Wick rotation’ dt → −idt, 
∂t → i∂t, is consistent with the Chern–Simons terms in the equations by defining εα1...αd as (− det g)−1/2ε̊α1...αd , 
where ̊εα1...αk is totally antisymmetric with values in {0,±1}, with the cut in the definition of 

√
z , z ∈ C, lying  

e.g. on the positive imaginary axis, so that 
√

z2 = z both near z  =  −i and near z  =  1.
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f (R̃) = dR̃ + cR̃α+1 + e, (4.24)

where R̃ is the Ricci scalar in the f (R̃) theory (i.e. before the conformal transformation) and 
d  <  1, c  <  0, α = 1, 3, 5, . . ., and

e =
α(1 − 2d)− 1

2(α+ 1)
α

√
1 − d

c(α+ 1)
,

are constants.

4.4. Time-periodic scalar fields

Similarly to [15, section 6.1] we can use the method there to construct solutions with a time-
periodic complex scalar field Φ(t, x) = eiωtψ(x) where ω ∈ R is a constant and ψ(x) is allowed 
to be complex. We assume that

V (Φ) = GV (ΦΦ̄) and W(Φ) = GW(ΦΦ̄) (4.25)

for some differentiable functions GV  and GW , and replace the term (∇Φ)2 in the action by 
∇αΦ∇αΦ, where Φ  is the complex conjugate of Φ.

The Lorentzian Φ equation for a complex scalar field Φ = eiωtψ takes the form

∆g(eiωtψ)− GW
′(ψψ̄)eiωtψ|F|2 − GV

′(ψψ̄)eiωtψ = 0. (4.26)

This leads to the following associated Riemannian equation

∆g(eaωtψ)− GW
′(ψψ̄)eaωtψ|F|2 − GV

′(ψψ̄)eaωtψ = 0
⇐⇒

0 = ∆gψ + 2aωg(Dt, Dψ) + |dt|2ga2ω2ψ + aωψ∆gt

−GW
′(ψψ̄)ψ|F|2 − GV

′(ψψ̄)ψψ,

 (4.27)

where the crucial difference to a naive replacement t �→ −it (and therefore Φ �→ eωtψ) is 
that the argument of GW

′ and GV
′ is ψψ̄ instead of ΦΦ̄ = e2ωtψψ̄. The equations (4.26) and 

(4.27), together with the respective Lorentzian and Riemannian equations for the other vari-
ables, are equivalent: The bijection

(V , θ, g, U, A,ω,ψ) �→ (iV , iθ, g,−iU, A,−iω,ψ) (4.28)

maps Lorentzian solutions to Riemannian ones.
As such, the first equation (4.27) does not make sense for periodic t’s, but the second does. 

Note, however, that Dt and |dt|2 are singular at an axis of rotation of ∂t, if there is one. This 
forces us to restrict ourselves to strictly stationary configurations, without black holes, when 
ω �= 0. As a consequence, in this section we merely reproduce the results already proved in 
[15] for rotating complex fields, albeit by a somewhat simpler argument.

Applying LX  to the second equation in (4.27) gives

0 =∆g(LXψ) + 2ωg(Dt, DLXψ)− LX
(
GV

′(ψψ̄)ψ + GW
′(ψψ̄)ψ|F|2

)

+ O(ψLXg) + O(DψLXg) + O(DDψLXg) + O(ρLXψ),

and therefore

(∆g̊ − GV
′(0)) (LXψ) = q3[g,ψ, U, A], 

(4.29)
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where each term in q3 is at least linear in its arguments or their derivatives and contains an LX  
derivative of g, ψ, U, or A.

We can now argue as before to obtain LX(g,ψ, U, A) ≡ 0 if the asymptotic data are invari-
ant under LX .

The equation for ψ is then

V−1Di(Vgij∂jψ)−
(
GW

′(ψψ̄)|F|2 + GV
′(ψψ̄)

)
ψ

+ (V−2 − a2θkθ
k)a2ω2ψ + ia2ω(θ j∂jψ + V−1Dj(Vθ jψ)) = 0.

 (4.30)

All terms in this equation are well defined and, by the results of [15], we obtain a solution 
of the complete system of equations. As ψ is independent of t, no difficulties associated with 
the periodicity of the t coordinate arise. After transforming back via the inverse of (4.28) we 
obtain a time-periodic solution Φ(t, x) = eiωtψ(x) to the original equations.

5. Geometry of the solutions

We wish to show that the solutions constructed above with topology M = R2 × n−1N  cor-
respond to smooth black holes on the Lorentzian side. (In fact, the Lorentzian metric will be 
one-sided-analytic up-to-horizon [6] near the horizon, but this is irrelevant for the problem 
here.) For this, we recall some standard facts about isometries. Let us denote by

Z := {0} × n−1N (5.1)

the codimension-two submanifold of M which is the zero-set of the Killing vector X gener-
ating rotations of R2. Then Z  is a totally-geodesic submanifold of (M,�g). In coordinates 
(x, y) normal for the metric �g, on each of the planes �g–orthogonal to Z  the vector field X 
takes the standard Euclidean form

X = x∂y − y∂x.

This shows that in these coordinates a rotation Rπ by an angle π, which is the map 
(x, y) �→ (−x,−y), is an isometry of �g which leaves invariant �g. Let us choose local coor-
dinates (xa) on Z , and extend them to be constant along �g–geodesics �g–normal to Z . We 
will denote by (xA) the coordinates (x, y). One obtains

�gab(x, y, xc) = �gab(−x,−y, xc), �gAB(x, y, xc) = �gAB(−x,−y, xc),

�gaA(x, y, xc) = −�gaA(−x,−y, xc).

In particular all odd-order derivatives of the metric functions �gab  and �gAB vanish on Z .
An analogous argument applies to θ using LXθ = 0.
Let us assume for definiteness that a ∈ R, thus θ is purely real. It is then standard to derive 

the following form of the metric in coordinates (ϕ, ρ, xa), where (x, y) = (ρ cosϕ, ρ sinϕ) 
(compare [12, section 3] for detailed calculations in a closely related setting):

�g = u2dϕ2 + hjkdx jdxk, u = ρ(1 + ρ2ψ), (5.2)

θ =
αρ

(1 + ρ2ψ)2 dρ+ γadxa, (5.3)

hjkdx jdxk = (1 + ρ2β)dρ2 + babdxadxb + 2ρλadxadρ− u2θiθjdxidx j, (5.4)

and where all the non-explicit functions are smooth functions of (ρ2, xa).
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Passing to the Lorentzian regime, and replacing ϕ by a coordinate

τ = ϕ+ log ρ, (5.5)

one checks that the Lorentzian metric g smoothly extends to a Killing horizon at ρ = 0 after 
a final change of coordinates ρ → z = 1

2ρ
2. Indeed, the Lorentzian metric g is then given by

g =− u2(dτ 2 − 2
ρ

dτdρ) + ρ2(β − 2ψ − ρ2ψ2)dρ2

+ babdxadxb + 2ρλadxadρ− u2θiθjdxidx j

=− 2(1 + ρ2ψ)2(z dτ 2 − dτdz) + (β − 2ψ − ρ2ψ2)dz2

+ babdxadxb + 2λadxadz − 2z(1 + ρ2ψ)2θiθjdxidx j ,

 

(5.6)

after substituting dΦ �→ idΦ in (5.2) and applying the coordinate transformation (5.5).
Indeed, (5.6) shows that that the Killing vector ∂τ  is null on the hypersurface {z  =  0}, and 

that this hypersurface is null, hence a Killing horizon. This is a non-rotating horizon, in the 
sense that the Killing vector which is timelike at infinity is also tangent to the Killing horizon. 
(This explains why our solutions, which can have no further symmetries than stationarity, are 
compatible with the Hollands–Ishibashi–Wald [23] rigidity theorem, which provides at least 
one more symmetry for rotating horizons.) We also see from (5.6) that the surface gravity of 
the Killing horizon {z  =  0}, calculated for the vector field ∂τ , equals one. Rescaling τ to the 
scale of the original nearby seed Birmingham solution, the surface gravity of our solutions 
will coincide with that of the seed metric in those cases with matter sources where the gravi-
tational free data at infinity have been chosen to coincide with the original ones; otherwise 
a nearby surface gravity will result when the asymptotic behaviour of the metric imposes a 
natural rescaling of the horizon Killing vector field.
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NON-DEGENERACY OF RIEMANNIAN

SCHWARZSCHILD-ANTI DE SITTER METRICS:

BIRKHOFF-TYPE RESULTS IN LINEARIZED GRAVITY

PAUL KLINGER

Abstract. We prove Birkhoff-type results showing that L2 solu-
tions of the linearized Einstein equations around Riemannian Kottler
(“Schwarzschild-anti de Sitter”) metrics in arbitrary dimension and hori-
zon topology, which are not controlled by “master functions” are pure
gauge. Together with earlier results this implies that the TT -gauge-fixed
linearized Einstein operator for these metrics is non-degenerate for open
ranges of the mass parameter.

1. Introduction

In a recent paper, together with Piotr Chruściel and Erwann Delay, we
showed that the linearized Einstein operator at a subset of Riemannian
Kottler metrics has no L2 kernel[4]. This was motivated by [3] which gives,
for each metric fulfilling this condition, a large class of new stationary black
hole spacetimes.

Here we extend the results of [4] to a wider range of dimensions and
horizon geometries. In fact the only thing we have to show is that all L2

solutions of the linearized Einstein equations around Riemannian (gener-
alized) Kottler metrics with negative cosmological constant, which are not
controlled by the “master functions” of Kodama & Ishibashi [7], have to
be pure gauge (except for the case of the critical mass value for spherical
horizon geometry). This corresponds to showing that all solutions of the
linearized Einstein equations with certain symmetry have to take a fixed
form, i.e. a result similar to the Birkhoff theorem in full gravity (see Section
1.1 below).

Similar results are contained in [4, Appendices F–I] for spacetime dimen-
sion n + 2 = 4 for K ∈ {1,−1} and arbitrary dimension for K = 0 (K is
the (constant) sectional curvature of the horizon). Replacing these with the
results proved below extends the conclusions of [4] to the stronger

Theorem A. Let us denote by PL the linearization, at Riemannian Kot-
tler metrics (2.2) with negative cosmological constant, of the TT -gauge-fixed
Einstein operator. Then:
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2 PAUL KLINGER

(1) PL has no L2-kernel in spacetime dimension n + 2 = 4 except for
spherical black holes with mass parameter

(1.1) µ = µc :=
n

n+ 1

(
`

√
n− 1

n+ 1

)n−1

.

(2) PL has no L2-kernel for open ranges of parameters µ ∈
(µmin(K), µ(n)) for n > 2, where µ(n) > µmin(K) solves a poly-
nomial equation and

(1.2) µmin(K) :=





0 K ∈ {0, 1} ,

− 1
n+1

(
n+1

`2(n−1)

) 1−n
2

K = −1 .

(In contrast to the result of [4] we do not have to restrict to the case
K = 0 for dimensions n > 2.)

In [4] it is conjectured that

Conjecture B. PL has no L2-kernel except if K = 1 and µ is given by
(1.1).

With our results the only missing part to prove Conjecture B is a rigorous
justification of the numerical arguments in [4, Section 3.2].

As mentioned above, the motivation to study the L2 Kernel of PL comes
from [3]. Indeed, a trivial L2 kernel of PL for a Riemannian black hole
metric g̊ implies the existence of infinite dimensional families of non-singular,
stationary Lorentzian black hole solutions to the Einstein equations with
negative cosmological constant, in vacuum or with various matter fields,
and with conformal infinity close to that of a Lorentzian metric associated
to g̊.

Theorem A thus implies the existence of such solutions in all spacetime
dimensions and for flat, negatively, or positively curved conformal infinity.

1.1. The Birkhoff theorem. Our results can be understood as a linearized
analogue to the Birkhoff theorem. Several different kinds of results have been
referred to as “Birkhoff theorems” in the literature (see [14] for an overview).
Here we will use the term to mean a classification result showing that under
certain symmetry assumptions on a manifold the metric has to take a fixed
form (which contains an additional Killing vector field). A classical result of
this form is that spherically symmetric vacuum spacetimes are given by the
Schwarzschild metric. As far as we are aware the most general such result is
[1, Theorem 3.2]. This theorem applies to various kinds of Einstein-matter
systems and, in fact, does not even require the full Einstein equations to
be satisfied. Specializing to the case of solutions to the vacuum Einstein
equations with cosmological constant it states

Theorem 1.1 (Birkhoff theorem for warped product vacuum spacetimes
[1]). Consider a warped product spacetime (M = Q × F, ḡ = g + r2h) sat-
isfying the vacuum Einstein equations with cosmological constant Λ, where
(Q, g) is a 2-dimensional manifold, (F, h) an n ≥ 2 dimensional one and r
is a function on Q. Then
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(1) either ḡ takes the standard Eddington-Finkelstein form

ḡ = −
(

S[h]

n(n− 1)
− 2m

rn−1
− 2Λ

n(n+ 1)
r2

)
du2 ± 2dudr + r2h ,

where S[h] = const is the scalar curvature of h,

(2) or Λ = 0, R
[h]
ij = 0, and

ḡ = −dt2 + dr2 + (t± r)2h ,

(3) or r is constant, (Q, g) is maximally symmetric, (F, h) is Einstein,

S[h] = 2r2Λ, and S[g] = 4Λ/n.

When (F, h) is Sn with the round metric this reduces to the classic Birkhoff
theorem. In that case (2) does not apply, and (3) gives a limit case of (1)
which cannot be described in the standard coordinates (see [13, Section 4]).

In Section 3 we consider perturbations of (Riemannian) Kottler metrics
such that, in terms of the variables in Theorem 1.1, δh ∝ h and δg is
constant on F . We conclude that the only such perturbations which satisfy
the linearized Einstein equations are variations of the mass parameter, i.e.
ones that (at the linear level) stay in the Kottler family. This is directly
analogous to the Birkhoff theorem, with (F, h) being the spaces of constant
sectional curvature which appear in the Kottler metrics.

In Section 4 we consider axially symmetric perturbations, and conclude
that the only ones satisfying the linearized Einstein equations are variations
of the angular momentum parameter in the (Riemannian) Kerr anti-de Sitter
family. This result is of a similar type as the Birkhoff theorem but has no
direct analogue in the nonlinear case.

2. Definitions & Background

We will consider the linearized Einstein equations on a Riemannian (gen-
eralized) Kottler [10] background (also referred to as “Schwarzschild Anti-de
Sitter metrics” or “Birmingham metrics” [2]). These n+ 2 dimensional so-
lutions of the Einstein equations are given by the manifold

(2.1) M = S1 × [r0,∞)× nNK

where (nNK , γ) is an n-dimensional space of constant sectional curvature
K ∈ {−1, 0, 1}, together with the metric

(2.2) g̊ =

(
r2

`2
+K − 2µ

rn−1︸ ︷︷ ︸
=:f(r)

)
dt2 +

dr2

r2

`2
+K − 2µ

rn−1

+ r2γ ,

where t is a periodic coordinate on S1 with period

T :=
f ′(r0)

4π
> 0 ,

the parameter ` is related to the cosmological constant by

` =

√
−n(n+ 1)

2Λ
> 0 ,

and r0 > 0 is the largest zero of f . Note that r = r0 is the axis of rotation
for the “angular” coordinate t.
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We use µ,ν,. . . for spacetime indices, a,b,. . . for indices on S1 × [r0,∞)

and i,j,. . . for those on nNK . We will denote by D̂i, ∆̂ := γijD̂iD̂j the
covariant derivative and Laplace-Beltrami operator on (nNK , γ) and by

D̃a, ∆̃ := D̃aD̃a the corresponding operators on (S1×[r0,∞), fdt2+f−1dr2).
A symmetric 2-covariant tensor h on M can be split into “scalar”, “vec-

tor”, and “tensor” parts according to their behavior under diffeomorphisms
acting on the n-dimensional submanifold nNK [9]:

(2.3) h = hS + hV + hT .

The three parts in (2.3) can be expanded into modes as [7, Sections 2.1,
5.1 and 5.2]

hSab =
∑

I

fSab,ISI , hSai =
∑

I

rfSa,ISIi , hSij =
∑

I

2r2(HS
L,IγijSI +HS

T,ISIij) ,
(2.4)

hVab = 0 , hVai =
∑

I

rfVa,IVIi , hVij =
∑

I

2r2HV
T,IVIij ,

(2.5)

hTab = 0 , hTai = 0 , hTij =
∑

I

2r2HT
T,ITIij ,

(2.6)

where the SI , VIi , TIij are scalar, vector, and (symmetric, transverse, and

traceless) tensor harmonics, i.e.

(2.7) (∆̂n + k2)SI = 0 , (∆̂n + k2
V )VIi = 0 , (∆̂n + k2

T )TIij = 0 ,

(2.8) TIij = TIji , γijD̂iTIjk = 0 , γijTIij = 0 ,

with eigenvalues k2, k2
V , k2

T and

SIi = −1

k
D̂iSI , k 6= 0 ,(2.9)

SIij =
1

k2
D̂iD̂jSI +

1

n
γijSI , k 6= 0 ,(2.10)

VIij = − 1

2kV
(D̂iVIj + D̂jVIi ) = − 1

2kV
LVIγij , kV 6= 0 ,(2.11)

with the corresponding quantities vanishing if k = 0 or kV = 0. For the case
K = 1 the eigenvalues are [12]

k2 = l(l + n− 1) , l = 0, 1, 2, . . . ,(2.12)

k2
V = l(l + n− 1)− 1 , l = 1, 2, 3 . . . ,(2.13)

k2
T = l(l + n− 1)− 2 , l = 2, 3, 4, . . . , n > 2 .(2.14)

By [9, Appendix B], using the fact that (nNK , γ) is a space of constant
curvature, the scalar, vector, and tensor parts of a solution to the linearized
Einstein equations separately satisfy the equations.

Kodama and Ishibashi [7] introduced master functions, scalar functions
Φi,I on the t, r space, satisfying

(2.15) ∆̃Φi,I − Vi,IΦi,I = 0 , i ∈ {S, V, T} ,
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where the Vi,I(r) are some complicated potentials given in [7, p. 8, 13, 14].
These master functions control the behavior of perturbations for all modes
for which they are defined. In [4, Section 3 & 4] it is shown that whenever
the master functions are defined they can be used to prove that there are
no L2 solutions of the linearized Einstein equations.

The remaining cases, which have to be treated separately, are

(1) the l = 0 scalar and vector modes, i.e. those where k = 0 or kV = 0,
(2) the l = 1 scalar and vector modes for K = 1.

We show in the following that L2 perturbations of this form are purely
gauge. The first case will be treated in Section 3 and the second one in
Section 4.

For further reference we note that gauge transformation hµν → hµν +
LY g̊µν , of perturbations h, with (small) gauge vector Y , take the form

htt → htt + Y r∂rf + 2f∂tY
t ,(2.16)

htr → htr + f−1∂tY
r + f∂rY

t ,(2.17)

hrr → hrr + Y r∂rf
−1 + 2f−1∂rY

r ,(2.18)

hti → hti + f∂iY
t + r2γki∂tY

k ,(2.19)

hri → hri + r2γik∂rY
k + f−1∂iY

r ,(2.20)

hij → hij + 2rY rγij + r2(D̂i(γjkY
k) + D̂j(γikY

k)) .(2.21)

By [11, Proposition 6.5 and Proposition E] elements of the L2 kernel of
PL = ∆L+2(n+1) (see [4, Section 2]) behave as |h|̊g = O(r−n−1) for r →∞
which gives for the components hµν

(2.22)
htt = O(r1−n) , htr = O(r−1−n) , hrr = O(r−3−n) ,

htj = O(r1−n) , hrj = O(r−1−n) , hjk = O(r1−n) .

3. The l = 0 modes for K ∈ {−1, 0, 1}
In this section we show that L2 solutions of the linearized Einstein equa-

tions consisting only of l = 0 modes have to be pure gauge.
For the cases K = 1 and K = −1 we only have to consider the scalar part:

The tensor part is always controlled by the master functions and there are
no (non-zero) harmonic vectors (i.e. vectors with kV = 0) for K ∈ {1,−1}.
For K = 1 this can be read of directly from (2.13). For K = −1 we consider
the Hodge Laplacian

∆̂HVi := (dd∗V + d?dV)i = −∆̂Vi + nRi
jVj ,

(see e.g. [6]). Using the fact that ∆̂H is non-negative and that nRijX
iXj =

(n − 1)K for all unit vectors X (as (nNK , γ) has constant curvature) we
obtain, for K = −1, k2

V ≥ n− 1 > 0.

3.1. Scalar perturbations. We consider the scalar part of a l = 0 lin-
earized solution hµν of the Einstein equations, i.e.

(3.1) hab = hab(t, r) , hia ≡ 0 , hij = ψ(t, r)̊gij = ψ(t, r)r2γij ,

and assume that h ∈ L2.
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The angular part of the perturbation can be gauged away by defining a
gauge vector Y as

(3.2) Y r = rψ/2 = O(r−n) , Y i ≡ 0 ,

which implies
hij = LY g̊ij .

The remaining component Y t of the gauge vector allows us to do the same
for htr, by integrating (2.17) in r. However, it is not a priori clear that the
resulting gauge vector is smooth at r = r0. We circumvent this problem by
cutting off at a finite distance ε from r0, i.e. by defining a gauge vector Yε
as Y r

ε = Y r, and

(3.3) Y t
ε = −χε(r)

∫ ∞

r
f−1(htr − ∂tY rf−1)dr = O(r−n−2) ,

where χε is a smooth function such that χε ≡ 1 for r > r0 + ε and χε ≡ 0
for r < r0 + ε/2. With this definition we have, for r > r0 + ε,

htr = LYε g̊tr .

We set

(3.4) h̄µν = hµν −LYε g̊µν ,

thus h̄µν is a solution of the linearized Einstein equations with, for r > r0+ε,
all components vanishing except possibly h̄tt and h̄rr.

We now define new functions Zr and Zt as

(3.5) Zr := rn−1f2h̄rr , Zt := rn−1(h̄tt + f2h̄rr) ,

chosen such that a variation of the mass in the coordinates of (2.2), which
takes the form

(3.6) 2
δµ

rn−1
(−dt2 + f−2dr2) ,

is captured purely by Zr.
Using [8, Appendix B] we can write the linearized Einstein equations for

our perturbation in terms of Zr and Zt.
For the t, r equation we find, for r > r0 + ε,

(3.7) G′tr[h] =
n∂tZr(t, r)

2 (−2µr + rn + r2+n)
,

thus Zr depends at most upon r. One can now eliminate the second radial
derivative of Zt between the Gtt and Grr equations, obtaining, again for
r > r0 + ε,

(3.8) ∂r

(
Zt

rn−1f

)
= 0 .

Hence, for r > r0 + ε,

(3.9) Zt = C(t)rn−1f .

for some function C depending only upon t. Inserting all this into the
Gij = 0 equations gives, for r as before, ∂rZr = 0, and thus Zr is a constant,
say 2δµ there.
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In terms of h̄rr and h̄tt we now have, for r > r0 + ε,

(3.10) h̄tt = fC(t)− 2δµ

r
, h̄rr =

2δµ

rf2
.

As f behaves asymptotically like r2, C has to vanish for this to be in L2.
We find that the only scalar l = 0 perturbations which satisfy the lin-

earized Einstein equations are, up to gauge, variations of the mass.
For K ∈ {0,−1} the tensor field h̄µν is in L2 if and only if δµ = 0, while

for K = 1 this holds with the exception of the case µ = µc, with the critical
mass µc defined in (1.1). (See e.g. [4, Section 2] for a derivation of the
critical mass.)

Hence, for these cases, h̄µν ≡ 0, i.e. hµν = LYε g̊µν , for r > r0 + ε. As
ε > 0 is arbitrary and Yδ ≡ Yε for r > r0 +δ, δ > ε this applies for all r > r0

with Y0.
The tensors h and g̊ are smooth by assumption, so we can conclude from

hµν = LY0 g̊µν that the integrand in (3.3) is smooth and bounded, implying
that Y := Y0 is in fact smooth for all r, including the rotation axis r = r0.

We find that, except for the case of critical mass,

(3.11) hµν = LY g̊µν , |Y |̊g = O(r−n−1) ,

i.e. h is pure gauge.

3.2. Vector perturbations. For the case K = 0 there are (constant) har-
monic vectors with kV = 0. Perturbations associated with these take the
form

(3.12) hab = 0 , hai = rfVa Vi , hij = 0 ,

where the Vi are constants and the fVa are functions of t and r. Defining
h̄V by hVµν = h̄Vµν + LY g̊ with a gauge vector Y chosen as Y a ≡ 0 and

(3.13) Y i = γijVi
∫
fVr
r
dr = O(r−n−2) ,

we obtain h̄ri = 0, i.e. fVr = 0. The removed gauge part behaves asymptot-
ically as

|LY g̊|2g̊ = O(r−2n−2) .

We find from (4.2) that Y i is regular at r0, and therefore the term f−1∂tY
i

which occurs in |LY g̊|̊g is as well (because of the behavior of gtt there). This

implies that |LY g̊|2g̊ is in L2.

Inserting h̄ into the r, i component of the linearized Einstein equations
gives

rn
(
r∂t∂rf

V
t − ∂tfVt

)

2 (rn+2 − 2rµ)
= 0 ,

and therefore fVt = fVt (r) by the periodicity of t. Inserting back into the
t, i equation we obtain

r2∂2
rf

V
t + rn∂rf

V
t − nfVt = 0 ,

which gives, after integrating,

fVt = rC1 + r−nC2 .
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Here C1 has to vanish for the perturbation to be in L2 and C2 has to vanish
as the tensors dtdxi are not smooth at the axis of rotation r = r0.

3.3. Tensor perturbations. Additionally, for the case K = 0 there are
(constant) harmonic tensors with kT = 0. These are actually controlled by
the master functions, but for completeness we show directly that they must
vanish.

The associated tensor perturbations take the form

(3.14) hab = 0 , hai = 0 , hij = 2r2HT
T Tij ,

where Tij is a constant tensor satisfying Tijγij = Tijδij = 0 and HT
T is a

function of t and r only.
The only nontrivial linearized Einstein equation is

(3.15) ∆̃HT
T +

nf

r
∂rH

T
T = 0 .

This gives HT
T = 0 by the maximum principle, as HT

T = O(r−1−n) from
(2.22).

4. The l = 1 modes for K = 1

For K ∈ {0,−1} the l = 0 scalar and vector modes are the only ones
not controlled by the master functions of Kodama & Ishibashi. For K = 1
however the l = 1 scalar and vector modes also need to be treated separately.
In this section we therefore analyze these l = 1 modes when (nN, γij) is an
n-dimensional round unit sphere. We use the equations of [8, Appendix B]
and our argument is similar to that of [5] in the 2 dimensional case.

4.1. Vector perturbations. The l = 1 vector perturbations take the form

(4.1) hVµν =

n(n+1)/2∑

m=1

(
0 rfVa,mJ

m
i

rfVa,mJ
m
i 0

)
,

where the fVa,m are functions of t and r and γijJmi ∂j form a basis of Killing
vector fields on Sn .

Gauge transformations defined by a gauge vector Y of the form

Y a = 0 , Y i =
∑

m

Ym(t, r)γijJmj ,

preserve the form (4.1) of the perturbations. The effect of such a gauge
transformation on the perturbation is given by

hVai →
∑

m

(rfVa,m + r2∂aYm)Jmi ,

with all other components unaffected.
Defining h̄V by hVµν = h̄Vµν +LY g̊ with a gauge vector Y given by Y a = 0

and

(4.2) Y i =
∑

m

γijJmj

r∫

r0

fVr,m(t, r′)

r′
dr′ = O(r−n−2) ,
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we find that the components h̄Vri vanish, leaving only h̄Vti . The norm of the
gauge part is found to be

|LY g̊|2g̊ = O(r−2n−2) ,

as before, and, as it is regular at r0, LY g̊ ∈ L2.
Inserting h̄ into the r, i component of the linearized Einstein equations

gives
rn
(
r∂t∂rf

V
t − ∂tfVt

)

2 (−2µr + rn+2 + rn)
= 0 .

Integrating twice and using the periodicity of t we obtain

fVt = fVt (r) .

Inserting into the t, i equation gives

−nfVt + nr∂rf
V
t + r2∂2

rf
V
t = 0 ,

and therefore
fVt = rC1 + r−nC2 ,

for constants C1 and C2. As the tensors dtdxi are not smooth at the axis of
rotation r = r0 we require C1r0 + C2r

−n
0 = 0, i.e.

fVt = C1
rn+1 − rn+1

0

rn
.

Perturbations of this form are exactly variations of the angular momentum
parameter a in the Riemannian Kerr anti-de Sitter family (cf. [4, Appendix
J]).

As they are not in L2 we have h̄ = 0 and

(4.3) hV = LY g̊ , |Y |̊g = O(r−n−1) .

4.2. Scalar perturbations. Scalar l = 1 solutions of the linearized Ein-
stein equations take the form

(4.4) (hSαβ) =
∑

m

(
fSab,mSm rfSa,mSmi
rfSa,mSmi 2r2SmHS

L,mγij

)
,

where Smi = −k−1D̂iSm = −n−1/2D̂iSm and the Sm are the l = 1 scalar
harmonics on Sn.

Under gauge transformations with gauge-vector Y of the form

(4.5) (Yα) = (Ya, r
2 D̂iX) =

∑

m

(Ỹa,mSm, r2X̃mD̂iSm) ,

where Ỹa,m and X̃m are functions of t and r only, (hSαβ) transforms to (h̄Sαβ)
given by
(4.6)
∑

m

(
(fSab,m + D̃aỸb,m + D̃bỸa,m)Sm (rfSa,m −

√
n(Ỹa,m + r2∂aX̃m))Smi

(rfSa,m −
√
n(Ỹa,m + r2∂aX̃m))Smi (2r2HS

L + 2frỸr,m − 2r2X̃m)Smγij

)
.
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We can use the gauge freedom to set h̄Sai = 0 and g̊abh̄Sab = 0 by choosing
(X,Ya) such that they solve the following system of equations:

√
n(Ỹa,m + r2∂aX̃m) = rfSa,m = O(r−n+1) ,(4.7)

D̃bỸb,m = −1
2 g̊
abfSab,m = O(r−n−1) .(4.8)

With this choice, h̄S satisfies

(4.9) h̄Sai = 0 , g̊abh̄Sab = 0 .

Note that (4.7)-(4.8) imply

(4.10) D̃b(r2D̃bX̃m) =
1

2
g̊abfSab,m +

1√
n
D̃b(rfSb,m) .

The homogeneous version of the equation (4.10) for X̃m has no non-trivial
solutions tending to zero at infinity by the maximum principle. The operator
at the left-hand side of (4.10) has indicial exponents in {0,−3}, and therefore

(4.10) has a unique solution X̃m = O(r−3).
The conditions (4.9) do not fix the gauge uniquely: an additional gauge

transformation satisfying

(4.11) Ỹa,m + r2∂aX̃m = 0 , D̃bỸb,m = 0 ,

preserves the form of h̄S .
We define new variables Za,m as

fStr,m =
1

f

[
Zt,m + 2r1−n (rn − µ(n+ 1)r) ∂tH

S
L,m

− 2r4−2nµ(n+ 1)
(
−2µ+ rn+1 + rn−1

)
∂t∂rZr,m

]
,

(4.12)

fSrr,m =
1

f

[
2r∂rH

S
L,m + 2µ(n+ 1)r2−n∂rZr,m

]
.(4.13)

Note that this defines Zr only up to a term which depends on t alone.
The t, r linearized Einstein equation directly gives Zt,m = 0. Eliminating

third order derivatives from the remaining equations we obtain

rn∂rH
S
L,m + r

(
−2µr + rn+2 + rn

)
∂2
rZr,m

+
(
2µ(n− 2)r +

(
3r2 + 2

)
rn
)
∂rZr,m = 0 .

(4.14)

Differentiating the Einstein equations by r and using (4.14) to express

derivatives of HS
L,m by Z

(1)
r gives two fifth order and two fourth order equa-

tion for Z
(1)
r . Eliminating higher derivatives we finally obtain a third order

equation for Z
(1)
r

∂rD̃
a(r2D̃aZr,m)− 2

rn−1 − µ(n+ 1)

rn+2 + rn − 2µr
D̃a(r2D̃aZr,m) = 0 .(4.15)

This implies

(4.16) D̃a(r2D̃aZr,m) =
Cr2

f
,

with a constant C which has to vanish for Zr,m to be regular at r0.
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We now consider the remaining gauge freedom. We see from (4.11) that
for any X satisfying

(4.17) D̃a(r2D̃aX̃m) = 0

there exists an associated Ya giving a gauge transformation which preserves
(4.9).

Inserting the definition of our new variables into (4.6) we find that under
a gauge transformation satisfying (4.11) Zr,m and HS

L,m transform as

∂rZr,m 7→ ∂r(Zr,m + X̃m) ,(4.18)

HS
L,m 7→ HS

L,m − X̃m +
f

r
Ỹr .(4.19)

As, by (4.16), Zr,m satisfies (4.17) we can set ∂rZr,m ≡ 0 using a gauge

transformation with ∂rX̃m = −∂rZr,m, which preserves (4.9).
Inserting this into (4.14) we see that HS

L,m can only depend on t. From

the remaining equations ∂2
tH

S
L,m = 0, i.e. HS

L,m is constant by periodicity.
We can exploit the remaining freedom in X to set

(4.20) X̃m = HS
L,m , Ya = 0 ,

obtaining HS
L,m ≡ 0. This gives Zr,m = const and therefore fStt,m ≡ fSrr,m ≡

fStr,m ≡ 0.

We arrive at hS = LȲ g̊ where Ȳ is the combined gauge vector consisting
of the part defined by (4.7)–(4.8), that given by (4.18) and that given by
(4.20). From the asymptotics (2.22) of h and from (2.16)–(2.20), with the
right-hand sides set to zero, we conclude that

(4.21) hS = LȲ g̊ , |Ȳ |̊g = O(r−n+1) .
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6
T I M E L I K E S I N G U L A R I T I E S A N D H A M I LT O N I A N
C O S M O L O G I C A L B I L L I A R D S

6.1 iwasawa coordinate singularity

In the following paper we construct timelike AVTD solutions (see
Section 3.3.2) of the vacuum Einstein equations without symmetries.
The solutions are parametrized by asymptotic data at the singularity.
In general, vacuum solutions without symmetries are expected to
exhibit chaotic instead of AVTD-type behavior. Here, we impose
constraints on the asymptotic data which simplify the dynamics and
allow us to use the Fuchs theorem to conclude.

In terms of the cosmological billiards formalism [39] these con-
straints correspond to an “asymptotic suppression” of some of the
potential walls. This allows the abstract “particle” to continue along a
straight line trajectory indefinitely, if it is pointed in the right direction.

Separately from this construction we analyze the structure of the
equations in the timelike case, including all the potential walls. As
two of the wall coefficients change signs compared to the standard
case of spacelike singularities, the corresponding wall terms become
potential wells instead. In the limit of τ → ∞ (i.e. as the singularity
is approached) these wells appear to become infinitely deep. This
contradicts some of the assumptions in [39] and appears to render
their (heuristic) arguments for chaotic behavior invalid.

Shortly after the publication of the following paper Shaghoulian and
Wang [98] pointed out that this is, in fact, an artefact of the Iwasawa
coordinates used in our analysis. These coordinates become singular
at the location of the well, which can be seen as follows:

Let us consider the metric in a Kasner coframe {dt, l, m, r},

g = N2dt2 + (−a(t, x)2lilj + b(t, x)mimj + c(t, x)2rirj)dxidxj , (24)

where ∂t is now a spacelike vector. In terms of the Iwasawa variables
βa and N a

i the metric takes the form

g = N2dt2 + ∑
a
(1− 2δa1)e−2βaN a

i N a
j dxidxj . (25)

Comparing coefficients gives

e−2β1
= −a(t, x)2l2

1 + b(t, x)m2
1 + c(t, x)2r2

1 . (26)

In contrast to the case of spacelike singularity (c.f. [39, Section 4.2])
this expression is not positive definite. The zero crossing corresponds
to β1 → ∞ which is exactly what happens when the “particle” falls
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into one of the potential wells (similar behavior occurs for the other
well).

Shaghoulian and Wang show in [98, Appendix B] that, at least for
spatially homogeneous Bianchi IX solutions with a timelike singu-
larity, the affected walls turn into finite potential wells when using
appropriate non-singular variables. These finite wells do not prevent
the particle from passing through, meaning the “gravitational wall
terms” lying behind them become relevant. The arguments of [39]
would then again suggest the existence of chaotic behavior, although
in a larger allowed region of the parameters. See Figure 1 and the
corresponding Figure 5 in the following paper.

Figure 1: Qualitative picture of the potential including finite well terms for
the case of timelike x2 coordinate, shown in the hyperbolic space
of the γa, projected onto the Poincaré disk. Thick black lines mark
the dominant walls, thick gray lines the subdominant walls and
red lines the walls with negative coefficients. Compare with Figure
5 in the following paper. The (hatched) allowed region is bigger
than in the standard case of spacelike singularity but still has finite
volume.
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Abstract
We construct a large class of vacuum solutions of the Einstein equations
without any symmetries and with controlled asymptotics near a timelike sin-
gularity. The solutions are obtained by a Fuchs analysis of the equations which
evolve the metric in a spacelike direction. We further observe that the change
of sign of some of the terms (walls) in the associated Hamiltonian invalidate
the ‘cosmological billards’ heuristic arguments for the existence of singula-
rities of the mixmaster type in the current context.

Keywords: cosmological billiards, timelike singularity, BKL conjecture

(Some figures may appear in colour only in the online journal)

1. Introduction

An important issue in general relativity is the nature of singularities. While it is widely
believed that the strong cosmic censorship conjecture holds, which can be loosely stated as
the expectation that timelike singularities do not form by evolution from generic spatially
compact or asymptotically flat initial data sets [9], the issue is wide open. From this per-
spective it is of interest to consider timelike singularities and therefore the ways in which
cosmic censorship could be violated.

There are numerous exact solutions with timelike singularities (e.g. [4]). Such solutions
are typically obtained when searching for solutions with symmetries. This naturally leads to
the question of whether solutions with timelike singularities and without symmetries exist.
We prove in this work that this is indeed the case: We construct an analog to the class of the
non-chaotic solutions without symmetries and with controlled asymptotics of [1, 6], by
changing the time parameter τ from a timelike to a spacelike coordinate. As the Hamiltonian
differs from the one of [1, 6] only by sign changes, which do not affect the analysis in the
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analytic case, we obtain a family of solutions with the same free functions and asymptotics (in
terms of the now spacelike τ coordinate), but with a timelike instead of a spacelike
singularity.

The construction of the solutions is based on the cosmological billiard formalism using
the Iwasawa decomposition of the metric. This method was introduced by Damour, Henneaux
and Nicolai in [3] to give a heuristic argument for the chaotic picture of spacelike singularities
provided by the Belinsky–Khalatnikov–Lifshitz (BKL) conjecture, and later used by Damour
and DeBuyl in [2] to provide a precise statement of the conjecture.

We also show that the change of the time parameter τ from a timelike to a spacelike
coordinate, i.e. considering timelike instead of spacelike singularities, switches the signs of
some of the terms (walls) in the Hamiltonian considered. These changes violate the property
of the spacelike case that the coefficients of the dominant wall terms are positive, thus
rendering the arguments of Damour et al in [3] inapplicable. The affected terms become
attractive rather than repulsive, allowing subdominant walls lying behind the dominant ones
to become relevant. This does not affect the class of solutions we construct here, as these are
non-generic and use an ansatz that suppresses the wall terms asymptotically.

2. Derivation of the Hamiltonian for the spacelike ‘time’-variable

We follow the derivation of the Hamiltonian formalism by Wald [11, appendix E.2]. The
spacetime metric is denoted by ābg while the induced Lorentzian metric on the timelike
hypersurfaces of constant τ is denoted by gij. We choose a zero shift gauge, i.e. the metric
takes the form

( )t= +s N g x xd d d d . 2.1ij
i j2 2 2

As the hypersurfaces of constant τ are timelike, their normal vector is spacelike. This
means that the Gauss equation takes the form

¯ ( )= + -R g g g g R K K K K 2.2abc
d

a
f

b
g

c
k d

j fgk
j

ac b
d

bc a
d

where Rabc
d and R̄abc

d are the Riemann curvature tensors of the induced and full metric
respectively and Kab is the second fundamental form of the hypersurface. Compared to the
case of spacelike hypersurfaces, the signs of the KK terms are interchanged.

Using ¯= -ab ab a bg g n n with an the unit normal vector of the hypersurface ( =a
an n 1)

gives

¯ ¯ ( )= -abgd
ag bd

ab
a bR g g G n n2 . 2.3

This leads to a change of sign in the constraint equation:

¯ ( ) ( )= = - - +mn
m n m

m mn
mnG n n R K K K0

1

2
. 2.42

Contracting the Einstein tensor twice with the normal vector na gives an expression for
the scalar curvature:

¯ ( ¯ ¯ ) ( )= - -a b
ab abR n n G R2 . 2.5
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The definition of the Riemann tensor gives for the last term

¯ ¯ ( )
( )( ) ( )( )

( ) ( )
( ) ( ) ( ) ( )

= = -   -  
=   -  

-   +  

= - -   +  

ab
a b

agb
g a b a

a g g a
g

a
a

g
g

g
a

a
g

a
a

g
g

g
a

a
g

a
a

ag
ag

a
a

g
g

g
a

a
g

R n n R n n n n

n n n n

n n n n

K K K n n n n 2.62

where the last two terms are divergences, which will be discarded in the Lagrangian.
Using (2.4)–(2.6) and ¯- = -g N g to express the Einstein–Hilbert action gives

¯ ¯ ( ( ) ) ( ) = - = - - - +g R g N R K K K . 2.7ab
ab a

a
2

The canonically conjugate momenta to the metric components gij are given by

˙
( ) ( ˙ ˙ ) ( )

p =
¶
¶

= - - = - --

g
g K K g N g g g g g g g

1

2
, 2.8ij

ij

ij k
k

ij
kl

ki lj
kl

kl ij1

which is unchanged from the standard case.
The Hamitonian, expressed in terms of the canonical coordinates gab and momenta pab, is

finally

˙ ( ) ( ) ( ) p p p p= - = - - + -- ⎜ ⎟⎛
⎝

⎞
⎠g g N RN g

1

2
2.9ab

ab
ab

ab
a

a
1 2 2

i.e. the standard one with the sign of the curvature term changed.

3. Iwasawa variable Hamiltonian

Here, we will describe the changes to the derivation of the Iwasawa variable Hamiltonian, as
given in appendix A of [6].

Since the level sets of τ are timelike, we need to decide which frame vector is the
timelike one. As the Iwasawa ansatz breaks the symmetry between the frame vectors, dif-
ferent choices will lead to different dynamical systems. We will use an index { }ÎJ 1, 2, 3 to
distinguish between those cases: x J will denote the timelike coordinate.

The Lorentzian metric gij on the t = const hypersurfaces is split in Iwasawa variables as

( ) å= b-g m e 3.1ij
a

a
J a

i
a

j
2 a

where d= -m 1 2a
J

Ja, i.e. −1 for a = J and 1 otherwise.
We set the lapse function N equal to -g where g is the determinant of the metric gij.

The (timelike) singularity will be approached as t  ¥.
The conjugate momenta pa to the ba and Pi

a to the  a
i are given by

˙ ˙
˙
˙ ( ) 

 p
b b

p=
¶
¶

=
¶
¶

¶

¶
= - b-

g

g
m e2 3.2a a

ij

ij

a
ij

a
J a

i
a

j
2 a

and

( )p= b-P m e2 , 3.3i
a a

J ij a
j

2 a

i.e. the same as in the spacelike case except for the additional factor ma
J .
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The non-curvature terms of the Hamiltonian (2.9), with = -N g inserted, are

( ) ( )p p p-
1

2
. 3.4ab

ab
a

a
2

The first term can be split into

( ) ( )( ) å åp + b b

<

- -m m e P
1

4

1

2
. 3.5

a
a

a b
a
J

b
J j

a
b

j
2 2 2b a

The first term of (3.5) together with the second term of (3.4) give the kinetic term p pGab
a b of

the Hamiltonian, unchanged from the spacelike case. The second term of (3.5) is the
symmetry wall term, with the addition of ma

J and mb
J . These cause a sign change for two of

the symmetry walls.
The Iwasawa form of the curvature term in the Hamiltonian (2.9), which gives the

gravitational potential walls, is calculated in the Iwasawa frame, where the metric takes the
form

( )g d d= =b-m e m A 3.6ab ab a
J

ab a
J

a
2 2a

with ≔ ( )b-A exp 2a
a2 i.e. with an additional factor ma

J compared to the spacelike case.
This is the only change in the derivation of the curvature term, as the Cartan formulas

remain unchanged. The terms corresponding to the dominant gravitational walls are

( ) ( )å
¹ ¹ ¹

C
A

A A

m

m m

1

4
. 3.7

a b c a

a
bc

a

c b

a
J

b
J

c
J

2
2

2 2

In 3 + 1 dimensions exactly one of a b c, , is equal to J, which adds an additional minus in
front of this term. This cancels the change of sign in the Hamiltonian.

In addition, there are sign changes in the subdominant gravitational terms, but as they
have an indeterminate sign even for the spacelike case, this does not affect the analysis.

In conclusion, for 3 + 1 dimensions, the prefactors of two of the symmetry walls change
sign. In the case J = 1 this involves the b b-2 1 and b b-3 1 walls, for J = 2 the b b-3 2 and
b b-2 1 walls and for J = 3 the b b-3 2 and b b-3 1 walls. In all cases, the sign of at least
one dominant wall term changes.

The potential (i.e. the Hamiltonian without the terms containing pa) for the spacelike
case and the three choices of J are sketched in figures 1 to 4.

4. Consequences for cosmological billiard

The arguments for the asymptotic billiard picture depend on the positive sign of the prefactors
of the dominant wall terms: In hyperbolic coordinates r and ga, such that g g = -G 1ab

a b (Gab

is the constant matrix d d= -å ¹Gab c d a
c

b
d) and b rg=a a (such a splitting is possible,

assuming the solution is close to a Kasner state asymptotically [3]) the Hamiltonian takes the
form

( ) ( )( )år p p r= - + +r g
rw g-H c e

1

4
. 4.1

A
A

2 2 2 2 2 A

If the prefactors cA for the dominant walls are positive this approaches the ‘sharp wall
Hamiltonian’
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( ) ( ( )) ( )år p p w g= - + + Q -
¢

¢r g ¥H
1

4
4.2

A
A

2 2 2

Figure 1. Sketch of the potential for the case of timelike τ (i.e. with spacelike
singularity). Only the exponential terms are plotted, the coefficients are set to 1. The
potential increases from dark blue through orange to light yellow. Black lines mark the
dominant walls, gray lines the subdominant walls and the allowed region (i.e. the
‘billiard table’) is hatched.

Figure 2. J = 1, i.e. x1 timelike case. The walls with negative coefficients (set to −1 in
the plots) are marked by red lines. The hatched region is the same as in figure 1 but no
longer corresponds to an allowed region, as the potential approaches -¥ outside it.
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where the sum over ¢A only covers the dominant walls and

{( ) ( )Q = <
¥ >¥ x x

x
0 0,

0.
4.3

If, however, some of the prefactors are negative the corresponding terms are potential wells
instead of walls. In the timelike case in 3 + 1 dimensions, this affects at least one of the
dominant symmetry walls.

Figure 5 shows the potentials in the hyperbolic space of the ga, projected onto the
Poincaré disk.

Figure 3. J = 2 i.e. x2 timelike case.

Figure 4. J = 3 i.e. x3 timelike case.
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5. Consequences for solutions constructed in [1, 6]

The class of solutions constructed in [1, 6] for the case of timelike τ also exists for spacelike
τ. The sign changes in the Hamiltonian have no effect on the arguments concerning the
evolution equations in the context of the analytic Fuchs theorem, as the decay of the expo-
nential terms is unchanged.

An additional factor mb
J appears in the term p̃b

a, which enters in the Iwasawa variable
momentum constraint:

Figure 5. Sketch of the potentials in the hyperbolic space of the ga, projected onto the
Poincaré disk. As before, the allowed region for the case of spacelike singularity is
hatched, thick black lines mark the dominant walls, thick gray lines the subdominant
walls and red lines the walls with negative coefficients.
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˜ ( )
( )




p
p

=
- =

>

>b b- -

⎧
⎨⎪
⎩⎪

a b

P b a

m e P a b

1

2

for ,

for ,

for .

5.1b
a

b
b

i
i
a

b
J a

i
i
b

2 a b

As the factor mb
J is only present in the asymptotically decaying case >a b, which is

discarded in the asymptotic constraints, this leaves the conditions on the free functions
unchanged.

Similarly, there are sign changes in the derivation of the evolution equations for the
constraints, given in appendix D of [6], which cancel out in the final equations.

As in the case of a spacelike singularity, the presence of a cosmological constant does not
affect the result (see appendix F of [6]).

This leads to the following theorem, in close analogy with the results of [1, 6]:

Theorem 1. For any choice of { }ÎJ 1, 2, 3 and analytic functions ◦b
2, ◦b

3 and ◦P 2
1

depending on coordinates { }Îx i, 1, 2, 3i , and for any two analytic functions, ◦p
2 and ◦p

3

depending on xi, which satisfy the inequalities

( ) ( )◦ ◦< < -p p0 2 1 5.22 3

we obtain a solution of the vacuum Einstein equations with an arbitrary cosmological
constant given by the metric

( ) åt= +å b b-

=

-=g e m e x xd d d . 5.3
a

a
J a

i
a

j
i j2 2

1

3
2

a
a a

1

3

Here d= -m 1 2a
J

Ja, ba and  a
i, { }Îi a, 1, 2, 3 , depend on all coordinates t x, i and

behave asymptotically as

( ) ≕ ( ) ( )◦ ◦  b b t d d= + + + = +tn tn- -p O e and O e , 5.4a a a a
i i

a
s
a

i i
a

where n is a positive constant, the ◦b
a’s and ◦p

a’s depend only upon xi and  = 0s
a

i for a i
with the non-vanishing terms given by

( )
( ) ( )◦

( )

◦ ◦

( ) ( )◦ ◦
◦ ◦ ◦ ◦ = -

-
+

b b
t t n

- -
- - - - +P e

p p
e O e

2
, 5.5s

p p p p1
2

2
1

2

2 1
2 2 2 2

2 1
2 1 2 1

( )
( ) ( )◦

( )

◦ ◦

( ) ( )◦ ◦
◦ ◦ ◦ ◦ = -

-
+

b b
t t n

- -
- - - - +P e

p p
e O e

2
, 5.6s

p p p p2
3

3
2

2

3 2
2 2 2 2

3 2
3 2 3 2

( ) ( )

( )
◦

◦ ◦

◦ ◦ ◦ ◦

( )

( )

◦ ◦ ◦ ◦

◦ ◦

 = -
- -

+

b b t

t n

- - - -

- - +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟e P

P P

p p p p
e

O e

2 2

1

2 2

, 5.7

s
p p

p p

1
3

2 3
1

2
1

3
2

3 2 3 1
2 2

2 2

3 1 3 1

3 1

where the functions { }◦  <P i
a a i1 3 depend only on xi.

The remaining functions ◦p
1, ◦b

1, ◦P 3
2 and ◦P 3

1 are then determined from the asymptotic
constraint equations:

( )◦
◦ ◦

◦ ◦

= -
+

p
p p

p p
, 5.81

2 3

2 3

( ) ( ( ) ( )) ( )◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦b b b= - + + + + + +-p p p p p p p p , 5.9,3
1 2 3 1

,3
2

,3
1

,3
2 1 3

,3
3 1 2
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( ) ( )◦ ◦ ◦ ◦b= +P G p p G2 , 5.10c
c d f

df
3

2,3 2 ,2 ,2

( ) ( )◦ ◦ ◦ ◦ ◦b= - + +P P G p p G2 . 5.11c
c d f

df
3
1,3

2
1,2 1 ,1 ,1

Here Gab denotes the constant matrix d d= -å ¹Gab c d a
c

b
d.

Finally, the Kretschmann scalar behaves as

( )
( )

(( ) ( ) ) ( )
( )

◦ ◦

◦ ◦
◦ ◦ ◦ ◦

( )
◦ ◦ ◦

◦ ◦ ◦=
+

+ + +abgd
abgd

b b b
nt t

+ +
- + +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟R R

e p p

p p
p p p p O e e

16
,p p p

4 2 3 2

2 3 2
2 2 2 3 3 2 4

1 2 3

1 2 3

and therefore, since ◦ ◦ >p p 02 3 , the curvature diverges as t  ¥. Along curves

( ) ( ( ))g t t g t= , i , [ )t tÎ ¥,0 , fulfilling ∣ ( )∣ ( )( ( ( )) )◦ g t¢ = g t t-O ei pi j
for some  > 0 and

for =i 1, 2, 3, the curvature diverges in finite proper time/length.

6. Conclusion

We have constructed a large class of vacuum spacetimes containing a timelike singularity.
The solutions asymptotically approach a timelike Kasner metric at each point ( )xi , which can
be interpreted as the field of an infinitely extended thin rod, with positive mass for ¹J 1 and
negative mass for J = 1 [5]. As the Kasner exponents now depend upon the coordinates x i the
solutions might represent the field of more complicated, non-symmetric and non-static, one-
dimensional sources.

We have also noted that the cosmological billiards arguments of Damour, Henneaux, and
Nicolai [3] are not directly applicable to this case, because of the transformation of asymp-
totically infinite potential walls into infinite wells. One should keep in mind the results of
Parnovsky [7, 8], who applied the original procedure used by BKL to the timelike case, and
concluded that the heuristic construction of chaotic singularities remains applicable. It would
be of interest to resolve this apparent contradiction.

In [10] the authors argue, using a model Bianchi IX spacetime, that the change of sign of
some of the wall terms is an artifact of the Iwasawa decomposition and that the affected walls
vanish in a different gauge. It is not clear to us whether their arguments apply to the general
inhomogeneous case.
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The annoying null boundaries
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Abstract. We consider a class of globally hyperbolic space-times with “expanding
singularities”. Under suitable assumptions we show that no C0-extensions across a compact
boundary exist, while the boundary must be null wherever differentiable (which is almost
everywhere) in the non-compact case.

1. Introduction

One of the major open questions in mathematical general relativity is the behavior of globally
hyperbolic space-times when singular boundaries are approached. In particular the question of
extendibility of the metric across such boundaries lies at the heart of the “cosmic censorship
conjecture” [1], compare [2, 3].

In a recent important paper, Sbierski [4] has established C0-inextendibility of the Kruskal-
Szekeres extension of the Schwarzschild metric. His proof makes uses of the SO(2)×R symmetry
of the metric, which renders the argument unsuitable in situations where no isometries exist.
(See also [5].)

It is of interest to enquire whether Sbierski’s analysis can be adapted to more general
spacetimes of interest, without isometries. The object of this note is to point out a class of
space-times where C0-extendibility can only happen across null boundaries, if at all. Indeed, let
us consider a globally hyperbolic space-time with a differentiable Cauchy time function t covering
(0,∞); we will be interested in possible extensions of M towards the past, see Definition 2.3
below. The function t determines a topological splitting M = (0,∞) × S , where the slices
{τ} ×S are the level sets of t; here one travels from a slice {t1} ×S to {t2} ×S by following
the integral curves of ∇t.
Definition 1.1. We shall say that a globally hyperbolic space-time (M, g), with a time function
t as just described, contains a globally expanding singularity towards the past if for every open
set A ⊂ S there exists a sequence ti decreasing to zero such that the (Riemannian) diameter of
{ti} ×A within {ti} ×S tends to infinity as ti → 0.

As discussed in more detail in Section 6 below, the space-times constructed in [6, 7], as well
as Gowdy, and various other “Asymptotically Velocity Term Dominated” (AVTD) spacetimes
obtained via Fuchsian methods are of this type, and the theorems below apply.

All the boundaries that we consider in this work will be achronal, hence differentiable almost
everywhere by standard arguments (cf. the beginning of Section 4).

We have:
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Theorem 1.2. Suppose that (M, g) contains a globally expanding singularity towards the past.
Then, in every continuous past extension of M , the boundary ∂ι(M) of the image of M in the
extension is null at all its differentiability points.

Theorem 1.2 is an immediate consequence of Theorem 3.1 below, which is proved under a
condition weaker, but somewhat more involved, than that of Definition 1.1.

As such, it also holds:

Proposition 1.3. Under the hypotheses of Theorem 3.1, every spacelike hypersurface in the
extension which intersects the boundary ∂ι(M) also intersects ι(M) itself.

Some further results in the same spirit concerning general extensions are also established, see
Theorems 3.3 and 3.5 below.

We suspect that null extensions cannot occur either under the hypotheses above, and thus
such space-times are inextendible, but we have not been able to establish this in general. However
we have:

Proposition 1.4. Under the hypotheses of Theorem 1.2, (M, g) has no past extensions with a
continuous metric and a compact boundary.

The proof of Proposition 1.4 can be found in Section 5.
Recall that electrovacuum space-times with compact Cauchy horizons have been studied

in [8, 9], and that, in space-times in which the metric is C3-extendible [10, 11], for such metrics
compactness of the horizon implies its differentiability. We emphasise that our arguments do
not need such results.

It should be recognised that our definition of expanding space-times is tied to the choice
of a time-function t, and large deformations of a good time function, if one exists, will not
preserve the condition. In particular it might be very difficult to determine whether or not a
given space-time, presented in a coordinate system where the conditions of Definition 1.1 are not
met, admits a time-function which will satisfy the conditions. But our results here give some
geometric meaning to the notion: space-times extendible through a compact Cauchy horizon, or
past-extendible through a spacelike boundary, will not be expanding in the sense of Definition 1.1
no matter what time function is used.

2. Conventions and definitions

We use the standard definition of the Riemannian diameter of a set A in the set B ⊇ A, where
both A and B are subsets of a Riemannian manifold (M, g)

diam(A,B) := sup
x,y∈A

inf
γ:[0,1]→B

γ(0)=x , γ(1)=y

∫ 1

0
|γ̇(s)|gds . (2.1)

Our remaining definitions follow Sbierski [4], in particular:

Definition 2.1. A C0-extension of a spacetime (M, g), where M is a smooth manifold and
g a Lorentzian metric, is a spacetime (M̃, g̃) of the same dimension, with M̃ again a smooth
manifold and g̃ a continuous Lorentzian metric, together with a smooth isometric embedding
ι : M → M̃ such that ι(M) is a proper subset of M̃ .

The timelike futures and pasts I± will be defined using piecewise smooth timelike curves in
both M and M̃ .

We define the future/past boundary of a spacetime as in [12], namely:
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q

p

t = ti

t = tL

I−(q,M) ∩ {t = ti}

I−(p,M) ∩ {t = ti}

Figure 2.1: An illustration of the definition of an expanding singularity.

Definition 2.2. The future, respectively past, boundary of M , denoted ∂+ι(M), respectively
∂−ι(M), is the set of points p ∈ ∂ι(M) such that there exists a future/past directed timelike
curve γ : [0, 1]→ M̃ with γ([0, 1)) ⊂ ι(M) and γ(1) = p.

Definition 2.3. An extension will be called past, respectively future, if ∂+ι(M) = ∅, respectively
∂−ι(M) = ∅.

We will also need a definition closely related to, but somewhat weaker than Definition 1.1:

Definition 2.4. We shall say that a globally hyperbolic space-time (M, g) contains an expanding
singularity towards the past if there exists a time function t ranging over (0,∞) and a real number
tL > 0 such that for all pairs of points p ∈ {t < tL} and q ∈ I−(p,M) there exists a sequence ti
decreasing to zero such that the diameter of I−(q,M)∩ {t = ti} in I−(p,M)∩ {t = ti} tends to
infinity as ti → 0.

This is illustrated in Figure 2.1.

Remark 2.5. We note that a globally expanding singularity in the sense of Definition 1.1 is
expanding in the sense of Definition 2.4. For this, let us identify the spacetime M with R×S
by flowing along the gradient ∇t of t. For a subset Ω of S set Ω(t) = {t} × Ω, and let

Ωi(ti) := I−(q,M) ∩ {t = ti} .

We then have, for j > i,

Ωi(tj) ⊆ I−(q,M) ∩ {t = tj} ≡ Ωj(tj) .

By its definition, given in (2.1), the diameter appearing in Definition 2.4, namely

diam(Ωi(ti), I
−(p,M) ∩ {t = ti}) ,

is bounded from below by the diameter of Ωi(ti) in the whole level set, diam(Ωi(ti), {t = ti}).
By Definition 1.1 of a globally expanding singularity the diameter of Ω0(ti) in {t = ti} diverges
as ti tends to zero, and the inclusion Ω0(ti) ⊂ Ωi(ti) proves the claim.

3. Nonexistence of spacelike boundaries

We have the following result, which immediately implies Theorem 1.2:

Theorem 3.1. Suppose that (M, g) contains an expanding singularity towards the past. Then
in every continuous past extension of M the boundary ∂M is null wherever differentiable.

The following proposition gives some more information about extensions in the current
context:
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γ
S

W

Figure 3.1: The set W appearing in the second condition of Theorem 3.5.

Proposition 3.2. Under the hypotheses of Theorem 3.1, every spacelike hypersurface in the
extension which intersects ∂−ι(M) also intersects ι({t < tL}) ⊆ ι(M).

For a general extension (i.e. where ∂+ι(M) might be non-empty) we have:

Theorem 3.3. Suppose that (M, g) contains an expanding singularity towards the past. If the
Cauchy hypersurface S is compact then the past boundary ∂−ι(M) of M in every extension is
null wherever differentiable.

Proposition 3.4. Under the hypotheses of Theorem 3.3, every spacelike hypersurface in the
extension which intersects ∂−ι(M) also intersects ι({t < tL}) ⊆ ι(M).

Under weaker conditions on S we obtain a similar but more involved result:

Theorem 3.5. Suppose that (M, g) contains an expanding singularity towards the past. If either

• there exist constants tC > 0, C > 0 such that for all timelike curves γ in M the intersection
I+(γ,M) ∩ {t = tC} has diameter less than C,

• or for all timelike curves γ ⊂M the intersection

W := I+(I−(I+(γ, I−(S ,M)),M),M) ∩S

(compare Figure 3.1) is precompact.

Then:

• every spacelike hypersurface in the extension which intersects ∂−ι(M) also intersects
ι({t < tL}) ⊆ ι(M)

• and for every point p ∈ ∂−ι(M) there exists a neighborhood Õ ⊆ M̃ of p such that the
hypersurface

{q ∈ ∂−ι(M) ∩ Õ | I+(q, Õ) ∩ ∂−ι(M) = ∅} , (3.1)

which will be referred to as the futuremost part of ∂−ι(M) in Õ, is null wherever it is
differentiable.

Remark 3.6. The first condition in Theorem 3.5 implies the second one.

Õ

ι(M) p

futuremost part
of ∂ι(M) ∩ Õ

Õ

Figure 3.2: An example of a case where the futuremost part of ∂−ι(M) in Õ is not the same as
∂−ι(M) ∩ Õ. The picture on the left shows the whole spacetime, with the extension given by
gluing the edges according to the arrows. The picture on the right shows a neighborhood Õ of
the point p ∈ ∂−(M). Here ∂−ι(M) = ∂+ι(M) = ∂ι(M) and there is no neighborhood Õ of p
such that ∂ι(M) ∩ Õ is achronal. The futuremost part, however, is achronal.
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Figure 3.2 illustrates the difference between the futuremost part of ∂−ι(M), which appears
in the second consequence of Theorem 3.5, and ∂−ι(M) itself.

4. Achronality of boundaries

In order to prove the results above, we start by showing that the relevant sets are achronal. As
such, achronal sets are locally Lipschitz continuous (for every point we can find a coordinate
neighborhood on which the metric is close to Minkowski, which provides a Lipschitz bound) and
therefore differentiable almost everywhere by Rademacher’s theorem. By achronality they are
null or spacelike wherever differentiable. To finish the proofs we will need to rule out spacelike
tangent planes; this will be done in the next section.

We have:

Lemma 4.1. The boundary of a future or past extension is an achronal topological hypersurface.

Proof. We assume a past extension. For a future extension, replace I± with I∓ in the following.
Achronality of ∂ι(M) is equivalent to I+(∂ι(M), M̃) ∩ ∂ι(M) = ∅. We first show that

I+(∂ι(M), M̃) ⊆ I+(ι(M), M̃) .

Indeed, for every point p ∈ I+(∂ι(M), M̃) there is q ∈ ∂ι(M) such that p ∈ I+(q, M̃). Therefore
q ∈ I−(p, M̃) and, because I− is open and q lies on the boundary of ι(M), there is a point
ι(M) 3 r ∈ I−(p, M̃). This implies p ∈ I+(r, M̃), which proves the claim.

As M̃ is a past extension, no future directed timelike curve leaves M , i.e. I+(r, M̃) ⊆
ι(M) ∀r ∈ ι(M), and therefore

I+(∂ι(M), M̃) ⊆ ι(M) ⊆ M̃ \ ∂ι(M)

which implies that ∂ι(M) is achronal.
To show that it is a topological hypersurface we need to show ∂ι(M) ∩ edge(∂ι(M)) = ∅

(see [13, Section 14, Lemma 25], and note that the proof there does not use differentiability
of the metric). We consider a point p ∈ ∂ι(M). By the above, I+(p, M̃) ⊆ ι(M) and, as
∂+(ι(M)) = ∅, I−(p, M̃) ⊂ M̃ \ ι(M). Therefore every (past directed) timelike curve from
I+(p, M̃) to I−(p, M̃) has to cross ∂−(M) ⊆ ∂ι(M) and so p /∈ edge(∂ι(M)).

Remark 4.2. A very similar result was shown by Galloway and Ling [12, Theorem 2.6].

Next we show that every point on an achronal boundary is the limit of a timelike curve in
ι(M). For a general boundary this is only true for at least one point [4, Lemma 2.17].

Lemma 4.3. Given a point p ∈ ∂ι(M) and a neighborhood p ∈ Õ ⊂ M̃ such that ∂ι(M) ∩ Õ is
achronal in Õ then p is the end point of a differentiable timelike curve in M , i.e. there exists a
differentiable timelike curve σ : [−1, 0]→ M̃ such that σ([−1, 0)) ⊂ ι(M) and σ(0) = p.

Proof. The curve σ might be future- or past-directed, we consider both cases here. We choose
coordinates (xα) ∈ (−δ, δ) × (−ε, ε)d on Õ such that p = (0, . . . , 0), the metric is close to
Minkowski and the sets {±19

20δ} × (−ε, ε)d are contained in I±(p, Õ) (by choosing Õ smaller if
necessary).

For every x ∈ (−ε, ε)d there is at most one t ∈ (−δ, δ) such that (t, x) ∈ ∂ι(M): If there
were more than one then they could be connected by a (vertical) timelike curve, contradicting
achronality.

As p is a boundary point there is a point Õ 3 q ∈ ι(M). It can be connected by a vertical
curve which does not cross ∂ι(M) to one of {±19

20δ} × (−ε, ε)d. Therefore the differentiable

timelike curve σ : (0, 19
20δ)→ Õ, σ(s) = (±s, 0, . . . , 0) lies in ι(M), as it can be connected to q by

a curve which does not cross the boundary.
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Remark 4.4. Lemma 4.1 and Lemma 4.3 together imply that if ∂+ι(M) = ∅ then ∂ι(M) =
∂−ι(M), with a similar statement obtained by reversing time-orientation.

In order to prove Theorems 3.3 and 3.5 we will need the following two Lemmas.

Lemma 4.5. We consider a globally hyperbolic spacetime (M, g) and a C0-extension (M̃, g̃) with
embedding ι : M → M̃ . If there exists a spacelike Cauchy hypersurface S ⊂M such that for all
timelike curves γ ⊂M the set

W := I+(I−(I+(γ, I−(S ,M)),M),M) ∩S

is precompact in M , then for any p ∈ ∂−ι(M) there exists a neighborhood Õ of p such that the
futuremost part of ∂−ι(M) in Õ, {q ∈ ∂−ι(M) ∩ Õ | I+(q, Õ) ∩ ∂−ι(M) = ∅}, is a non-empty
achronal topological hypersurface.

Recall that the set W is shown in Figure 3.1.

Remark 4.6. A simple condition that gives a precompact W is an upper bound for the diameter
of I+(γ,M) ∩S which is uniform with respect to γ.

Proof. Let p ∈ ∂−ι(M) be a point on the past boundary, γ the timelike curve approaching it,
and S the spacelike Cauchy hypersurface as in the Lemma. As W̄ (closure in M) is compact
we can choose a neighborhood Õ of p such that Õ∩ ι(W̄ ) = ∅. Choosing a smaller neighborhood
if necessary we introduce coordinates (xα) ∈ (−δ, δ) × (−ε, ε)d such that the metric is close to
Minkowski, γ̇ = ∂x0 and {±19

20δ} × (−ε, ε)d ⊆ I±(p, Õ).

We consider the straight (in coordinates) timelike curves σx : (−δ, 19
20δ] → Õ, s 7→ (s, x)

where x ∈ (−ε, ε)d. These end in ι(M) by the construction of the coordinates. We define

b(x) = inf{s ∈ (−δ, 19

20
δ] | ∀s′ > s, σx(s′) ⊂ ι(M)}

and show that b(x) > −δ, i.e. that the σx intersect ∂−ι(M) at least once, at σx(b(x)), and that

σx(b(x)) ∈ Õ \ (I+(p, Õ) ∪ I−(p, Õ)) .

As S is a Cauchy hypersurface and by the definition of W , the future in Õ of any point in
Iγ ∩ Õ, where

Iγ := ι(I−(I+(γ,M) ∩ I−(S ,M),M)) ,

has to be contained in ι(M). In particular, as the future of a point is the future of any past
directed curve ending at that point and γ ∩ Õ ⊂ Iγ , I+(p, Õ) = I+(γ, Õ) ⊂ ι(M) and therefore

σx(b(x)) /∈ I+(p, Õ) .

We now have to show that b(x) > −δ and σx(b(x)) /∈ I−(p, Õ). If we assume this is false then

there exists s− ∈ (b(x), 19
20δ) such that σx(s−) ∈ I−(p, Õ). But we also have σx(s−) ⊂ Iγ : The

end point σx(19
20δ) of σx is contained in {19

20δ} × (−ε, ε)d ⊆ I+(p, Õ) = I+(γ, Õ), and therefore

σx((b(x), 19
20δ]) ⊂ Iγ . Now, as σx(s−) ⊂ Iγ and p ∈ I+(σx(s−), Õ), we have p ∈ ι(M) by the

argument in the previous paragraph, which is a contradiction.
Repeating the argument with p replaced by σx(b(x)) for all x ∈ (−ε, ε)d shows that the set

{σx(b(x)) | x ∈ (−ε, ε)d} = {q ∈ ∂−ι(M) | I+(q, Õ) ∩ ∂−ι(M) = ∅} is achronal in Õ. It is a
topological hypersurface as p can’t be an edge point by the properties of b(x).

Under the stronger assumption that the Cauchy hypersurface S is compact, we obtain the
following simpler result.
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Lemma 4.7. We consider a globally hyperbolic spacetime (M, g) and a C0-extension (M̃, g̃) with
embedding ι : M → M̃ . If there exists a compact spacelike Cauchy hypersurface of M then
∂−ι(M) is a locally achronal topological hypersurface.

Proof. Let S be the compact spacelike Cauchy hypersurface. As any subset of a compact
set is precompact by definition, Lemma 4.5 applies. What remains to be shown is that the set
{q ∈ ∂−ι(M) ∩ Õ | I+(q, Õ) ∩ ∂−ι(M) = ∅} is actually the full ∂−ι(M) ∩ Õ, i.e. that there are
no additional points in ∂−ι(M) below it.

We choose a neighborhood Õ and coordinates as in the proof of Lemma 4.5, but with
Õ ∩S = ∅. Now the future in Õ of any point q ∈ ∂−ι(M) ∩ Õ lies in ι(M).

If there was a point q ∈ ∂−ι(M) ∩ Õ such that ∂−ι(M) 3 p ∈ I+(q, Õ) ∩ ∂−ι(M) then p
would lie in ι(M).

5. Proofs of the main theorems

The proofs depend on the following Lemma, which is a slight variation of a result of Sbierski [14].
We use his notation for the sets

C−a := {0 6= X ∈ Rd+1|< X, e0 >Rd+1

|X|Rd+1

< −a} ,

where 0 < a < 1, < ., . >Rd+1 is the Euclidean scalar product in Rd+1 and |.|Rd+1 is the Euclidean
norm. The C−a are cones of vectors with angle less than cos−1(a) to the x0 axis with the tip of
the cone pointing up.

Lemma 5.1. We consider a spacetime (M, g) with extension (M̃, g̃). Given a neighborhood Õ of
a point on the boundary of ι(M), a point p ∈ Õ ∩ ι(M) and a chart ψ̃ : Õ → (−δ, δ) × (−ε, ε)d
such that

(i) ∂x0 is timelike,

(ii) |g̃αβ − ηαβ| < ν where η is the Minkowski metric and 1/2 > ν > 0 a constant such that

∀a ∈ (−δ, δ)× (−ε, ε)d, ψ̃−1(a+ C−5/6) ⊆ I−(ψ̃−1(a), Õ) ⊆ ψ̃−1(a+ C−5/8),

(iii) ψ̃−1({x̃0 < − 1
10δ}) ⊆ M̃ \ I−(ψ̃−1({19

20δ} × (−ε, ε)d), ι(M)),

(iv) I−(p, ι(M)) ⊂ Õ,

(v) ψ̃−1({19
20δ} × (−ε, ε)d) ⊆ ι(I+(p, Õ)),

there exist q ∈ I−(p, ι(M))∩Õ and a constant 0 < Cd <∞ such that for all Cauchy hypersurfaces
S of M the distance in I−(p, ι(M))∩ ι(S ) of any two points in I−(q, ι(M))∩ ι(S ) is bounded
above by Cd.

Proof. We choose q ∈ I−(p, Õ) ∩ ι(M) such that

(ψ̃(q) + C−5/8) ∩ {x̃0 > −δ/10} ⊂ (ψ̃(p) + C−5/6) ∩ {x̃0 > −δ/10} ,

i.e. such that the past of q in M lies completely inside a (Euclidean) cone contained in the past
of p.

We assume q ∈ ι(I+(S ,M)), as otherwise I−(ι−1(q),M) ∩S = ∅ and there is nothing to
show. By property (iii) of the chart ψ̃ there exists a function (−ε, ε)d → (−δ, δ) , x 7→ Lx such

that the timelike curves σx : (Lx, δ) → M,σx(s) = ι−1(ψ̃−1(s, x)) are past inextendible in M .
As q lies in the past of p, property (v) holds for q as well. This implies that the curves σx
intersect I+(S ,M) and therefore intersect S exactly once, say at s = f(x). We take this as
the definition of f : (−ε, ε)d → (−δ, δ).
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We first show that f is smooth: As ψ̃(ι(S ) ∩ Õ) is a smooth submanifold, there exists for
every point (f(x0), x0) a neighborhood W and a smooth submersion g : W → R such that
ψ̃(ι(S )∩ Õ)∩W = {g = 0}. As S is a Cauchy hypersurface no timelike vector can be tangent
to it. Therefore ∂0g|(f(x0),x0) 6= 0 and by the implicit function theorem there exists a smooth

function h : (−ε, ε)d ⊇ V → (−δ, δ), where V is a neighborhood of x0, such that g(h(x), x) = 0.
Thus f |V = h and therefore f is smooth.

The next step is to show that |∂if | is bounded by a positive constant in Õ for all i. As vectors
tangent to S cannot be timelike we obtain the inequality

0 ≤ g̃((∂if)∂0 + ∂i, (∂if)∂0 + ∂i) = (∂if)2g̃00 + 2(∂if)g̃0i + g̃ii . (5.1)

By property (ii), g̃00 < −1/2, g̃ii > 1/2, and g̃0i < 1/2 and therefore this inequality is only
satisfied for (∂if)− ≤ (∂if) ≤ (∂if)+ where (∂if)± are the values where equality holds in (5.1),
i.e.

(∂if)± =
−g̃0i ∓

√
(g̃0i)2 − g̃iig̃00

g̃00
.

Again using property (ii), we see that (∂if)±, and therefore also (∂if), are bounded by a constant
independent of f .

We define ω : (−ε, ε)d → (−δ, δ) × (−ε, ε)d, ω(x) = (f(x), x). This parameterizes a smooth
submanifold S̃ which is isometric to an open subset of S in M by ι−1 ◦ ψ̃−1. We denote by ḡ
the metric induced on S̃ by g̃. The components of ḡ are

ḡij = g̃µν
∂ωµ

∂xi

∂ων

∂xj
= g̃00

∂f

∂xi

∂f

∂xj
+ g̃0j

∂f

∂xi
+ g̃i0

∂f

∂xj
+ g̃ij .

As |g̃µν | and ∂if are bounded by the above, we have |ḡij | < Cḡ for a positive constant Cḡ.

We now consider two points r, s ∈ I−(q, ι(M)) ∩ ι(M) as in the lemma. As I−(q,M) ⊂ Õ
there exist x, y ∈ (−ε, ε)d such that ω(x) = ψ̃(ι(r)) and ω(y) = ψ̃(ι(s)). The length of the

straight line σ : [0, 1]→ (−ε, ε)d, σ(`) = x+ `(y − x) is given by

L(σ) =

∫ 1

0

√
ḡ(σ̇(`), σ̇(`)) d`

=

∫ 1

0

√√√√
d∑

i,j=1

(y
i
− xi)ḡij(σ(`))(y

j
− xj) d`

≤
∫ 1

0

√√√√
d∑

i,j=1

2ε · Cḡ · 2ε d`

=2εd
√
Cḡ .

As I−(q, ι(M)) ∩ Õ ⊂ ψ̃−1(ψ̃(p) + C−5/6) the curve σ is contained in I−(p,M) ∩S . As the

distance in I−(p,M) ∩ S between r and s is defined as the infimum over the length of all
piecewise smooth curves connecting them, and ι−1 ◦ ψ̃−1 ◦ σ is one such curve, this completes
the proof.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 4.1 the boundary ∂ι(M) of the extension is achronal,
hence differentiable almost everywhere, and by Lemma 4.3 we have for every p∂ ∈ ∂ι(M) a
timelike curve γ : [0, 1]→ M̃ such that γ([0, 1)) ⊂ ι(M) and γ(1) = p∂ .
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We assume that ∂ι(M) is spacelike at a point p∂ at which it is differentiable and establish a
contradiction. We choose a neighborhood Õ of p∂ such that t < tL in Õ ∩ ι(M), where tL is the
constant appearing in the Definition 2.4 of expanding singularity. This is possible as ∂ι(M) is
achronal: In any neighborhood of p∂ , either t < tL or {t = tL} is some achronal set lying above
∂ι(M) and we can find a smaller neighborhood of p∂ which doesn’t intersect it.

We choose coordinates x̃i on Õ such that x̃i(p∂) = 0, g̃(p∂) = η (where η is the Minkowski
metric) and |g̃(x)αβ − ηαβ| < ν for all x ∈ Õ and ν such that condition 2 of Lemma 5.1 is
satisfied.

We perform a Lorentz boost to transform the normal vector of ∂ι(M) at p∂ to ∂x0 and, by
choosing a smaller neighborhood Õ if necessary, ensure that ∂ι(M) is almost horizontal, i.e.
∂ι(M) ∩ Õ ⊂ {−δ/10 < x̃0 < +δ/10} and therefore condition 3 is satisfied.

We choose a point p ∈ Õ ∩ ι(M) such that I−(p, ι(M)) ⊂ Õ, satisfying condition 4. Finally,
by choosing a smaller neighborhood, we can satisfy the remaining condition 5.

Applying Lemma 5.1 we obtain, for a point q ∈ I−(p, ι(M)) and for all Cauchy hypersurfaces
S , an upper bound for the distance in I−(p, ι(M))∩S of any two points r, s ∈ I−(q,M)∩S .

This is a contradiction to Definition 2.4 of expanding singularities.

Proof of Proposition 3.2. To prove that there exists no spacelike hypersurface Σp∂ ⊂
M̃ \ ι(M) such that p∂ ∈ Σp∂ we use the same argument, but choose coordinates in Õ such

that Σp∂ instead of ∂ι(M) is almost horizontal. As Σp∂ is spacelike, the part of I−(p, M̃) lying

above Σp∂ is entirely contained in Õ, we denote it by IΣp∂ ,p
. As any past directed curve from

p has to cross Σp∂ before leaving Õ we have I−(p, ι(M)) ⊆ IΣp∂ ,p
and therefore we obtain a

contradiction as before.

The proofs of Theorems 3.3 and 3.5 proceed in a very similar way:

Proof of Theorems 3.3 and 3.5. By Lemma 4.7 the conditions of Theorem 3.3 imply that
∂−ι(M) is a locally achronal topological hypersurface. Similarly, under the conditions of
Theorem 3.5, Lemma 4.5 implies that the “locally futuremost part” of the past boundary ∂−ι(M)
is achronal, i.e. for every p ∈ ∂−ι(M) there exists a neighborhood U of p such that

{z ∈ ∂−ι(M) ∩ U | I+(z, U) ∩ ∂−ι(M) = ∅}

is an achronal topological hypersurface in U .
By the definition of ∂−ι(M) we have for every p ∈ ∂−ι(M) a timelike curve γ ending at p.

The proof now proceeds analogously to that of Theorem 3.1 with ∂ι(M) replaced by ∂−ι(M)
in the case of Theorem 3.3 and with the “locally futuremost part” of ∂−ι(M) in the case of
Theorem 3.5.

The argument excluding the existence of a spacelike hypersurface Σp∂ ⊂ M̃ \ ι(M) such that
p∂ ∈ Σp∂ follows the proof of Proposition 3.2, except that to guarantee that I−(p, ι(M)) lies

above Σp∂ we only need Σp∂ ∩ ι({t < tL}) = ∅ as t < tL in I+(∂−ι(M), Õ).

We pass now to the

Proof of Proposition 1.4. In contrast to the proofs above, if the boundary is null we cannot
use the pasts of points in M to identify subsets of Cauchy hypersurfaces in neighborhoods in M̃
with those in M . Instead we consider the total diameter of the (compact) Cauchy hypersurface.
We first need to ensure that neighborhoods of the boundary contain the whole (embedded)
Cauchy hypersurface Ss := {t = s}, for s sufficiently small.

By the proof of Theorem 3.1 in [15] there exists a constant δ > 0 such that for all 0 < s ≤ δ
there is a map ψs : M̃ → M̃ , the flow of a continuous timelike vector field on M̃ , such that
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ψs(∂ι(M)) = ι(Ss) and these are compact. In [15] it is assumed that the extended manifold
is at least C3, but this can be relaxed in our case: The results of [15, Lemma 3.2] hold by our
Lemma 4.1. Note that [15, Lemma 2.1] and [15, Lemma 3.3] require only differentiabilty of the
manifold, not the metric. The rest of the proof takes place in (M, g) which is smooth in any
case. In addition, [15, Theorem 3.1] assumes that the boundary itself is C1 but this can similarly
be relaxed as long as the Cauchy hypersurfaces St are C1.

By Lemma 4.1 and Lemma 4.3 the boundary ∂ι(M) = ∂−ι(M) of the extension is achronal.
We choose for each point p ∈ ∂ι(M) an open neighborhood in M̃ and coordinates such that the
metric is close to Minkowski. As ∂ι(M) is compact we can find a finite subcover {Oi}. For each
i there exists a constant δi such that for each p ∈ Ōi ∩ ∂ι(M) and all 0 < s ≤ δi, ψs(p) ∈ Ōi. As
there are only finitely many i we can set δmin = min{δi} and obtain Ss = ψs(∂ι(M)) ⊂ ⋃i Ōi
for all 0 < s ≤ δmin.

The distance in S between any two points of a Cauchy hypersurface S is bounded above
in each Oi by a constant independent of S by a similar argument as in the proof of Lemma
5.1. As I+(∂ι(M), M̃) ⊂ ι(M) and the Cauchy hypersurfaces St are achronal in M they can
intersect Oi only once (i.e. ι(St) ∩ Oi is connected), and therefore the total diameter of St is
bounded. This contradicts the Definition 1.1 of a globally expanding singularity.

6. Examples

We will use the following Lemma to show that the examples below contain an expanding
singularity towards the past, as required by Theorem 3.1:

Lemma 6.1. We consider a globally hyperbolic spacetime (M, g) of dimension n+1 with a Cauchy
time function t : M → (0,∞) such that M = (0,∞)×S . Suppose that there exists tL > 0 such
that the subset {t < tL} ⊂ M can be covered by charts of the form (0, tL) × U , for some open
subset U ⊆ S , in which the metric takes the form

g = g00(t, x)dt2 + gij(t, x)dxidxj , g00 < 0 ,

and satisfies

g11(t, x)
t→0−−→∞ , gij(t, x)

t→0−−→ 0 for (i, j) 6= (1, 1) , (6.1)

and either g1i = 0 for i 6= 1 or
gmigmj
gmmgij

t→0−−→ 0 for i, j < m (6.2)

uniformly on compact subsets in x. Assume moreover that either

• S is compact and {t < tL} is covered by a single chart as above,

• or for every p ∈ {t < tL} ⊂ M there exists a chart as above which contains I−(p,M) and
a compact set Kp ⊂ S such that I−(p,M) ⊂ (0, tσ)×Kp.

Then (M, g) contains an expanding singularity towards the past.

Proof. We need to show that for every p ∈ {t < tL} and q ∈ I−(p,M) there exist a sequence
ti decreasing to zero such that the diameter of I−(q,M) ∩ {t = ti} in I−(p,M) ∩ {t = ti} tends
to infinity as ti → 0.

If the second condition in (6.2) holds, we start by defining an orthonormal frame {θm},
gijdx

idxj = δijθ
iθj on each slice by

θm =
√
hmmm(dxm +

m−1∑

i=1

hmmi
hmmm

dxi) ,
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where
hm−1 = hm − (θm)2 and hnij := gij .

The tensor field hm−1 is positive definite on the subspace spanned by {∂1, . . . , ∂m−1}: Indeed,
if there were a vector X = X1∂1 + . . . Xm−1∂m−1 such that hm−1(X,X) ≤ 0 then we
could choose Xm so that θm(X + Xm∂m) = 0. Setting 0 6= Y := X + Xm∂m, this gives
hm−1(Y, Y ) = hm−1(X,X) ≤ 0 and hm(Y, Y ) = hm−1(X,X) ≤ 0, giving a contradiction to the
positive definiteness of g.

Writing hm−1 in terms of hm we obtain

hm−1 =
m−1∑

i,j=1

(
hmij −

hmmih
m
mj

hmmm

)
dxidxj .

One checks that hm−1
ij /hmij → 1 follows from (6.2), which further implies hmij /gij → 1 for i, j ≤ m.

By construction we have θ1 = α(t, x)dx1, with α(t, x)/
√
g11(t, x)→ 1, and with all convergences

uniform on compact subsets.
We now choose k0 ∈ N and ε > 0 such that the sequences of points

yk1 = (1/k, x1(q)− ε, x2(q), . . . ) and yk2 = (1/k, x1(q) + ε, x2(q), . . . )

fulfill yk1 , y
k
2 ∈ I−(q,M) for all k ∈ {k0, k0 + 1, . . . }. The distance between yk1 and yk2 , and

therefore the diameter of I−(q,M)∩ {t = 1/k}, in I−(p,M)∩ {t = 1/k} is bounded from below
by

d{1/k}×Kp(y
k
1 , y

k
2 ) = inf

σ

ε∫

−ε

√√√√
n∑

i=1

(θi(σ̇))2ds ≥ inf
σ

ε∫

−ε

√
(θ1(σ̇))2ds = inf

σ

ε∫

−ε

|α(t, x)σ̇1|ds ,

where the infimum is taken over curves σ : [−ε, ε] → {1/k} × Kp (with Kp := S in the case
where S is compact), such that σ(−ε) = yk1 and σ(ε) = yk2 . If the first condition holds in (6.2)
we obtain the same expression with α := g11.

We have

lim
k→∞

d{1/k}×Kp(y
k
1 , y

k
2 ) = lim

k→∞
inf
σ

+ε∫

−ε

|α(σ(s))σ̇1(s)|ds

> lim
k→∞

(
min
x∈Kp

α(1/k, x)

)
inf
σ

+ε∫

−ε

|σ̇1(s)|ds ,

where the minimum diverges by the uniform divergence of α on Kp and the integral is

independent of k and positive as
+ε∫
−ε
σ̇1(s)ds = 2ε.

Remark 6.2. Lemma 6.1 directly generalizes to the case where the expanding direction rotates
within the t = const hypersurfaces. Indeed, let {tk} be a sequence of times and {Xk} a sequence
of associated expanding directions (constant in x unit vectors w.r.t. the Euclidean metric δij)
in each hypersurface Sk := {t = tk}. A spatial rotation for each tk gives Xk = ∂x1 and the
conditions on the metric are as before in these adapted coordinates. This is relevant for the case
of Bianchi IX and BKL singularities discussed in Sections 6.4 and 6.5 below.
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6.1. AVTD metrics without symmetries
These solutions, constructed in [6, 7], take the form

ds2 = −e−2
∑3
a=1 β

a
dτ2 +

3∑

a=1

e−2βaN a
iN a

j dxidxj , (6.3)

with βa and N a
i , i, a ∈ {1, 2, 3}, depending on all coordinates τ , xi and behaving asymptotically

as
βa = βa◦ + τpa◦ +O(e−τν) and N a

i = δai +O(e−2τ(pi◦−pa◦)) , (6.4)

with ν > 0. They are parameterized by freely prescribable analytic functions β2
◦ , β

3
◦ and P 2

◦ 1

depending on all space coordinates and two analytic functions p2
◦ and p3

◦ depending on all space
coordinates which are free except for the inequalities

0 < p2
◦ < (

√
2− 1)p3

◦ . (6.5)

The function P 2
◦ 1 does not appear in the asymptotic expansion (6.4) but influences lower order

terms in the expansion of N a
i .

The remaining exponent p1
◦ is given by

p1
◦ = − p2

◦p
3
◦

p2◦ + p3◦
< 0 , (6.6)

i.e. x1 is the expanding direction.
The solutions approach a curvature singularity as τ →∞.
The construction of these spacetimes in [7] was done in a purely local manner, regardless of

the topology of the solutions. Here we will assume that the spatial topology is compact.
We replace the time coordinate τ with t = − log τ , giving, with the asymptotic expansion

(6.4) inserted,

ds2 = −t2σp◦−2e−2σβ◦ (1+Oν)dt2+
3∑

a=1

t2p
a
◦e−2βa◦ (1+Oν)(δai +O(t2(pi◦−pa◦)))(δaj+O(t2(pj◦−pa◦)))dxidxj

(6.7)
where Oν = O(tν), σp◦ = p1

◦ + p2
◦ + p3

◦, and σβ◦ = β1
◦ + β2

◦ + β3
◦ . We see directly that g11 → ∞

and gij → 0, satisfying (6.1). From (6.7) we find that the metric component gij is of the same
order as the faster decaying one of gii and gjj and that gii/gjj → 0 for i > j. This implies that
(6.2) is also satisfied, i.e. the solutions are of the form required in Lemma 6.1.

6.2. T 3 Gowdy
The T 3 Gowdy spacetimes have metrics of the form

g = e(τ−λ)/2(−e−2τdτ2 + dθ2) + e−τ (ePdσ2 + 2ePQdσdδ + (ePQ2 + e−P )dδ2) ,

where λ, P and Q are functions of τ and θ and the singularity is approached as τ → ∞. The
τ = const slices are toroidal and therefore compact. Ringström showed [16] that generic Gowdy
spacetimes asymptotically behave as follows:

P (τ, θ) = va(θ)τ + φ(θ) + o(1), Q(t, θ) = q(θ) + o(1), λ = va(θ)
2τ + o(τ)

where 0 < va(θ) < 1 and the lower order terms converge uniformly. Therefore the gθθ component
of the metric diverges towards the singularity while all other space components converge to zero.
By redefining the time coordinate as t := − ln τ the metric can be brought to the form required
in Lemma 6.1: since the off-diagonal components gθi vanish, so (6.2) is satisfied.
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6.3. Further AVTD spacetimes
Using Fuchsian methods, asymptotically Kasner-like spacetimes without symmetries have been
constructed in the presence of various matter fields and in vacuum (either for spacetime
dimension higher than 10, or the ones described in section 6.1 which exist for a restricted
set of asymptotic data). The constructions generally start by defining a reduced evolution
system, the “velocity term dominated” (VTD) or “Kasner-like” system, which does not include
spatial derivatives, and then using Fuchs-type theorems to show that solutions of the full Einstein
equations which approach these exist. These theorems guarantee a convergence which is uniform
on compact subsets, as required by Lemma 6.1. Assuming that the spatial manifold is compact,
the only things left to verify are the conditions (6.1), (6.2)

In the case of stiff fluid or scalar field matter there is no expanding direction and Lemma 6.1
does not apply [17,18].

In the case of ≥ 10 dimensional vacuum, there is at least one expanding direction [18]. These
solutions can be constructed using the same approach as those in section 6.1, leading to the
same behavior of the N a

i and therefore also satisfy (6.2). Lemma 6.1 is applicable if the spatial
manifold is compact.

There are various results on general (non-Gowdy) T 2 symmetric spacetimes, the most general
of which assumes the so-called “half-polarization” condition [19,20]. These have one expanding
direction, satisfy (6.2), and are spatially compact.

6.4. “Mixmaster” Bianchi IX spacetimes
The Bianchi models are homogeneous, but generically anisotropic, spacetimes, which are divided
into types according to the structure constants of their Killing vector fields.

As shown by Ringström [21], generic solutions of type IX have at least three α-limit points
on the “Kasner circle”, i.e. they approach at least three different Kasner metrics arbitrarily
closely as the singularity is approached. It is conjectured that generic α-limit sets contain an
infinite number of points on the Kasner circle, and that the dynamics approaches that of the
discrete “Kasner map”, which shows chaotic behavior [22]. One would naively expect to be able
to choose a sequence of times and directions as in Remark 6.2. However, it has been pointed out
to us by Hans Ringström (private communication) that this expectation is incorrect, and that
with some work one can infer from [21] that the space-diameter of the surfaces of homogeneity
in all Bianchi IX vacuum models approaches zero as the singularity is approached.

6.5. Generic spacelike singularities in the context of the BKL conjecture
The BKL conjecture states, roughly speaking, that generic spacelike singularities behave at each
spatial point as a “Mixmaster” Bianchi IX solution.

There are various heuristic arguments supporting this conjecture. Using the so-called
“cosmological billiards formalism”, as described in [23], the metric takes the form (6.3), with
the same behavior of the N a

i as in (6.4), and with the βa(τ, x) now not showing linear behavior
in τ , but rather a sequence of approximately linear phases (so-called Kasner epochs) connected
by “bounces” off increasingly sharp potential walls. The βa are expected to be unbounded
towards the singularity (τ →∞), but they might well be bounded from below, and therefore it
is not clear (and perhaps unlikely, given the Bianchi IX result mentioned above) whether one
can choose a sequence of times and directions as described in Remark 6.2.

It is expected that such solutions will develop particle horizons (this is sometimes referred
to as “asymptotic silence”) [24]. This would imply that the second option in Lemma 6.1 is
fulfilled, i.e. I−(p,M) ⊂ (0, tσ) × Kp for all points p sufficiently close to the singularity and
some compact set Kp. Whether or not this can be used to infer that these spacetimes are C0

inextendible remains to be seen.
It should be emphasized that the arguments of [23] are heuristic.
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Einstein-matter systems Ann. H. Poincaré 3 1049–1111 ISSN 1424-0637 URL http://doi.org/10.1007/

s000230200000 arXiv https://arxiv.org/abs/gr-qc/0202069

[19] Clausen A and Isenberg J 2007 Areal foliation and asymptotically velocity-term dominated behavior in T 2

symmetric space-times with positive cosmological constant Jour. Math. Phys. 48 1–15 ISSN 00222488
URL http://doi.org/10.1063/1.2767534 arXiv https://arxiv.org/abs/gr-qc/0701054

[20] Ames E, Beyer F, Isenberg J and LeFloch P G 2013 Quasilinear hyperbolic Fuchsian systems and AVTD
behavior in T 2-symmetric vacuum spacetimes Ann. H. Poincaré 14 1445–1523 ISSN 1424-0661 URL
https://doi.org/10.1007/s00023-012-0228-2 arXiv https://arxiv.org/abs/1205.1881v2

86

https://doi.org/10.1023/A:1016578408204
https://arxiv.org/abs/1507.00601
https://doi.org/10.1007/s00220-017-3019-2
https://arxiv.org/abs/1704.00353
https://arxiv.org/abs/1704.00353
http://doi.org/10.1103/PhysRevD.92.041501
https://arxiv.org/abs/1507.00158
http://doi.org/10.1016/j.aop.2015.09.010
https://arxiv.org/abs/1507.04161
https://arxiv.org/abs/1507.04161
https://doi.org/10.1063/1.526587
https://projecteuclid.org:443/euclid.cmp/1103922816
https://doi.org/10.1007/s00220-015-2415-8
https://arxiv.org/abs/1406.5919
https://arxiv.org/abs/1406.5919
http://doi.org/10.1007/s00023-014-0371-z
https://arxiv.org/abs/1406.6194v2
https://doi.org/10.1007/s00023-017-0602-1
https://arxiv.org/abs/1610.03008
https://arxiv.org/abs/1610.03008
https://doi.org/10.1017/CBO9780511524653.011
https://doi.org/10.1017/CBO9780511524653.011
http://doi.org/10.4007/annals.2009.170.1181
https://arxiv.org/abs/gr-qc/0001047
http://doi.org/10.1007/s000230200000
http://doi.org/10.1007/s000230200000
https://arxiv.org/abs/gr-qc/0202069
http://doi.org/10.1063/1.2767534
https://arxiv.org/abs/gr-qc/0701054
https://doi.org/10.1007/s00023-012-0228-2
https://arxiv.org/abs/1205.1881v2


[21] Ringström H 2001 The Bianchi IX attractor Ann. H. Poincaré 2 405–500 ISSN 14240637 URL http:
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8
C O N C L U S I O N S

In this thesis we have investigated several asymptotic problems in non-
symmetric spacetimes. We have constructed stationary solutions of
the Einstein equations with a negative cosmological constant coupled
to various matter fields. These put recent numerical constructions on a
rigorous footing and are of independent physical interest, e.g. because
of their relation to the AdS/CFT conjecture. They exemplify the much
wider variety of possible stationary solutions compared to the Λ = 0
case.

We investigated the asymptotic behavior of singularities, first within
the framework of BKL: We proved existence of a large class of non-
symmetric AVTD spacetimes containing a timelike instead of spacelike
singularity, and we provided a new analysis of the only known class
of inhomogeneous chaotic BKL solutions. Inspired by the question of
strong cosmic censorship we analyzed C0-extensions across a newly
defined category of “expanding singularities” and showed that such
extensions are only possible through non-compact boundaries which
are null almost everywhere.

8.1 open questions

There are a number of open questions and opportunities for further
research arising from our results:

• From our numerical investigations in Section 3.2 of [25] it seems
clear that the non-degeneracy results of Chapter 5, and therefore
the construction of stationary black hole solutions in Chapter
4, should work for all values of the mass parameter (except for
the critical one). Making these numerical results rigorous would
require proving global existence of solutions for a scalar Riccati
equation with a complicated potential term. There has been
some recent work in this area, which unfortunately does not
apply directly to our case [57].

• Our use of a periodic t coordinate in Chapter 4 means that we
cannot construct boson star solutions with a black hole. Such
solutions are of physical interest, so it would be useful to remove
this restriction.

• In Chapter 7 we can rule out spacelike, but not null, C0-extensions
across expanding singularities. It would be of interest to either
prove C0-inextendibility, by ruling out the null case as well, or
to provide an example of a spacetime that shows this behavior.
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conclusions

Any such example would necessarily have to be spatially inho-
mogeneous, as otherwise the arguments of Sbierski [96] show
its inextendibility.

• Our results in Chapter 7 apply to the spacetimes constructed in
[69] but not to their close analogues with timelike singularities
in Chapter 6. In general, C0-extendibility across timelike bound-
aries, such as the Kerr ring singularity, has not yet been studied
in detail. This would require the development of new methods,
as futures and pasts of points cannot be used to identify subsets
between the original and extended manifold.

90



B I B L I O G R A P H Y

[1] S. Alexakis, A. D. Ionescu, and S. Klainerman. “Uniqueness of
smooth stationary black holes in vacuum: Small perturbations
of the Kerr spaces.” Commun. Math. Phys. 299 (2010), pp. 89–127.
doi: 10.1007/s00220-010-1072-1. arXiv: 0904.0982 [gr-qc].

[2] S. Alexakis and V. Schlue. “Non-existence of time-periodic
vacuum space-times.” J. Diff. Geom. 108.1 (2018), pp. 1–62. doi:
10.4310/jdg/1513998029. arXiv: 1504.04592 [gr-qc].

[3] E. Ames, F. Beyer, J. Isenberg, and P. LeFloch. “Quasilinear Hy-
perbolic Fuchsian Systems and AVTD Behavior in T2-Symmetric
Vacuum Spacetimes.” Annales Henri Poincaré Paris 6 (2013),
pp. 1–78. doi: 10.1007/s00023- 012- 0228- 2. arXiv: 1205.
1881v2 [gr-qc].

[4] M. T. Anderson. “On stationary vacuum solutions to the Ein-
stein equations.” Annales Henri Poincare 1 (2000), p. 977. doi:
10.1007/PL00001021. arXiv: gr-qc/0001091.

[5] M. T. Anderson, P. T. Chrusciel, and E. Delay. “Nontrivial, static,
geodesically complete space-times with a negative cosmologi-
cal constant. 2. n ≥ 5.” IRMA Lect. Math. Theor. Phys. 8 (2005),
pp. 165–204. arXiv: gr-qc/0401081.

[6] M. T. Anderson, P. T. Chrusciel, and E. Delay. “Nontrivial, static,
geodesically complete, vacuum space-times with a negative
cosmological constant.” JHEP 10 (2002), p. 063. doi: 10.1088/
1126-6708/2002/10/063. arXiv: gr-qc/0211006.

[7] L. Andersson and A. D. Rendall. “Quiescent cosmological sin-
gularities.” Commun. Math. Phys. 218 (2001), pp. 479–511. doi:
10.1007/s002200100406. arXiv: gr-qc/0001047.

[8] V. Belinski and I. Khalatnikov. “Effect of Scalar and Vector
Fields on the Nature of the Cosmological Singularity.” Sov.Phys.JETP
36 (1973), p. 591.

[9] V. A. Belinsky, I. M. Khalatnikov, and E. M. Lifshitz. “Os-
cillatory approach to a singular point in the relativistic cos-
mology.” Adv. Phys. 19 (1970), pp. 525–573. doi: 10.1080/

00018737000101171.

[10] B. K. Berger and V. Moncrief. “Exact U(1) symmetric cosmolo-
gies with local mixmaster dynamics.” Phys. Rev. D62 (2000),
p. 023509. doi: 10.1103/PhysRevD.62.023509. arXiv: gr-qc/
0001083.

91

https://doi.org/10.1007/s00220-010-1072-1
https://arxiv.org/abs/0904.0982
https://doi.org/10.4310/jdg/1513998029
https://arxiv.org/abs/1504.04592
https://doi.org/10.1007/s00023-012-0228-2
https://arxiv.org/abs/1205.1881v2
https://arxiv.org/abs/1205.1881v2
https://doi.org/10.1007/PL00001021
https://arxiv.org/abs/gr-qc/0001091
https://arxiv.org/abs/gr-qc/0401081
https://doi.org/10.1088/1126-6708/2002/10/063
https://doi.org/10.1088/1126-6708/2002/10/063
https://arxiv.org/abs/gr-qc/0211006
https://doi.org/10.1007/s002200100406
https://arxiv.org/abs/gr-qc/0001047
https://doi.org/10.1080/00018737000101171
https://doi.org/10.1080/00018737000101171
https://doi.org/10.1103/PhysRevD.62.023509
https://arxiv.org/abs/gr-qc/0001083
https://arxiv.org/abs/gr-qc/0001083


bibliography

[11] B. K. Berger and V. Moncrief. “Numerical investigation of
cosmological singularities.” Phys. Rev. D48 (1993), pp. 4676–
4687. doi: 10.1103/PhysRevD.48.4676. arXiv: gr-qc/9307032.

[12] L. Bianchi. “Sugli spazi a tre dimensioni che ammettono un
gruppo continuo di movimenti.” Memorie di Matematica e di
Fisica della Societa Italiana delle Scienze, Serie Terza 11 (1897),
pp. 267–352.

[13] L. Bianchi. “On the Three-Dimensional Spaces Which Admit a
Continuous Group of Motions.” General Relativity and Gravita-
tion 33.12 (Dec. 2001). (translation), pp. 2171–2253. issn: 1572-
9532. doi: 10.1023/A:1015357132699.

[14] J. Bjoraker and Y. Hosotani. “Monopoles, dyons and black holes
in the four-dimensional Einstein-Yang-Mills theory.” Phys. Rev.
D62 (2000), p. 043513. doi: 10.1103/PhysRevD.62.043513.
arXiv: hep-th/0002098.

[15] J. L. Blázquez-Salcedo, J. Kunz, F. Navarro-Lérida, and E. Radu.
“Static Einstein-Maxwell Magnetic Solitons and Black Holes in
an Odd Dimensional AdS Spacetime.” Entropy 18 (2016), p. 438.
doi: 10.3390/e18120438. arXiv: 1612.03747 [gr-qc].

[16] W. Boucher, G. W. Gibbons, and G. T. Horowitz. “A Uniqueness
Theorem for Anti-de Sitter Space-time.” Phys. Rev. D30 (1984),
p. 2447. doi: 10.1103/PhysRevD.30.2447.

[17] B. Brehm. “Bianchi VIII and IX vacuum cosmologies: Almost
every solution forms particle horizons and converges to the
Mixmaster attractor” (2016). arXiv: 1606.08058 [gr-qc].

[18] Y. Brihaye, B. Hartmann, and J. Riedel. “Self-interacting bo-
son stars with a single Killing vector field in anti–de Sitter
space-time.” Phys. Rev. D92.4 (2015), p. 044049. doi: 10.1103/
PhysRevD.92.044049. arXiv: 1404.1874 [gr-qc].

[19] D. M. Chitre. “Investigation of Vanishing of a Horizon for
Bianchi Type IX (the Mixmaster) Universe.” University of Mary-
land, 1972.

[20] Y. Choquet-Bruhat. General Relativity and the Einstein Equations.
Oxford Mathematical Monographs. OUP Oxford, 2009. isbn:
9780199230723.

[21] Y. Choquet-Bruhat and R. Geroch. “Global aspects of the Cauchy
problem in general relativity.” Comm. Math. Phys. 14.4 (1969),
pp. 329–335. url: https://projecteuclid.org:443/euclid.
cmp/1103841822.

[22] Y. Choquet-Bruhat and J. Isenberg. “Half polarized U(1) sym-
metric vacuum spacetimes with AVTD behavior.” J.Geom.Phys.
56 (2006), pp. 1199–1214. doi: 10.1016/j.geomphys.2005.06.
011. arXiv: gr-qc/0506066.

92

https://doi.org/10.1103/PhysRevD.48.4676
https://arxiv.org/abs/gr-qc/9307032
https://doi.org/10.1023/A:1015357132699
https://doi.org/10.1103/PhysRevD.62.043513
https://arxiv.org/abs/hep-th/0002098
https://doi.org/10.3390/e18120438
https://arxiv.org/abs/1612.03747
https://doi.org/10.1103/PhysRevD.30.2447
https://arxiv.org/abs/1606.08058
https://doi.org/10.1103/PhysRevD.92.044049
https://doi.org/10.1103/PhysRevD.92.044049
https://arxiv.org/abs/1404.1874
https://projecteuclid.org:443/euclid.cmp/1103841822
https://projecteuclid.org:443/euclid.cmp/1103841822
https://doi.org/10.1016/j.geomphys.2005.06.011
https://doi.org/10.1016/j.geomphys.2005.06.011
https://arxiv.org/abs/gr-qc/0506066


bibliography

[23] Y. Choquet-Bruhat, J. Isenberg, and V. Moncrief. “Topologically
general U(1) symmetric Einstein spacetimes with AVTD be-
havior.” Nuovo Cim. B119 (2004), pp. 625–638. doi: 10.1393/
ncb/i2004-10174-x. arXiv: gr-qc/0502104.
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