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ABSTRACT

Kaluza-Klein theory constitutes an interesting extension of general relativity to five
spacetime dimensions, originally emerged from a historic attempt to unify the
known fundamental forces of nature at that time. The elegant feature of this theory
lies in the fact, that the involved dimensional reduction leads naturally to
electromagnetism coupled to four dimensional gravity without the need of the
introduction of a source term in the five dimensional Einstein equations. This
concept can also be extended to higher dimensions. Although not being a realistic
theory of nature, Kaluza-Klein theory gives interesting insights to advanced
theories, such as string theory, and provides a geometric link between higher- and
lower dimensional theories. Within this theory, black hole spacetimes exist. An
interesting class of black hole solutions in Kaluza-Klein theory has been derived
independently by Rasheed and Larsen, describing a family of axisymmetric,
rotating, dyonic (magnetically- and electrically charged) black holes.
We analyse the Rasheed-Larsen metrics in different limits of their parameter
family, prove regularity at the outer Killing horizon, identify and analyse the
singularities of the metrics and derive conditions, under which they are shielded
by the outer Killing horizon, exclude the existence of regular metrics without
horizons and derive a criterion for stable causality in the d.o.c. (domain of outer
communications).
In Kaluza-Klein theory, as in any other physical theory, the notion of total energy,
momentum and other global charges play a key role. Our analysis covers
asymptotically anti–de Sitter spacetimes, asymptotically flat spacetimes, as well as
Kaluza-Klein asymptotically flat spacetimes. We prove that the Komar mass equals
the Arnowitt-Deser-Misner (ADM) mass in stationary asymptotically flat
spacetimes in all dimensions, while this is no longer true with Kaluza-Klein
asymptotics. Furthermore, we show that the Hamiltonian mass does not
necessarily coincide with the ADM mass in Kaluza-Klein asymptotically flat
spacetimes. A Witten-type argument is applied to derive global inequalities
between the Hamiltonian energy-momentum and the Kaluza-Klein charges. Our
formulae are applied to the five-dimensional Rasheed metrics, from which the
corresponding global charges are computed. Furthermore, by a comparison of
them with those of the Larsen metrics, we show that these classes of metrics are
isometric.
We finish this thesis by a study of four-dimensional initial data with R2 ×S2

topology in Kaluza-Klein theory, constructed by Brill and Pfister. The resulting
spacetimes are particularly interesting because they have negative ADM mass.
Those four-dimensional initial data contain a so-called bubble, causing this
topology. We show that the initial data metric is non differentiable at the bubble,
which leads to the question, how problematic the resulting singularity is. We show
that the initial four-dimensional metric is at least twice weakly differentiable at this
location, leading to a Riemann tensor without distributional components which
could be responsible for the negativity of the ADM mass.
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ZUSAMMENFASSUNG

Die Kaluza-Klein-Theorie stellt eine interessante Erweiterung der allgemeinen
Relativitätstheorie auf fünf Raumzeitdimensionen dar, urprünglich
hervorgegangen aus einem historischen Versuch, die damals bekannten
Fundamentalkräfte der Natur zu vereinheitlichen. Die Eleganz dieser Theorie liegt
darin, dass die damit verbundene Dimensionsreduzierung auf natürliche Weise zu
Elektromagnetismus gekoppelt mit vierdimensionaler Gravitation führt, ohne dass
es notwendig ist, einen entsprechenden Quellterm in den zugehörigen
Einsteingleichungen einzuführen. Dieses Konzept kann auf höhere Dimensionen
erweitert werden. Obwohl sie keine realistische Beschreibung der Natur darstellt,
so ermöglicht die Kaluza-Klein-Theorie interessante Einsichten in fortgeschrittene
Theorien, wie der String-Theorie, und stellt eine geometrische Verbindung
zwischen höher- und niedrigerdimensionalen Theorien dar. Innerhalb dieser
Theorie existierten Raumzeiten, die schwarze Löcher beschreiben. Eine
interessante Klasse von schwarzen Löchern, innerhalb der Kaluza-Klein-Theorie,
wurde unabhängig von Rasheed und Larsen gefunden, welche eine Familie
axisymmetrischer, rotierender, dynonischer schwarzer Löcher beschreiben. Wir
analysieren die von Rasheed gefundenen Lösungen in verschiedenen Grenzwerten
ihrer Parameterfamilie, beweisen ihre Regularität an ihrem äußeren
Killinghorizont, identifizieren und analysieren Singularitäten der Metrik und leiten
Bedingungen her, unter denen diese durch den äußeren Killinghorizont
abgeschirmt werden, schließen die Existenz von regulären Metriken ohne
Killinghorizonte aus und leiten ein Kriterium für stabile Kausalität in der d.o.c. her.
Im Rahmen der Kaluza-Klein-Theorie, wie in jeder anderen physikalischen
Theorie, nehmen die Begriffe Gesamtenergie, Impuls und andere globalen
Ladungen eine Schlüsselrolle ein. In unserer Analyse betrachten wir asymptotisch
Anti-de Sitter-, asymptotisch flache- und Kaluza-Klein asymptotisch flache
Raumzeiten. Wir beweisen, dass die Komarmasse und die ADM Masse in
stationären, asymptotisch flachen Raumzeiten in beliebigen Dimensionen
äquivalent sind. Weiters zeigen wir, dass die Hamiltonmasse nicht
notwendigerweise äquivalent zur ADM Masse in Kaluza-Klein asymptotisch
flachen Raumzeiten ist. Ein Argument nach Witten wird angewandt, um globale
Ungleichungen zwischen dem Hamilton’schen Energie-Impuls und den
Kaluza-Klein Ladungen herzuleiten. Wir wenden unsere Formeln auf die
fünfdimensionale Rasheed-Metrik an, aus denen wir die entsprechenden globalen
Ladungen berechnen. Durch einen Vergleich mit jenen der Larsen-Lösungen
zeigen wird, dass die beiden Klassen von Metriken äquivalent sind. Zuletzt
betrachten wir vierdimensionale Anfangsdaten mit R2 ×S2 Topologie, konstruiert
durch Brill und Pfister, in Kaluza-Klein-Theorie, welche speziell wegen ihrer
negativen ADM Masse interessant sind. Diese vierdimensionalen Anfangsdaten
enthalten eine sogenannte Bubble, die zu dieser Topologie führt. In einer
sorgfältigen Analyse zeigen wir, dass die Metrik der Anfangsdaten nicht
differenzierbar auf der Bubble ist, was uns zur Frage führt, wie problematisch diese
Singularität ist. Wir zeigen, dass die Metrik der Anfangsdaten dort mindestens
zweimal schwach differenzierbar ist.

v





AKNOWLEDGEMENTS

First of all, I would like to thank Piotr T. Chruściel for the supervision of this thesis,
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1 Introduction

1.1 General relativity

General relativity is the geometric theory of gravitation, formulated by A. Einstein
in 1915 [6]. In contrast to the Newtonian theory, where gravity is directly described
as a force, it manifests in Einstein’s theory as the consequence of the curvature of
the spacetime, caused by the presence of matter. Freely falling test particles travel
along geodesics through the curved spacetime, i.e. the shortest possible curve
between two points of the space. This interplay is summarized in A. Wheeler’s
famous quote: "Space tells matter how to move, matter tells space how to curve.".
From the mathematical point of view, general relativity is formulated by the
so-called Einstein equations

Rµν− 1

2
gµν = 8πG

c4 Tµν , (1.1)

where Tµν denotes the energy-momentum tensor, describing the distribution of
energy and momentum in the spacetime, Rµν is the Ricci tensor and R the Ricci
scalar, which encode the curvature of the spacetime, defined over the metric
tensor gµν, which prescribes, how distances are measured locally in the spacetime.
In four spacetime dimensions, when fully written out, the Einstein equations
constitute a system of 10 nonlinear PDEs for the components of the metric tensor.
General relativity predicts and describes effects, that cannot be understood by
means of the Newtonian theory of gravity, among them the advance of the
perihelion of Mercury, the deflection of light in a gravitational field and the
emergence of gravitational waves, travelling through the spacetime.
The first class of metrics, providing a solution to the Einstein equations, was found
by K. Schwarzschild in 1915, describing a spherically symmetric, asymptotically
flat black hole in four dimensions. However, this metric and it’s physical
interpretation have been misunderstood for a long time. The prediction of general
relativity, that light is deflected in a gravitational field, was confirmed, due to a
observation by Eddington, by a shift of the observed positions of the stars during a
solar ellipse in 1919. This confirmation has brought great interest to the field
general relativity, as well as in the scientific community and in the public. After
that phase, the interest in general relativity has been dormant for quite a long time,
since the Newtonian theory provides an excellent approximation in the case of
weak gravitational fields and general relativity had the reputation of being
complicated and hard to understand. In the 30’s J. Oppenheimer and H.
Snyder [16] have been able to derive mathematically, based on the previous work
of S. Chandrasekhar on neutron stars, that the ultimate fate of a dying star, running
out of nuclear fuel, is a total gravitational collapse, resulting in a so-called black
hole, provided the mass of the star is exceeding a certain limit. Later, in the 60’s, the
experimental discovery of pulsars and other compact X-ray sources with strong
gravitational fields, requiring general relativity for an adequate description, and on
the theoretical side the groundbreaking work of S. Hawking and R. Penrose and
others on black holes, singularities and other important aspects of mathematical
relativity caused a revival of Einstein’s theory. Another source of interest emerged
with theories, attempting to unifying gravity with the other three fundamental
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forces of nature(electromagnetism, the weak- and the strong force), such as
quantum gravity and string theory. The celebrated announcement of the detection
of gravitational waves in 2016 [1] has put general relativity once more into the
public spotlight, as a further impressive confirmation of it’s predictions. Today,
over 100 years after Einstein’s fundamental work, general relativity is well
established, explaining, or at least describing, every aspect of gravitational physics
ever observed.

1.2 Black holes

Stars gain their energy from the process of nuclear fission. It theory, if the star is
running out of nuclear fuel, a black hole forms under a total gravitational collapse,
provided the mass M of the star is large enough, i.e. M ' 3×M¯, where M¯
denotes the mass of our sun. The strongest evidence, that black holes do indeed
exist as physical objects, has been provided recently by the Event Horizon
Telescope(EHT)-cooperation [2]. Akiyama et al. have been able to obtain an image
of plasma Figure 1.1, orbiting M87∗, depicting the object itself therefore as a
shadow. Further strong candidates for black holes are Cygnus X-1, the galactic

Figure 1.1: EHT image of M87∗ from observations on 2017 April 11

nuclei of NGC 4258 and the center of our own Milky Way.
Black hole spacetimes are predicted from the theory general relativity. As the main
property of those spacetimes, an inner region, from which no matter or light can
escape, called the black hole region, is separated from an outer region, called the
domain of other communications(d.o.c.), through a so-called event horizon. The
first black hole solution that has been discovered, as already mentioned, is the
Schwarzschild metric. One year after, H. Reissner [18], G. Nordström and others
extended this result to the electrovacuum case, nowadays called the
Reissner-Nordström metric. In 1963 R. Kerr [12] derived a class of metrics,
describing rotating black holes, later extended by Newman to the electrically
charged case, finally describing black holes with mass, angular momentum and
charge, called the Kerr-Newman family.
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1.2.1 The four-dimensional case

In four dimensions, in the electrovacuum case, the picture, regarding the
classification of asymptotically flat holes, is almost complete. The Hawking
topology theorem asserts, that in four-dimensional black hole spacetimes the
topology of the cross-sections of the event horizon is necessarily S2. W. Israel [10]
and later G. Bunting and A. Masood-ul Alam [4], under less restrictive
requirements, have shown, that any four-dimensional static, asymptotically flat
black hole is isometric to the Reissner-Nordström/Schwarzschild metrics. Later, in
2010, P. Chruściel and G. Galloway [5] have been able to remove the analyticity
requirement of the metric, that was implicitly assumed in the previous proofs. It is
widely believed that all stationary, asymptotically flat, sufficiently well-behaved,
electrovacuum, four-dimensional black holes are isometric to the Kerr-Newman
family. It should, however, be mentioned that the existing theorems still contain
unsatisfactory assumptions on analyticity of the metric and connectedness of the
event horizon.

1.2.2 The higher-dimensional case

In higher dimensions less is known regarding the topology and the uniqueness of
black holes. After the discovery of the so-called black ring solutions, with S1 ×S2

horizon topology, by R. Emparan and H. Reall [7], the question on the restrictions
on the topology of higher-dimensional black holes came up once more. This issue
has been addressed by G. Galloway and R. Schoen [8], giving a generalization of
Hawking’s theorem to higher dimensions. In this work the authors show, that the
cross-sections of the event horizon are of positive Yamabe type, i.e. admit metrics
of positive scalar curvature. This is a much less restrictive statement in comparison
to the four-dimensional case, and a full classification of the topology of
higher-dimensional black holes is still open. Regarding the uniqueness of
higher-dimensional black holes the territory is more or less open. In higher
dimensions the no-hair theorem doesn’t even hold in vacuum case, as in this
setting, apart from the already mentioned black ring solutions, also the
Myers-Perry [15] family additionally exists in five dimensions for example, for
details see [9].

1.3 Kaluza-Klein theory

The Kaluza-Klein theory arose for a historic attempt by T. Kaluza [11] and O.
Klein [13] to unify electromagnetism and gravity, starting from five-dimensional
vacuum Einstein gravity, leading to a four-dimensional theory with a Maxwell- and
a scalar field, called the dilaton field, therefore named Einstein-Maxwell-Dilaton
theory, after a so-called dimensional reduction/compactification of the
extradimension. This concept can also be extended to higher dimensions. Beside
the relevance of Einstein-Maxwell-Dilaton theory in high energy physics,
Kaluza-Klein theory gives further insights into the geometry of spacetimes,
providing a geometric link between higher- and lower dimensional theories.
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1.4 Kaluza-Klein black holes

Within Kaluza-Klein theory also black hole spacetimes exist, so-called
Kaluza-Klein black holes. An interesting class of black hole solutions of
five-dimensional Kaluza-Klein theory, being in the scope of this thesis, has been
derived independently by D. Rasheed [17] and F. Larsen [14], via so-called solution
generating methods, describing a family of axisymmetric, rotating,
dyonic(magnetically- and electrically charged) black holes.

1.5 Energy in general relativity

The notion of total energy, momentum and other global charges play a key role in
any physical theory. In general, the definition of the these quantities depends on
the asymptotics of the corresponding spacetime. The most important applications
are the no-hair theorem, i.e. that a black hole is fully determined via it’s mass,
charge and angular momentum, the positive energy theorem, and within the
measurement of the energy transported by gravitational waves through the
spacetime.

1.6 Outline

This thesis consists of three parts, of which we give an outline in the following:

• Rasheed-Larsen black holes

We analyse the metrics presented by Rasheed and by Larsen in different
limits of their parameter family, prove regularity at the outer Killing horizon,
analyse and identify the singularities of the metrics and derive conditions,
under which they are shielded by the outer Killing horizon, exclude the
existence of regular metrics without horizons and derive a criterion for stable
causality in the domain of outer communications. Furthermore, we analyse
the asymptotic behaviour of the Rasheed-Larsen metrics and determine the
corresponding global charges with our formulae developed in Section 4.
Finally, we derive an isometric transformation, proving the equivalence of
the metrics written by Rasheed and by Larsen. The fact that these metrics are
isometric appears to be well known but, somewhat surprisingly, we have not
been able to find this transformation in the literature.

We list here some questions which remain to be answered in order to get a
more complete understanding of the geometry of the Rasheed solutions:
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Unanswered Questions Issue
Do regular metrics without horizons exist in the
|A | > 2 or |B| > 2 case?

The corresponding system of inequalities
(2.62), (2.63) and (2.65) appears too hard to
analyse in this case.

Do regular solutions with a double zero of B in
the a 6= 0, P 6= 0 case in the d.o.c. exist?

It seems hard to show under which condi-
tions the remainders of the polynomial divi-
sions (2.145) are zero, which is necessary to an-
swer this question.

Is stable causality also guaranteed in the P 6= 0
case?

This leads to the question if all zeros of the
fourth-order polynomial (2.178) are located be-
low the location r+ of the outer Killing horizon.
Due to the complexity of this problem in the
general setting, it appears hard to derive a cor-
responding criterion. In the small |P | case we
have been able to answer this question posi-
tively for the equivalent Larsen metrics.

• Energy in higher-dimensional spacetimes

We derive new expressions for the total Hamiltonian mass and the Komar
mass in higher dimensions, in terms of the Riemann tensor, in
asymptotically flat, Kaluza-Klein asymptotically flat, and asymptotically
anti–de Sitter (AdS) spacetimes.
Furthermore, we show that if the space-time is asymptotically flat, the
Komar mass coincides with the ADM mass in all dimensions, generalizing
the four-dimensional result of Beig. However, the quantities mentioned
above differ from each other in the non-asymptotically flat setting in general.
In line with our analysis, we derive formulae for the mass and momentum
associated with asymptotically Anti-de Sitter spacetimes, generalising results
by Ashtekar and Das, with stronger conditions required, in comparison to
ours. Here it not only shows, that the ADM and Komar mass differ from each
other in non-asymptotically flat space-times in general, but also from the
Hamiltonian mass. Furthermore, a Witten-type argument is used to derive
global inequalities between the Hamiltonian energy-momentum and the
Kaluza-Klein charges. Finally, as a non-trivial example at hand to test our
formulae, we apply our results to the metrics discovered by Rasheed,
describing rotating, dyonic black holes in Kaluza-Klein theory.
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We attach the following paper, the results of which are an integral part of this
thesis:

”Energy in higher-dimensional spacetimes”,

Hamed Barzegar, Piotr T. Chruściel, and Michael Hörzinger

published in PHYSICAL REVIEW D 96, 124002 (2017),

arXiv: 1708.03122

Abstract: We derive expressions for the total Hamiltonian energy of
gravitating systems in higher-dimensional theories in terms of the Riemann
tensor, allowing a cosmological constantΛ ∈R. Our analysis covers
asymptotically anti–de Sitter spacetimes, asymptotically flat spacetimes, as
well as Kaluza-Klein asymptotically flat spacetimes. We show that the Komar
mass equals the Arnowitt-Deser-Misner (ADM) mass in stationary
asymptotically flat spacetimes in all dimensions, generalizing the
four-dimensional result of Beig, and that this is no longer true with
Kaluza-Klein asymptotics.We show that the Hamiltonian mass does not
necessarily coincide with the ADM mass in Kaluza-Klein asymptotically flat
spacetimes, and that the Witten positivity argument provides a lower bound
for the Hamiltonian mass and not for the ADM mass in terms of the electric
charge. We illustrate our results on the five-dimensional Rasheed metrics,
which we study in some detail, pointing out restrictions that arise from the
requirement of regularity, which have gone seemingly unnoticed so far in the
literature.

• The Brill-Pfister initial data

Brill and Pfister [3] have constructed initial data with R2 ×S2 topology in
Kaluza-Klein theory, which are particularly interesting because they have
negative ADM mass. Those four-dimensional initial data contain a so-called
bubble, causing this topology. A careful analysis shows, that the initial data
metric is non differentiable at the bubble, arising the question how
problematic the resulting singularity is. We show that the initial
four-dimensional metric is at least twice weakly differentiable at this
location, leading to a non-singular Riemann tensor. This fills a gap in the
original paper, excluding the possibility that the negativity of the total energy
could be caused by distributional negative energy density. We apply our
formulae of Section 4 to this initial data metric, obtaining a negative ADM-
and Hamiltonian mass as a upper bound for the energy, associated with this
class of initial data, in accordance with the work of Brill and Pfister.
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2 The Rasheed solutions

The Rasheed-Larsen metrics are particularly noteworthy by providing an example
of five dimensional solutions of vacuum Einstein equations with a non-product
structure in the Kaluza-Klein directions. They have been discovered by
Rasheed [17] and, independently by Larsen [14]. We will use the name “Rasheed
metric” for the Rasheed-Larsen metric written in the original coordinates used by
Rasheed, and “Larsen metric” when the coordinates in [14] are used.

The line element of the metrics in [17] is given by

d s2
(5) =

B

A

(
d x4 +2Aµd xµ

)2 +
√

A

B
d s2

(4) , (2.1)

where we assume that

M 2 +Σ2 −P 2 −Q2 6= 0,
(
M +Σ/

p
3
)2 −Q2 6= 0,

(
M −Σ/

p
3
)2 −P 2 6= 0,

M ± Σp
3
6= 0, F 2 :=

[(
M+Σ/

p
3
)2−Q2

][(
M−Σ/

p
3
)2−P 2

]
M 2+Σ2−P 2−Q2 > 0 , (2.2)

and where

d s2
(4) =− ∆θp

AB

(
d t +ω0

φdφ
)2 +

p
AB

∆
dr 2 +

p
ABdθ2 + ∆

p
AB

∆θ
sin2θdφ2 , (2.3)

with

A =
(
r −Σ/

p
3
)2 − 2P 2Σ

Σ−M
p

3
+a2 cos2θ+ 2JPQ cosθ(

M +Σ/
p

3
)2 −Q2

,

B =
(
r +Σ/

p
3
)2 − 2Q2Σ

Σ+M
p

3
+a2 cos2θ− 2JPQ cosθ(

M −Σ/
p

3
)2 −P 2

,

∆θ = r 2 −2Mr +P 2 +Q2 −Σ2 +a2 cos2θ ,

∆ = r 2 −2Mr +P 2 +Q2 −Σ2 +a2 ,

ω0
φ = 2J sin2θ

∆θ
(r +E) ,

J 2 = a2F 2 , (2.4)

whereas E is given by

E = −M +
(
M 2 +Σ2 −P 2 −Q2

)(
M +Σ/

p
3
)(

M +Σ/
p

3
)2 −Q2

. (2.5)

The Maxwell field in (2.1) is given by

2Aµd xµ = C

B
d t +

(
ω5

φ+ C

B
ω0

φ

)
dφ , (2.6)

1



where

C = 2Q
(
r −Σ/

p
3
)
− 2P J cosθ

(
M +Σ/

p
3
)(

M −Σ/
p

3
)2 −P 2

, (2.7)

ω5
φ = H

∆θ
, (2.8)

and

H = 2P∆cosθ− 2Q J sin2θ
[
r
(
M −Σ/

p
3
)+MΣ/

p
3+Σ2 −P 2 −Q2

][(
M +Σ/

p
3
)2 −Q2

] . (2.9)

In addition, the parameters (M ,Σ,P,Q) have to fulfil the constraint

Q2

Σ+M
p

3
+ P 2

Σ−M
p

3
= 2Σ

3
, (2.10)

otherwise the metric does not satisfy the five-dimensional vacuum field equations.

The inverse metric of (2.1) reads

g−1 =
(

A

B
−4

B

∆θ
A2

t +
4∆θ(Aφ− Atω

0
φ)2

A∆

1

sin2θ

)
(∂x4 )2

+4

(
B

∆θ
At +

∆θω
0
φ(Aφ− Atω

0
φ)

A∆

1

sin2θ

)
∂t∂x4

−4
∆θ(Aφ− Atω

0
φ)

A∆

1

sin2θ
∂φ∂x4 + g−1

4 , (2.11)

where

g−1
4 = −

(
B

∆θ
+ (ω0

φ)2∆θ

A∆

1

sin2θ

)
(∂t )2 + ∆

A
(∂r )2 + 1

A
(∂θ)2

+ ∆θ
A∆

1

sin2θ
(∂φ)2 −2

∆θω
0
φ

A∆sin2θ
∂t∂φ . (2.12)

We have verified with SAGE, that the metric fulfils the five-dimensional vacuum
field equations in the P = 0 case, whereas in the P 6= 0 case, due to the complexity
of the metric, we have have only been able to obtain a corresponding verification
for a sample of parameters, fulfilling (2.10), with MATHEMATICA.
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2.1 The “Kerr” case (Σ=Q = P = 0)

If we set Σ=Q = P = 0 in (2.4)-(2.2), we obtain for (2.3)

d s2
(4) =− ∆θp

AB

(
d t +ω0

φdφ
)2 +

p
AB

∆
dr 2 +

p
ABdθ2 + ∆

p
AB

∆θ
sin2θdφ2 , (2.13)

where

A = r 2 +a2 cos2θ ,

B = r 2 +a2 cos2θ ,

ω0
φ = 2J sin2θ

∆θ
r ,

∆ = r 2 −2Mr +a2 , (2.14)

with

∆θ = r 2 −2Mr +a2 cos2θ ,

J = M a . (2.15)

By introducing

ρ = r 2 +a2cos2θ , Z = 2Mr

ρ
, (2.16)

we obtain
A = B = ρ , ∆θ = ρ−2Mr . (2.17)

With this conventions we obtain for the terms, appearing in the metric (2.13),

∆
p

AB

∆θ
= ∆ρ

ρ−2Mr
= ∆

ρ− 2Mr
ρ

= ∆

1−Z
, (2.18)

p
AB = ρ , (2.19)p
AB

∆
= ρ

∆
, (2.20)

− ∆θp
AB

= ρ−2Mr

ρ
= 1

1− 2Mr
ρ

=− 1

1−Z
, (2.21)

ω0
φ = 2Mr a sin2θ

∆θ

= 2M ar sin2θ

ρ−2Mr

=
2M ar
ρ sin2θr

1− 2M ar
ρ

= Z si n2θ

1−Z
. (2.22)

The insertion of (2.18)-(2.22) in (2.13) yields

d s2
(4) =− (1−Z )

(
d t + aZ sin2θ

1−Z
dφ

)2

+ ρ

∆
dr 2 +ρdθ2 + ∆

1−Z
sin2θdφ2 . (2.23)
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To show that this metric coincides with the standard Kerr metric in
Boyer-Lindquist coordinates, we expand (2.23) and insert (2.16)

d s2
(4) = − (1−Z )

(
d t + aZ sin2θ

1−Z
dφ

)2

+ ρ

∆
dr 2 +ρdθ2 + ∆

1−Z
sin2θdφ2

= − (1−Z )

(
d t 2 +2

aZ sin2θ

1−Z
d tdφ+

(
aZ sin2θ

1−Z

)2

dφ2

)2

+ ρ

∆
dr 2 +ρdθ2 + ∆

1−Z
sin2θdφ2

= − (1−Z )d t 2 −2aZ sin2θd tdφ−
(
aZ sin2θ

)2

1−Z
dφ2 + ρ

∆
dr 2 +ρdθ2 + ∆

1−Z
sin2θdφ2

= (−1+Z )d t 2 −2aZ sin2θd tdφ+ ∆sin2θ− (
aZ sin2θ

)2

1−Z
dφ2 + ρ

∆
dr 2 +ρdθ2

=
(
−1+ 2Mr

ρ

)
d t 2 −2a

2Mr

ρ
sin2θd tdφ+ ∆sin2θ− (

aZ sin2θ
)2

1−Z
dφ2

+ρ
∆

dr 2 +ρdθ2 . (2.24)

In the next step we write the φφ-component of (2.24) in the form

∆sin2θ− (
aZ sin2θ

)2

1−Z
= sin2θ

∆−a2Z 2 sin2θ

1−Z

= sin2θ
(ρ−2Mr +a2 sin2θ)−a2Z 2 sin2θ

1−Z

= sin2θ
ρ−2Mr +a2 sin2θ(1−Z 2)

1−Z

= sin2θ

(
ρ−2Mr

(1−Z )
+ a2 sin2θ(1−Z 2)

1−Z

)
= sin2θ

(
ρ−2Mr

(1− 2Mr
ρ )

+a2 sin2θ(1+Z )

)
= sin2θ

(
ρ+a2 sin2θ(1+Z )

)
= sin2θ

(
ρ+a2 sin2θ+a2 sin2θZ

)
= sin2θ

(
(r 2 +a2)+a2 sin2θ

2Mr

ρ

)
. (2.25)

Finally, by the insertion of (2.25) in (2.24), we obtain

d s2
(4) =

(
−1+ 2Mr

ρ

)
d t 2 −2a

2Mr

ρ
sin2θd tdφ+ sin2θ

(
(r 2 +a2)+a2si n2θ

2Mr

ρ

)
dφ2 + ρ

∆
dr 2 +ρdθ2

= −d t 2 + 2Mr

ρ
d t 2 −2a

2Mr

ρ
sin2θd tdφ+a2 2Mr

ρ
si n4θdφ2 + sin2θ(r 2 +a2)dφ2 + ρ

∆
dr 2 +ρdθ2

= −d t 2 + 2Mr

ρ
d t 2 −2a

2Mr

ρ
sin2θd tdφ+a2 2Mr

ρ
si n4θdφ2 + sin2θ(r 2 +a2)dφ2 + ρ

∆
dr 2 +ρdθ2

= −d t 2 + 2Mr

ρ

(
d t −a sin2θdφ

)2 + sin2θ(r 2 +a2)dφ2 + ρ

∆
dr 2 +ρdθ2 , (2.26)

where the last line represents the standard Kerr metric in Boyer-Lindquist
coordinates. (2.6)-(2.9) with P = 0 and Q = 0 imply At = 0, Aφ = 0. Thus in the
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Σ= 0, P = 0, Q = 0 case we obtain from (2.1), together with (2.26), for the
corresponding five-dimensional line element

d s2
(5) = −d t 2 + 2Mr

ρ

(
d t −a sin2θdφ

)2

+sin2θ(r 2 +a2)dφ2 + ρ

∆
dr 2 +ρdθ2 + (d x4)2 . (2.27)

2.2 The a = 0 case

In the a = 0 case (2.4) reduces to

A =
(
r −Σ/

p
3
)2 − 2P 2Σ

Σ−M
p

3
, B =

(
r +Σ/

p
3
)2 − 2Q2Σ

Σ+M
p

3
,

∆ = ∆θ = r 2 −2Mr +P 2 +Q2 −Σ2 , ω0
φ = 0 . (2.28)

The Maxwell field (2.6) is then given by

2Aµd xµ = C

B
d t +ω5

φdφ , (2.29)

where now (2.8) and (2.9) take the form

C = 2Q
(
r −Σ/

p
3
)

, ω5
φ = 2P cosθ . (2.30)

In addition the parameters (M ,Σ,P,Q) have to fulfil (2.10), i.e.

Q2

Σ+M
p

3
+ P 2

Σ−M
p

3
= 2Σ

3
. (2.31)

Inserting (2.28) -(2.30) in (2.1) yields

d s2 = −

4Q2

18P2Σ

(Σ−
p

3M)(
p

3Σ−3r)2 −1
+∆

(
r + Σp

3

)2 − 2Q2Σp
3M+Σ

d t 2

+
2P 2Σp
3M−Σ +

(
r − Σp

3

)2

∆
dr 2 +

(
2P 2Σp
3M −Σ +

(
r − Σp

3

)2)
dθ2

+

4P 2 cos2(θ)

((
r + Σp

3

)2 − 2Q2Σp
3M+Σ

)
2P 2Σp
3M−Σ +

(
r − Σp

3

)2 + sin2(θ)

(
2P 2Σp
3M −Σ +

(
r − Σp

3

)2)dφ2

+
(
r + Σp

3

)2 − 2Q2Σp
3M+Σ

2P 2Σp
3M−Σ +

(
r − Σp

3

)2 (d x4)2 +
8PQ cos(θ)

(
r − Σp

3

)
2P 2Σp
3M−Σ +

(
r − Σp

3

)2 d tdφ

+
4Q

(
r − Σp

3

)
2P 2Σp
3M−Σ +

(
r − Σp

3

)2 d td x4 +
4P cos(θ)

((
r + Σp

3

)2 − 2Q2Σp
3M+Σ

)
2P 2Σp
3M−Σ +

(
r − Σp

3

)2 dφd x4 . (2.32)

All results of the geometric analysis of the generic case apply directly to the a = 0
case. In this special case it holds as well, that the d.o.c. is non-singular if and only if
the zeros of A and B are located below the outer Killing horizon, cf. Lemma 2.5. It
also follows directly from Lemma 2.6 that (2.32) is stably causal.
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2.3 The metric in the M →± Σp
3

limit

In the M →± Σp
3

limit the line element (2.1) becomes singular. This arises from

M ± Σp
3

expressions, appearing in the denominators of terms of the metric

components, in particular in A and B , given by (2.4). We parametrize either P 2 by
the curve

P 2 =λ
(

M − Σp
3

)
, (2.33)

or Q2 by the curve

Q2 =λ
(

M + Σp
3

)
, (2.34)

where λ is the affine parameter. Under those parametrizations the expressions,
leading to a singularity in the M → Σp

3
or M →− Σp

3
limit respectively, in the second

term of A or B are cancelled out. By inserting F and J , defined by (2.2) and (2.4), in
(2.4), (2.5), (2.7) and (2.9), we obtain the terms

A =
(
r − Σp

3

)2

− 2P 2Σ

Σ−M
p

3
a2 cos2θ±2aPQ cosθ

√√√√√√√
(
M − Σp

3

)2 −P 2

(
M 2 +Σ2 −P 2 −Q2

)((
M + Σp

3

)2 −Q2

) ,

B =
(
r + Σp

3

)2

− 2Q2Σ

Σ+M
p

3
+a2 cos2θ∓2aPQ cosθ

√√√√√√√
(
M + Σp

3

)2 −Q2

(
M 2 +Σ2 −P 2 −Q2

)((
M − Σp

3

)2 −P 2

) ,

C = 2Q

(
r − Σp

3

)
∓2aP cosθ

√√√√√√√√
((

M + Σp
3

)2 −Q2

)(
M + Σp

3

)2

(
M 2 +Σ2 −P 2 −Q2

)((
M − Σp

3

)2 −P 2

) ,

H = 2P∆cosθ∓2a sin2θ

[
r

(
M − Σp

3

)
+M

Σp
3
+Σ2 −P 2 −Q2

]
×

Q

√√√√√√√√
((

M − Σp
3

)2 −P 2

)
(
M 2 +Σ2 −P 2 −Q2

)((
M + Σp

3

)2 −Q2

) ,

F 2 =

[(
M + Σp

3

)2 −Q2
][(

M − Σp
3

)2 −P 2
]

M 2 +Σ2 −P 2 −Q2 ,

E = −M +
(
M 2 +Σ2 −P 2 −Q2

)(
M + Σp

3

)
(
M + Σp

3

)2 −Q2
, (2.35)

which are crucial for the analysis of the metric in the limits outlined above.
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2.3.1 The P 2 =λ
(
M − Σp

3

)
, Σ→p

3M case

Under the parametrization P 2 =λ
(
M − Σp

3

)
(2.35) takes the form

A =
(
r − Σp

3

)2

+ 2Σλp
3

+a2 cos2θ ,

±2a

√
λ

(
M − Σp

3

)
Q cosθ

√√√√√√√
(
M − Σp

3

)2 −λ
(
M − Σp

3

)
(
M 2 +Σ2 −λ

(
M − Σp

3

)
−Q2

)((
M + Σp

3

)2 −Q2

) ,

B =
(
r + Σp

3

)2

− 2Q2Σ

Σ+M
p

3
+a2 cos2θ

∓2a

√
λ

(
M − Σp

3

)
Q cosθ

√√√√√√√
(
M + Σp

3

)2 −Q2(
M 2 +Σ2 −λ

(
M − Σp

3

)
−Q2

)((
M − Σp

3

)2 −λ
(
M − Σp

3

))
=

(
r + Σp

3

)2

− 2Q2Σ

Σ+M
p

3
+a2 cos2θ ,

∓2aQ cosθ

√√√√√√√√
((

M + Σp
3

)2 −Q2

)
λ

(
M − Σp

3

)
(
M 2 +Σ2 −λ

(
M − Σp

3

)
−Q2

)((
M − Σp

3

)2 −λ
(
M − Σp

3

))
=

(
r + Σp

3

)2

− 2Q2Σ

Σ+M
p

3
+a2 cos2θ

∓2aQ cosθ

√√√√√√√
((

M + Σp
3

)2 −Q2

)
λ(

M 2 +Σ2 −λ
(
M − Σp

3

)
−Q2

)((
M − Σp

3

)
−λ

) ,

C = 2Q

(
r − Σp

3

)
∓2a

√
λ

(
M − Σp

3

)
cosθ

√√√√√√√√
((

M + Σp
3

)2 −Q2

)(
M + Σp

3

)2

(
M 2 +Σ2 −λ

(
M − Σp

3

)
−Q2

)((
M − Σp

3

)2 −λ
(
M − Σp

3

))

= 2Q

(
r − Σp

3

)
∓2a cosθ

√√√√√√√√
((

M + Σp
3

)2 −Q2

)(
M + Σp

3

)2
λ

(
M − Σp

3

)
(
M 2 +Σ2 −λ

(
M − Σp

3

)
−Q2

)((
M − Σp

3

)2 −λ
(
M − Σp

3

))

= 2Q

(
r − Σp

3

)
∓2a cosθ

√√√√√√√
((

M + Σp
3

)2 −Q2

)(
M + Σp

3

)2
λ(

M 2 +Σ2 −λ
(
M − Σp

3

)
−Q2

)((
M − Σp

3

)
−λ

) ,

H = 2

√
λ

(
M − Σp

3

)
∆cosθ∓2a sin2θ

[
r

(
M − Σp

3

)
+M

Σp
3
+Σ2 −λ

(
M − Σp

3

)
−Q2

]
×
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Q

√√√√√√√√
((

M − Σp
3

)2 −λ
(
M − Σp

3

))
(
M 2 +Σ2 −λ

(
M − Σp

3

)
−Q2

)((
M + Σp

3

)2 −Q2

) ,

F 2 =

[(
M + Σp

3

)2 −Q2
][(

M − Σp
3

)2 −λ
(
M − Σp

3

)]
M 2 +Σ2 −λ

(
M − Σp

3

)
−Q2

,

E = −M +
(
M 2 +Σ2 −λ

(
M − Σp

3

)
−Q2

)(
M + Σp

3

)
(
M + Σp

3

)2 −Q2
. (2.36)

In the limit Σ→p
3M (2.36) gives

lim
Σ→p

3M
A = (r −M)2 +2λM +a2 cos2θ ,

lim
Σ→p

3M
B = (r +M)2 −Q2 +a2 cos2θ∓2aQ cosθ

√
−4M 2 −Q2

4M 2 −Q2

= (r +M)2 −Q2 +a2 cos2θ∓2i aQ cosθ ,

lim
Σ→p

3M
C = 2Q (r −M)∓2a cosθ

√
−4M 2(4M 2 −Q2)

4M 2 −Q2

= 2Q (r −M)∓4i aM cosθ ,

lim
Σ→p

3M
H = 0,

lim
Σ→p

3M
F 2 = 0,

lim
Σ→p

3M
E = −M +

(
4M 2 −Q2

)
2M

4M 2 −Q2 = M . (2.37)

Furthermore, the constraint (2.10) reduces in this limit to

Q2

2M
−λ= 2M . (2.38)

Together with (2.1) we conclude that metric is real, apart from the massless Kerr
metric case (Q = 0 and M = 0), if and only if a = 0. In this case (2.37) yields

A = (r −M)2 +2λM , B = (r +M)2 −Q2 ,

= r 2 −2Mr +Q2 −3M 2 ,

∆ = ∆θ = r 2 −2Mr +Q2 −3M 2 , ω0
φ = 0 , (2.39)

and for the Maxwell field

2Aµd xµ = C

B
d t +ω5

φdφ , (2.40)

with

C = 2Q (r −M) , ω5
φ = 0 . (2.41)
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The insertion of the expressions above in (2.1) yields

d s2 = − (r −3M)2 −Q2

∆
d t 2 +dr 2 +∆dθ2

+∆sin2θdφ2 + (r +M)2 −Q2

∆
(d x4)2 + 4Q(r −M)

∆
d x4d t . (2.42)

By calculating corresponding resultants, it follows that the numerators of g t t and
g44, representing the norms of the Killing fields ∂t and ∂x4 respectively, factorize in
∆, necessary to avoid singularities, requires Q =±2M . With this choice for Q (2.42)
reads as

d s2 =
(
−1+ 4M

r −M

)
d t 2 +dr 2 + (r −M)2dθ2 + (r −M)2 sin2θdφ2

+
(
1+ 4M

r −M

)
(d x4)2 ± 4M

r −M
d x4d t , (2.43)

from which it follows, that the metric is singular at r = M .

2.3.2 The Q2 =λ
(
M + Σp

3

)
, Σ→p

3M case

Under the parametrization Q2 =λ
(
M + Σp

3

)
(2.35) takes the form

A =
(
r − Σp

3

)2

− 2P 2Σ

Σ−M
p

3
+a2 cos2θ

+2a

√
λ

(
M + Σp

3

)
P cosθ

√√√√√√√
(
M − Σp

3

)2 −P 2(
M 2 +Σ2 −P 2 −λ

(
M + Σp

3

))((
M + Σp

3

)2 −λ
(
M + Σp

3

))
=

(
r − Σp

3

)2

− 2P 2Σ

Σ−M
p

3
+a2 cos2θ

±2aP cosθ

√√√√√√√√
((

M − Σp
3

)2 −P 2

)
λ

(
M + Σp

3

)
(
M 2 +Σ2 −P 2 −λ

(
M + Σp

3

))((
M + Σp

3

)2 −λ
(
M + Σp

3

))
=

(
r − Σp

3

)2

− 2P 2Σ

Σ−M
p

3
+a2 cos2θ

±2aP cosθ

√√√√√√√
((

M − Σp
3

)2 −P 2

)
λ(

M 2 +Σ2 −P 2 −λ
(
M + Σp

3

))((
M + Σp

3

)
−λ

) ,

B =
(
r + Σp

3

)2

− 2λΣp
3

+a2 cos2θ

∓2a

√
λ

(
M + Σp

3

)
P cosθ

√√√√√√√
(
M + Σp

3

)2 −λ
(
M + Σp

3

)
(
M 2 +Σ2 −P 2 −λ

(
M + Σp

3

))((
M − Σp

3

)2 −P 2

) ,
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C = 2

√
λ

(
M + Σp

3

)(
r − Σp

3

)
∓2aP cosθ

√√√√√√√√
((

M + Σp
3

)2 −λ
(
M + Σp

3

))(
M + Σp

3

)2

(
M 2 +Σ2 −P 2 −λ

(
M + Σp

3

))((
M − Σp

3

)2 −P 2

) ,

H = 2P∆cosθ∓2a sin2θ

[
r

(
M − Σp

3

)
+M

Σp
3
+Σ2 −P 2 −λ

(
M + Σp

3

)]
×√√√√√√√√

((
M − Σp

3

)2 −P 2

)
λ

(
M + Σp

3

)
(
M 2 +Σ2 −P 2 −λ

(
M + Σp

3

))((
M + Σp

3

)2 −λ
(
M + Σp

3

))
= 2P∆cosθ∓2a sin2θ

[
r

(
M − Σp

3

)
+M

Σp
3
+Σ2 −P 2 −λ

(
M + Σp

3

)]
×√√√√√√√

((
M − Σp

3

)2 −P 2

)
λ(

M 2 +Σ2 −P 2 −λ
(
M + Σp

3

))((
M + Σp

3

)
−λ

) ,

F 2 =

[(
M + Σp

3

)2 −λ
(
M + Σp

3

)][(
M − Σp

3

)2 −P 2
]

M 2 +Σ2 −P 2 −λ
(
M + Σp

3

) ,

E = −M +
(
M 2 +Σ2 −P 2 −λ

(
M + Σp

3

))(
M + Σp

3

)
(
M + Σp

3

)2 −λ
(
M + Σp

3

) . (2.44)

In the limit Σ→−p3M we obtain

lim
Σ→−p3M

A = (r +M)2 −P 2 +a2 cos2θ±2aP cosθ

√
−4M 2 −P 2

4M 2 −P 2

= (r +M)2 −P 2 +a2 cos2θ±2i aP cosθ ,

lim
Σ→−p3M

B = (r −M)2 +2λM +a2 cos2θ ,

lim
Σ→−p3M

C = 0,

lim
Σ→−p3M

H = 2P∆cosθ∓2i a sin2θ
(
2Mr −P 2) ,

lim
Σ→−p3M

F 2 = 0,

lim
Σ→−p3M

E = −M − 4M 2 −P 2

λ
. (2.45)

Furthermore, the constraint (2.10) reduces in this limit to

λ− P 2

2M
=−2M . (2.46)

Together with (2.1) we conclude that metric is real, apart from the massless Kerr
metric case(P = 0 and M = 0), if and only if a = 0. In this case we obtain from (2.45)
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A = (r +M)2 −P 2 , B = (r −M)2 +2λM ,

= r 2 −2Mr +P 2 −3M 2 ,

∆ = ∆θ = r 2 −2Mr +P 2 −3M 2 , ω0
φ = 0 , (2.47)

and that the Maxwell field is then given by

2Aµd xµ = C

B
d t +ω5

φdφ , (2.48)

where

C = 0 , ω5
φ = 2P cosθ . (2.49)

The insertion of the previous expressions in (2.1) yields

d s2 = −d t 2 + Ξ
∆

dr 2 +Ξdθ2 +
(

4P 2∆cos2θ

Ξ
+Ξsin2θ

)
dφ2

+∆
Ξ

(d x4)2 + 4P cosθ∆

Ξ
dφd x4 , (2.50)

where Ξ := (r +M)2 −P 2. By calculating a corresponding resultant, it follows that
the numerator ∆ of g44 factorizes in Ξ, necessary to avoid singularities, if and only
if P =±2M . With this choice for P (2.50) takes the form

d s2 = −d t 2 +
(
1+ 4M

r −M

)
dr 2 + (

(r +M)2 −4M 2)dθ2

+ (r −M)
(
16M 2 cos2(θ)+ sin2(θ)(r +3M)2

)
r +3M

dφ2

+
(
1− 4M

r +3M

)
(d x4)2 ± 8M cos(θ)(r −M)

r +3M
dφd x4 , (2.51)

from which it follows, that the metric is singular at r =−3M .

2.3.3 The P = 0, Σ→p
3M case

In the P = 0, Σ→p
3M case the line element (2.1) reduces to

d s2
(5) =

(
−1+ 4M(r −M)

∆P=0

)
d t 2 + ∆P=0

(r −M)2 +a2 dr 2

+∆P=0dθ2 + (
(r −M)2 +a2)sin2(θ)dφ2

+
(
1+ 4M(r −M)

∆P=0

)
(d x4)

2 ± 8M(r −M)

∆P=0
d td x4 , (2.52)

where

∆P=0 := (r −M)2 +a2 cos2(θ) , (2.53)

and all previous constraints are satisfied, so that both M and a are unconstrained
parameters. A computation with MATHEMATICA confirms, that (2.52) is a solution
of the five-dimensional vacuum field equations.
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By rewriting (2.52) in the form

d s2
(5) =

(
−1+ 4M(r −M)

∆P=0

)
d t 2 + ∆P=0

(r −M)2 +a2 dr 2

+
(
1+ 4M(r −M)

∆P=0

)
(d x4)

2 ± 8M(r −M)

∆P=0
d td x4

+∆P=0(dθ2 + sin2(θ)dφ2)

+(
(r −M)2 +a2 −∆P=0

)
sin2(θ)dφ2

=
(
−1+ 4M(r −M)

∆P=0

)
d t 2 + ∆P=0

(r −M)2 +a2 dr 2

+
(
1+ 4M(r −M)

∆P=0

)
(d x4)

2 ± 8M(r −M)

∆P=0
d td x4

+∆P=0dΩ2 +a2 sin4(θ)dφ2︸ ︷︷ ︸
smooth if r 6= 0 and ∆P=0 6= 0

, (2.54)

we conclude that the metric is smooth at the rotation axes sinθ = 0 away from the
set ∆P=0 = 0. From (2.53)

∆P=0 = 0 ⇐⇒ r = M and cosθ = 0, (2.55)

follows. On the hyperplane cosθ = 0 the norm g t t of the Killing vector ∂t equals

g t t =−1+ 4M(r −M)

∆P=0
=−1+ 4M

r −M
,

which blows up as r → M , which implies, by the usual arguments, that the
singularities of the metrics are represented by {r = M ,cosθ = 0}.
In the a = 0 case (2.55) reduces to

∆P=0 = 0 ⇐⇒ r = M . (2.56)

The asymptotic expansion of (2.52), using the usual asymptotically Minkowskian
space-time coordinates {x0, · · · , x3}, gives

d s2
(5) = ηαβd xαd xβ+ 4M

r

(
d t 2 + (d x4)2 +2d x4d t

)
+O(r−2) , (2.57)

which yields that the metric is asymptotically flat.

2.3.4 The Q = 0, Σ→−p3M case

In the Q = 0, Σ→−p3M case the line element (2.1) reduces to

d s2
(5) = −d t 2 + ∆Q=0

(r −M)2 +a2 dr 2 +∆Q=0dθ2

−
(
(r −M)2 +a2

)(
a2 cos(4θ)−a2 −4

(
25M 2 +6Mr + r 2

)−4cos(2θ)(M − r )(7M + r )
)

8∆Q=0
dφ2

+
(
1+ 4M(M − r )

∆Q=0

)
(d x4)2 ± 8M cos(θ)

(
a2 + (M − r )2

)
∆Q=0

dφd x4 , (2.58)
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where

∆Q=0 =: (r −M)(r +3M)+a2 cos2(θ) , (2.59)

and M and a are unconstrained parameters again .
A computation with MATHEMATICA confirms, that (2.58) is a solution of the
five-dimensional vacuum Einstein equations.
From (2.58) it follows directly, that the norm of ∂4, i.e. the geometric invariant g44

of the metric, is singular in the a 6= 0 case at the locations of the zeros of ∆Q=0,
bounded by −3M ≤ r < M . In the a = 0 case the singularities are attained at
r ∈ {−3M , M }. Furthermore, from the asymptotic expansion

d s2
(5) = −d t 2 +dr 2 + r 2dθ2 + r 2 sin2(θ)dφ2

+(
d x4 −4M cos(θ)dφ

)2 +O(r−1) , (2.60)

of (2.58) we obtain, that the metric is not asymptotically flat.

In the following we give a summary of the results of this subsection:

P 2 =λ
(
M − Σp

3

)
, M → Σp

3
Q2 =λ

(
M + Σp

3

)
, M →− Σp

3

λ 6= 0 “Complex metric” “Complex metric”

λ 6= 0, a = 0 Naked singularity at r = M Naked singularity at r =−3M

λ= 0 Naked singularity at r = M , cosθ = 0 Naked singularities in the bound −3M ≤ r < M

λ= 0, a = 0 Naked singularity at r = M Naked singularities at r ∈ {−3M , M }

2.4 On the existence of regular metrics with no horizons

The location of the Killing horizons of the metric is determined by the zeros of ∆.
From (2.88) it follows that ∆ attains no real zeros if and only if

a2 > M 2 +Σ2 −P 2 −Q2 . (2.61)

The singularities of the metric are determined by the zeros of A and B . The
conditions (2.124) and (2.125), necessary to avoid singularities, are in this case
given by

|A | > 2 and 2P 2Σ

Σ−M
p

3
−a2(1−|A |) < 0

or

|A | ≤ 2 and 2P 2Σ

Σ−M
p

3
+ a2A 2

4 < 0, (2.62)
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and

|B| > 2 and 2Q2Σ

Σ+M
p

3
−a2(1−|B|) < 0

or

|B| ≤ 2 and 2Q2Σ

Σ+M
p

3
+ a2B2

4 < 0, (2.63)

where A and B are given by (2.125) and (2.127), i.e.

A := 2F PQ

a
((

M +Σ/
p

3
)2 −Q2

) , B :=− 2F PQ

a
((

M −Σ/
p

3
)2 −P 2

) . (2.64)

Furthermore, if a 6= 0, from (2.2) the condition[(
M +Σ/

p
3
)2 −Q2

][(
M −Σ/

p
3
)2 −P 2

]
M 2 +Σ2 −P 2 −Q2 ≥ 0, (2.65)

as a requirement to obtain a real-valued metric, follows.

2.4.1 P = 0 case

P = 0 in (2.64) directly implies A = 0 and B = 0. Then (2.61) and (2.63) reduce to

a2 > M 2 +Σ2 −Q2 , Σ< M
p

3. (2.66)

Furthermore, it follows immediately that (2.62) is violated. Thus in this setting a
metric with no horizons possesses naked singularities, determined by the zeros of
A, for any choice of the parameters.

2.4.2 The "large" |a| case

If |a| is chosen large enough, it follows that (2.61) holds and from (2.64) that |A | ≤ 2
and |B| ≤ 2 holds. In this case (2.62), (2.63) and (2.65) reduce to

2P 2Σ

Σ−M
p

3
+ a2A 2

4
< 0,

2Q2Σ

Σ+M
p

3
+ a2B2

4
< 0,[(

M +Σ/
p

3
)2 −Q2

][(
M −Σ/

p
3
)2 −P 2

]
M 2 +Σ2 −P 2 −Q2 ≥ 0. (2.67)

F > 0 case:
The insertion of the constraint (2.10) in (2.67) yields

3Q2
(p

3M −Σ)
3
p

3M 3 +9M 2Σ+3
p

3M
(
Σ2 −2Q2

)+Σ3
− 2Σp

3M −Σ < 0,

3Q2
(
3M 2 −2

p
3MΣ+Σ2

)(p
3M +Σ)(

3
p

3M 3 +9M 2Σ+3
p

3M
(
Σ2 −2Q2

)+Σ3
) < 0,((

M + Σp
3

)2 −Q2
)((

M − Σp
3

)2 − (
Σ−p

3M
)(2Σ

3 − Q2
p

3M+Σ
))

M 2 − (
Σ−p

3M
)(2Σ

3 − Q2p
3M+Σ

)
−Q2 +Σ2

> 0. (2.68)
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From an analysis with MATHEMATICA we obtain, that the inequalities (2.68) are not
fulfilled simultaneously.

F = 0 case:
In the F = 0 case (2.67) reduces to

2P 2Σ

Σ−M
p

3
< 0,

2Q2Σ

Σ+M
p

3
< 0. (2.69)

By the insertion of the constraint (2.10) in (2.69), we obtain

4Σ2

3
− 2Q2Σp

3M +Σ < 0,
2Q2Σp
3M +Σ < 0. (2.70)

If the second inequality in (2.70) is fulfilled, it follows immediately, that the first
inequality is violated. In conclusion for any choice of the parameters (M ,P,Q,Σ)
the Rasheed metrics have naked singularities if |a| exceeds a certain threshold.

In the |A | > 2 and/or |B| > 2 case, corresponding to the ”small” |a| setting, we have
not been able to analyse the resulting inequalities, determining if (2.61)-(2.63) and
(2.65) can be fulfilled simultaneously, appropriately due to their complexity.

2.4.3 The M 2 +Σ2 −P 2 −Q2 → 0 limit

The critical term in this limit is given by (2.2), i.e.

F 2 =
[(

M +Σ/
p

3
)2 −Q2

][(
M −Σ/

p
3
)2 −P 2

]
M 2 +Σ2 −P 2 −Q2 . (2.71)

By defining q := M 2 +Σ2 −P 2 −Q2, we can rewrite (2.71) as

F 2 =
(
3M 2 +2

p
3MΣ−3Q2 +7Σ2

)(−2Σ
(p

3M +Σ)+3q +3Q2
)

9q
. (2.72)

The insertion of the solution of the constraint (2.10) for Q2 in (2.72) yields

F 2 =
(
3
p

3M 3 −3M 2Σ+p
3M

(
5Σ2 −3P 2

)−3P 2Σ−5Σ3
)(p

3M(P 2 +q)+Σ(P 2 −q)
)

3q
(
Σ−p

3M
)2 .

(2.73)

Thus a regular metric is obtained in the q → 0 limit if and only if the numerator of
(2.73) fulfils(
3
p

3M 3 −3M 2Σ+p
3M

(
5Σ2 −3P 2)−3P 2Σ−5Σ3

)(p
3M(P 2 +q)+Σ(P 2 −q)

)
= f ·qn ,

(2.74)

where f is a smooth function and n ∈N. (2.74) is solved by

f = f1(M ,P,Σ)

qn−1 + 9M 4P 2 −9M 2P 4 +12M 2P 2Σ2 −6
p

3MP 4Σ−3P 4Σ2 −5P 2Σ4

qn ,

(2.75)
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where f1(M ,P,Σ) is a smooth function of the parameters, or

P = 9M 3 −3
p

3M 2Σ+15MΣ2 −5
p

3Σ3

3
(
3M +p

3Σ
) . (2.76)

It follows that only in the n = 1 case it is potentially possible to obtain a suitable
function if and only if the remainder of the polynomial division

(9M 4P 2 −9M 2P 4 +12M 2P 2Σ2 −6
p

3MP 4Σ−3P 4Σ2 −5P 2Σ4) : q , (2.77)

is zero, which turns out not to hold. The insertion of (2.76) in (2.71) yields F = 0,
which is just a special case of the metric, which has been already covered in the
analysis above. Summarizing, there exist no regular metrics in this limit.
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2.5 Asymptotic form and global charges

With the expansion of the metric coefficients of (2.1)

g t t = −1+ 2M

r
+ 2Σp

3r
+O

(
r−2) ,

gr r = 1+ 2M

r
− 2Σp

3r
+O

(
r−2) ,

gθθ = r 2 − 2rΣp
3
+O (1) ,

gφφ = r 2 sin2(θ)− 2rΣsin2(θ)p
3

+4P 2 cos2(θ)+O (1) ,

g44 = 1+ 4Σp
3r

+O
(
r−2) ,

g tφ = O
(
r−2) ,

g t4 = 2Q

r
+O

(
r−2) ,

gφ4 = 2P cos(θ)+O
(
r−1) , (2.78)

the line element can be taken into the asymptotic form

d s2 =
(
−1+ 2M

r
+ 2Σp

3r

)
d t 2 +

(
1+ 2M

r
− 2Σp

3r

)
dr 2 +

(
r 2 − 2rΣp

3

)
dθ2

+
(
r 2 sin2(θ)− 2rΣsin2(θ)p

3
+4P 2 cos2(θ)

)
dφ2

+
(
1+ 4Σp

3r

)
(d x4)2 +4P cos(θ)dφd x4 + 4Q

r
d td x4 +O

(
r−2)

=−d t 2 +dr 2 + r 2dθ2 + r 2 sin2(θ)dφ2 + (d x4)2 +4P cos(θ)dφd x4 +4P 2 cos2(θ)dφ2

− 2Σp
3r

(
−d t 2 +dr 2 + r 2dθ2 + r 2 sin2(θ)dφ2︸ ︷︷ ︸

=ηab d xa d xb

)
+ 2M

r
d t 2 + 2M

r
dr 2 + 4Q

r
d td x4 +O

(
r−2)

=−d t 2 +dr 2 + r 2dθ2 + r 2 sin2(θ)dφ2 +
(
d x4 +2P cos(θ)dφ

)2 − 2Σp
3r
ηabd xad xb

+ 2M

r
dr 2 + 4Q

r
d td x4 +O

(
r−2)

= ĝµνd xµd xν− 2Σp
3r
ηabd xad xb + 2M

r
d t 2 + 2M

r
dr 2 + 4Q

r
d td x4 +O

(
r−2) , (2.79)

where we have defined

ĝ =: −d t 2 +dr 2 + r 2dθ2 + r 2 sin2(θ)dφ2 +
(
d x4 +2P cos(θ)dφ

)2
, (2.80)

as the background metric. From (2.80) it follows, that the metric is not
asymptotically flat for P 6= 0 and that x4 has to be 8πP-periodic(for a detailed
analysis see Section 4). In the following we compute the global charges of the
Rasheed solution. For this sake it is convenient to switch to Cartesian coordinates.
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In the P = 0 case in a Cartesian-type basis (t , x, y, z, x4) (2.79) takes the form

g =



−1+ 2M
r + 2Σp

3r
0 0 0 2Q

r

0 1+ 2M x2

r 3 − 2Σp
3r

2M x y
r 3

2M xz
r 3 0

0 2M x y
r 3 1+ 2M y2

r 3 − 2Σp
3r

2M y z
r 3 0

0 2M xz
r 3 1+ 2M y z

r 3
2M z2

r 3 − 2Σp
3r

0
2Q
r 0 0 0 1+ 4Σp

3r


+O

(
r−2) . (2.81)

When P 6= 0 the expansions are considerably more complicated and not very
enlightening, therefore we do not include them here. From (2.79), with the
formulae derived in Section 4, we obtain for the Hamiltonian momentum pµof the
level sets of t , and the ADM four-momentum pµ,ADM of the space-metric
gi j d xi d x j the following results:

pi ,ADM = pi = 0, p0,ADM = M − Σp
3

, p0 =
{

2πM , P = 0,
4πP M , P 6= 0,

p4 =
{

2πQ, P = 0,
8πPQ, P 6= 0.

(2.82)
The Komar integrals associated with X = ∂t are

1

8π
lim

R→∞

∫
S(R)

∫
S1

Xα;βdSαβ =
{

2π
(
M + Σp

3

)
, P = 0,

8πP
(
M + Σp

3

)
, P 6= 0,

(2.83)

whereas those associated with X = ∂4 are given by

1

8π
lim

R→∞

∫
S(R)

∫
S1

Xα;βdSαβ =
{

4πQ, P = 0,
16πPQ, P 6= 0.

(2.84)

2.6 Regularity at the sinθ = 0 axis

To show that the metric is regular at the sinθ = 0 axis, we write (2.3) in the following
form

d s2
(4) = − ∆θp

AB

(
d t +ω0

φdφ
)2 +

p
AB

∆
dr 2 +

p
ABdθ2 + ∆

p
AB

∆θ
sin2θdφ2

= − ∆θp
AB

(
d t +ω0

φdφ
)2 +dr 2 + r 2(dθ2 + sin2θdφ2)︸ ︷︷ ︸

δi j d x i d x j

+(p
AB − r 2)(dθ2 + sin2θdφ2)︸ ︷︷ ︸

r−2(δi j d x i d x j−dr 2)

+
(p

AB

∆
−1

)
dr 2 +

p
AB

(
∆

∆θ
−1

)
sin2θdφ2 .

(2.85)

From the last line in (2.85) it follows, that the metric is regular at the sinθ = 0 axis if

and only if
(
∆
∆θ

−1
)

factorizes in sin2θ. This is true since(
∆

∆θ
−1

)
= a2 sin2θ

a2 cos2(θ)−2Mr +P 2 +Q2 + r 2 −Σ2 . (2.86)

In the P = 0 case Aφ (2.6) factorizes in sin2θ also, together with (2.1) this yields,
that the five-dimensional metric is also regular at the sinθ = 0 axis.
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2.7 Killing horizons

The location of the Killing horizons of the metric (2.3) is determined by the zeros of
the determinant ∣∣∣∣∣∣

g t t g tφ g t4

gφt gφφ gφ4

g4t g4φ g44

∣∣∣∣∣∣=−∆sin2θ , (2.87)

and thus by the roots r+ ≥ r− of ∆, which, therefore, give the locations of the outer-
and inner Killing horizon respectively. From (2.4), by denoting the zeros of ∆θ by
R+ ≥ R−, we obtain

r± = M ±
√

M 2 +Σ2 −P 2 −Q2 −a2 ,

R± = M ±
√

M 2 +Σ2 −P 2 −Q2 −a2 cos2θ . (2.88)

from which

r+ ≤ R+ , (2.89)

follows for θ ∈ [0,π]. Thus we have to pay special attention to the zero-set of ∆θ,
since potential singularities arising from this set are not shielded by the outer
Killing horizon. This problem, among others, is addressed in the next subsection,
resulting in that there are no singularities associated with the zeros R+ and R− of
∆θ, corresponding to the ergosurfaces of the metric.

2.8 Singularities related with the zeros of A and B

To write some terms in a more compact form, we define s := sinθ.

The metric (2.1) is a solution to the five-dimensional field equations if (2.10) holds.
Solving this constraint for P yields

P =±
√(
Σ−p

3M
)(2Σ

3
− Q2

p
3M +Σ

)
, (2.90)

then P ∈R implies

(Σ−p
3M)

(
2Σ

3
− Q2

p
3M +Σ

)
≥ 0, (2.91)

which is used throughout this subsection.

LEMMA 2.1 The invariant

g (5)
φφ

(r,θ) = B

A
4A2

φ+
√

A

B
gφφ , (2.92)

is real and C∞(S), where S = (r+,∞)× [0,π], with r+ given by (2.88), if and only if[(
M +Σ/

p
3
)2 −Q2

][(
M −Σ/

p
3
)2 −P 2

]
M 2 +Σ2 −P 2 −Q2 ≥ 0, if a,P,Q, 6= 0, (2.93)
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and

|A | > 2 and M +
√

M 2 +Σ2 −P 2 −Q2 −a2 > Σ
3
+

√
2P 2Σ

Σ−M
p

3
−a2(1−|A |) ,

or

|A | ≤ 2 and M +
√

M 2 +Σ2 −P 2 −Q2 −a2 > Σ
3
+

√
2P 2Σ

Σ−M
p

3
+ a2A 2

4
,

(2.94)

where

A = 2JPQ

a2
((

M +Σ/
p

3
)2 −Q2

) , (2.95)

and P = P (M ,Σ,Q), given by (2.90), with (2.91) holds.

PROOF:
The strategy of the proof is to write (2.92) as a quotient of two polynomial
expressions in the variables (r,θ), in order to factorize out as many potential
problematic terms as possible. We write the φφ-component of the
four-dimensional line element in the following form

gφφ = − ∆θp
AB

(
ω0

φ

)2 + ∆
p

AB

∆θ
s2

= s2 AB∆−∆2
θ

(ω0
φ)2

p
AB∆θ

= AB s2∆−4J 2s4(r +E)2

p
AB∆θ

. (2.96)

The insertion of (2.6) in (2.92) yields

g (5)
φφ

= B

A

(
ω5

φ+ C

B
ω0

φ

)2

︸ ︷︷ ︸
:=gφφA

+
√

A

B
gφφ . (2.97)

The evaluation of gφφA yields

gφφA =
(
ω5

φ+ C

B
ω0

φ

)2

=
(
(ω5

φ)2 +2
C

B
ω5

φω
0
φ+ C 2

B 2 (ω0
φ)2

)
=

(
H 2 +4J s2(r +E)C

B H + C 2

B 2 4J 2s4(r +E)2

∆2
θ

)

= 1

B 2

(
B 2H 2 +4J s2(r +E)C B H +4C 2 J 2s4(r +E)2

∆2
θ

)
. (2.98)
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Finally, (2.96) and (2.98) inserted in (2.97) gives the desired polynomial expression

g (5)
φφ

= AB s2∆−4J 2s4(r +E)2

B∆θ
+ 1

AB

(
B 2H 2 +4J s2(r +E)C B H +4C 2 J 2s4(r +E)2

∆2
θ

)

= A∆θ(AB s2∆−4J 2s4(r +E)2)

AB∆2
θ

+ 1

AB

(
B 2H 2 +4J s2(r +E)C B H +4C 2 J 2s4(r +E)2

∆2
θ

)

= 1

AB

(
A∆θ(AB s2∆−4J 2s4(r +E)2)+B 2H 2 +4C B H J (r +E)s2 +4C 2 J 2(r +E)2s4

∆2
θ

)
.

(2.99)

A MATHEMATICA computation shows, that the numerator of (2.99) factorizes in ∆2
θ

and B , but not in A. Therefore, g (5)
φφ

∈C∞(S) if A attains no zeros on S. From
Lemma 2.2 it follows, that this is the case if and only if (2.94) holds. From (2.4) and
(2.2) one observes directly, that J is real if and only if the inequality in (2.93) holds,
then it follows, that (2.99) is also real. From (2.2), (2.4) and (2.7) it follows, that
(2.99) is real.

2

LEMMA 2.2 The function

A =
(
r −Σ/

p
3
)2 − 2P 2Σ

Σ−M
p

3
+a2 cos2θ+ 2JPQ cosθ(

M +Σ/
p

3
)2 −Q2

, (2.100)

i) is real if and only if[(
M +Σ/

p
3
)2 −Q2

][(
M −Σ/

p
3
)2 −P 2

]
M 2 +Σ2 −P 2 −Q2 ≥ 0, if a,P,Q, 6= 0, (2.101)

ii) has real zeros in the variable r , for some θ ∈ [0,π], if and only if

0 ≤


2P 2Σ

Σ−M
p

3
−a2(1−|A |) , if |A | > 2,

2P 2Σ

Σ−M
p

3
+ a2A 2

4 , if |A | ≤ 2,

, (2.102)

iii) The largest zero of A, in the variable r , for all θ ∈ [0,π], is given by

r A
max,+ =


Σp

3
+

√
2P 2Σ

Σ−M
p

3
−a2(1−|A |) , if |A | > 2,

Σp
3
+

√
2P 2Σ

Σ−M
p

3
+ a2A 2

4 , if |A | ≤ 2,

, (2.103)

where A is given by (2.95), P = P (M ,Σ,Q) by (2.90), and (2.91) holds.
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PROOF:

i): The parameter J is given via (2.4) and (2.2) by

J =±a

√√√√[(
M +Σ/

p
3
)2 −Q2

][(
M −Σ/

p
3
)2 −P 2

]
M 2 +Σ2 −P 2 −Q2 . (2.104)

With (2.100) and M ,Σ, a,P,Q ∈R it follows, that A ∈R if and only if J ∈R or
P = 0, or Q = 0 or a = 0, which implies (2.101).

ii): We write the equation A = 0 in the form

(
r −Σ/

p
3
)2 = 2P 2Σ

Σ−M
p

3
−a2 cos2θ− 2JPQ cosθ(

M +Σ/
p

3
)2 −Q2

= 2P 2Σ

Σ−M
p

3
−a2

(
cos2θ+ 2JPQ

a2
((

M +Σ/
p

3
)2 −Q2

) cosθ

︸ ︷︷ ︸
=:h(θ)

)
.

(2.105)

A will have real zeros in the variable r for some θ ∈ [0,π] if and only if the
maximum of the right-hand side of (2.105), in the variable θ, is larger than or
equal to zero. The right side is maximal if h is minimal. By using the
definition (2.95), we write

h(θ) = cos2θ+A cosθ . (2.106)

Since h is a periodic function, the global minimum coincides with a local
minimum. The first and second derivative of h are given by

h′(θ) = −sinθ(A +2cosθ) ,

h′′(θ) = 2−A cosθ−4cos2θ . (2.107)

For the analysis of the local minima it is sufficient to restrict to the h′ = 0 and
h′′ > 0 requirement, since it follows easily from (2.107) that h′ = h′′ = 0 is
attained if and only if |A | = 2∧θ ∈ {0,π}. This special case is covered within
the analysis. From h′ = 0 we obtain

sinθ(A +2cosθ) = 0 ⇐⇒ θ ∈
{

0,π
}

or cosθ =−A

2
. (2.108)

If θ ∈ {0,π}, then the condition h′′ > 0 and (2.107) imply

−2±A > 0 ⇐⇒|A | > 2. (2.109)

In the cosθ =−A
2 case, h′′ > 0 and (2.107) imply

2−A 2/2 > 0 ⇐⇒|A | < 2. (2.110)
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In the |A | = 2 case if follows easily, that the minimum of h is located where

cosθ =−A
2 =−1. Therefore, we can finally conclude, by inserting θ ∈

{
0,π

}
(in the |A | > 2 case) and cosθ =−A

2 (in the |A | ≤ 2 case), that the minimum
hmi n of h is given by

hmi n =


(1−|A |), if |A | > 2,

−A 2

4 , if |A | ≤ 2,
. (2.111)

From (2.111) it follows, that the right side of (2.105) is non-negative if and
only if

0 ≤


2P 2Σ

Σ−M
p

3
−a2(1−|A |), if |A | > 2,

2P 2Σ

Σ−M
p

3
+ a2A 2

4 , if |A | ≤ 2,

. (2.112)

iii): From ii) and (2.105) the expression for the largest zero of A

r A
max,+ =


Σp

3
+

√
2P 2Σ

Σ−M
p

3
−a2(1−|A |), if |A | > 2,

Σp
3
+

√
2P 2Σ

Σ−M
p

3
+ a2A 2

4 , if |A | ≤ 2,

, (2.113)

follows.

2

LEMMA 2.3 The function

B =
(
r +Σ/

p
3
)2 − 2Q2Σ

Σ+M
p

3
+a2 cos2θ− 2JPQ cosθ(

M −Σ/
p

3
)2 −P 2

, (2.114)

i) is real if and only if[(
M +Σ/

p
3
)2 −Q2

][(
M −Σ/

p
3
)2 −P 2

]
M 2 +Σ2 −P 2 −Q2 ≥ 0, if a,P,Q, 6= 0, (2.115)

ii) has real zeros in the variable r , for some θ ∈ [0,π], if and only if

0 ≤


2Q2Σ

Σ+M
p

3
−a2(1−|B|) , if |B| > 2,

2Q2Σ

Σ+M
p

3
+ a2B2

4 , if |B| ≤ 2,

, (2.116)

iii) The largest zero of B, in the variable r , for all θ ∈ [0,π], is given by

r B
max,+ =


− Σp

3
+

√
2Q2Σ

Σ+M
p

3
−a2(1−|B|) , if |B| > 2,

− Σp
3
+

√
2Q2Σ

Σ+M
p

3
+ a2B2

4 , if |B| ≤ 2,

, (2.117)
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where P = P (M ,Σ,Q) is given by (2.90), (2.91) holds, and B is given by

B =− 2JPQ

a2
((

M +Σ/
p

3
)2 −P 2

) . (2.118)

PROOF:

i): Analogous to i) of Lemma 2.2.

ii): We write the equation B = 0 in the following form(
r +Σ/

p
3
)2 = 2Q2Σ

Σ+M
p

3
−a2 cos2θ+ 2JPQ cosθ(

M −Σ/
p

3
)2 −P 2

= 2Q2Σ

Σ+M
p

3
−a2

(
cos2θ− 2JPQ

a2
((

M +Σ/
p

3
)2 −P 2

) cosθ

︸ ︷︷ ︸
=:hB (θ)

)
.

(2.119)

B will have real zeros in the variable r for some θ ∈ [0,π] if and only if the
maximum of the right-hand side of (2.119), in the variable θ, is larger than or
equal to zero. The right side is maximal if hB is minimal. By using the
definition (2.118), we write

hB (θ) = cos2θ+B cosθ . (2.120)

Since (2.106) of Lemma 2.2 is of the exact same form as (2.120), we obtain the
minimum hB ,mi n of hB simply by replacing A by B in (2.111), i.e.

hB ,mi n =


(1−|B|), if |B| > 2,

−B2

4 , if |B| ≤ 2,
. (2.121)

Thus we can write the positivity condition for the maximum of the left side of
(2.119) in the form

0 ≤


2Q2Σ

Σ+M
p

3
−a2(1−|B|) , if |B| > 2,

2Q2Σ

Σ+M
p

3
+ a2B2

4 , if |B| ≤ 2,

. (2.122)

iii): From ii) and (2.119)

r B
max,+ =


− Σp

3
+

√
2Q2Σ

Σ+M
p

3
−a2(1−|B|) , if |B| > 2,

− Σp
3
+

√
2Q2Σ

Σ+M
p

3
+ a2B2

4 , if |B| ≤ 2,

, (2.123)

for the largest zero of B , follows. 2
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Summarising, a necessary and sufficient condition, so that all A has no zeros in the
d.o.c., is given by

|A | > 2 and


2P 2Σ

Σ−M
p

3
−a2(1−|A |) < 0, or

M +
√

M 2 +Σ2 −P 2 −Q2 −a2 > Σ
3 +

√
2P 2Σ

Σ−M
p

3
−a2(1−|A |) ,

or

|A | ≤ 2 and


2P 2Σ

Σ−M
p

3
+ a2A 2

4 < 0, or

M +
√

M 2 +Σ2 −P 2 −Q2 −a2 > Σ
3 +

√
2P 2Σ

Σ−M
p

3
+ a2A 2

4 ,
(2.124)

where

A := 2JPQ

a2
((

M +Σ/
p

3
)2 −Q2

) , (2.125)

and the same condition for B is given by

|B| > 2 and


2Q2Σ

Σ+M
p

3
−a2(1−|B|) < 0, or

M +
√

M 2 +Σ2 −P 2 −Q2 −a2 >−Σ3 +
√

2Q2Σ

Σ+M
p

3
−a2(1−|B|) ,

or

|B| ≤ 2 and


2Q2Σ

Σ+M
p

3
+ a2B2

4 < 0, or

M +
√

M 2 +Σ2 −P 2 −Q2 −a2 >−Σ3 +
√

2Q2Σ

Σ+M
p

3
+ a2B2

4 ,
(2.126)

where

B :=− 2JPQ

a2
((

M −Σ/
p

3
)2 −P 2

) . (2.127)

LEMMA 2.4 For M = 0 there exist no a, P, Q, Σ ∈R, such that
r+ > r A

max,+ and r+ > r B
max,+ and (2.10) holds.

PROOF:
Solving (2.10) for Σ yields

Σ=±
√

3

2

√
P 2 +Q2 . (2.128)

• a = 0 case:
(2.103) and (2.123) reduce to

r A
max,+ = Σp

3
+p

2|P | , r B
max,+ =− Σp

3
+p

2|Q| . (2.129)
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Inserting the negative case of (2.128) in (2.129) and (2.88) yields for the
r+ > r A

max,+ and r+ > r B
max,+ condition√

P 2 +Q2 > |P | , |Q| < 0. (2.130)

while insertion of the positive case of (2.128) yields

|P | < 0,
√

P 2 +Q2 > |Q| . (2.131)

Thus those both special cases of (2.128) yield a contradiction.

• a 6= 0 case:
By inserting (2.95) and (2.4) in the second line of (2.94), we obtain

|A | ≤ 2 and
√
Σ2 −P 2 −Q2 −a2 > Σ

3
+

√√√√2P 2 + 2F PQ

4
((
Σ/

p
3
)2 −Q2

) , (2.132)

for the r+ > r A
max,+ constraint. The left side(r+) of (2.132) decreases with

increasing |a|, while the right side (r A
max,+) remains constant. Next, we write

the first line of (2.94) in the form

|A | > 2 and
√
Σ2 −P 2 −Q2 −a2 > Σ

3
+

√
2P 2 +a2 (|A |−1)︸ ︷︷ ︸

>1

. (2.133)

The left side(r+) of (2.133) decreases with increasing |a|, while the right
side(r A

max,+) increases. Together with analogous considerations for the
r+ > r B

max,+ condition and the analysis for the a = 0 case, Lemma 2.4 follows.

2

LEMMA 2.5 The norm of the Killing fields ∂t and ∂4, i.e.

g t t = W

AB
, g44 = B

A
, (2.134)

where W :=−G A+C 2, is non-singular in the closure of the d.o.c, i.e. {r ≥ r+}, if and
only if A and B have no zeros in the d.o.c., except perhaps in a special setting, where
B attains an isolated double zero in the d.o.c., if a 6= 0 and P 6= 0.

PROOF:
We write A and B in the following form

A = (r − r A
+ )(r − r A

− ) , B = (r − r B
+ )(r − r B

− ) , (2.135)

where

r A
± = Σp

3
±

√√√√√−a2 cos2(θ)− 2aF PQ cos(θ)(
M + Σp

3

)2 −Q2
+ 2P 2Σp

3M −Σ ,

r B
± = − Σp

3
±

√√√√√−a2 cos2(θ)+ 2aF PQ cos(θ)(
M − Σp

3

)2 −P 2
+ 2Q2Σp

3M +Σ . (2.136)
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• a 6= 0 case:

i) r A
max,+ 6= Σp

3
, r B

max,+ 6= − Σp
3

case:

A and B have zeros in the d.o.c. if and only if r A
max,+ > r+ and

r B
max,+ > r+, where r A

max,+ and r B
max,+ are given by (2.103) and (2.117)

respectively. In those cases the continuity of (2.136) in the variable θ
implies that ∃I A ⊂ [0,π), ∀θ ∈ I A , r+ < r A+ (θ) < r A

max,+, and
∃IB ⊂ [0,π), ∀θ ∈ IB , r+ < r B+ (θ) < r B

max,+.
Therefore, in the case of the occurrence of zeros of A and/or B in the
d.o.c., it is necessary to obtain a non-singular term W

AB in this domain,
which requires the remainder of the polynomial divisions

W : (r − r A
+ ) , and/or W : (r − r B

+ ) , (2.137)

to vanish ∀θ ∈ I A and ∀θ ∈ IB respectively. A computation of the
corresponding remainder polynomials with MATHEMATICA yields the
conditions

p1(z)

√
−z2 − zaA + 2P 2Σ

Σ−p
3M

+p2(z) = 0,

p3(z)

√
−z2 − zaB+ 2Q2Σp

3M +Σ +p4(z) = 0, (2.138)

where we have applied the replacement a cosθ→ z, and p1 and p3 are
first order and p2 and p4 are second order polynomials in the variable
z. From (2.138) it follows, that the solution-set of those equations is
discrete. Thus W will potentially only factorize for discrete elements of
I A and IB and not on the full intervals.

P = 0 case: In this case (2.138) reduces to

−4Q2z2 = 0, (2.139)

− 4Q4Σ2(p
3M +Σ)2 + 6Q4Σp

3M +Σ − 20Q2Σ3

3
(p

3M +Σ) − 4
p

3MQ2Σ2

p
3M +Σ − 8MQ2Σ2

p
3
(p

3M +Σ)
−8MΣ3

3
p

3
+2

p
3MΣz2 + 2MΣz2

p
3

+4Q2Σ2 −4Q2z2 + 8Σ4

9
+ 8Σ2z2

3(
4
p

3Q2Σ2

p
3M +Σ + 4MQ2Σp

3M +Σ + 16MΣ2

3
−4

p
3Q2Σ

)√
2Q2Σp
3M +Σ − z2 = 0.

(2.140)

The first equation corresponds to a double zero case discussed below,
the second one cannot be fulfilled for the whole range of values of IB ,
by the same arguments as in the P 6= 0 case.
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ii) r A
max,+ = Σp

3
, r B

max,+ =− Σp
3

case(double zero case):

From (2.124) and (2.126) it follows that A and/or B attain a double zero,
located at r = Σp

3
and r =− Σp

3
respectively, if

{ 2P 2Σ

Σ−M
p

3
−a2(1−|A |) = 0, if |A | > 2 or

2P 2Σ

Σ−M
p

3
+ a2A 2

4 = 0, if |A | ≤ 2,
(2.141)

and/or 
2Q2Σ

Σ+M
p

3
−a2(1−|B|) = 0, if |B| > 2 or

2Q2Σ

Σ+M
p

3
+ a2B2

4 = 0, if |B| ≤ 2.
(2.142)

We rewrite (2.136) in the form

r A
± = Σp

3
±√

p5(z) , r B
± =− Σp

3
±√

p6(z) , (2.143)

where

p5(z) = −z2 −azA + 2P 2Σp
3M −Σ ,

p6(z) = −z2 −azB+ 2Q2Σp
3M +Σ , (2.144)

and A and B are given by (2.94) and (2.118) respectively. The leading
monomial of p5 and p6 is negative, thus those polynomials only attain
positive real values between their zeros. Thus a necessary criterion for
A or B to have an isolated double zero r A

max,+ = Σp
3

, r B
max,+ =− Σp

3
is,

that p5 or p6 have a double zero z∗
A =− aA

2 ∈ [−a, a] or

z∗
B =− aB

2 ∈ [−a, a]. In this case of a double zero of A or B the
remainder polynomial of the polynomial division

W :

(
r − Σp

3

)2

, or W :

(
r + Σp

3

)2

, (2.145)

has to vanish. An analysis with MATHEMATICA yields the conditions

r p7(z)+p8(z) = 0,

r p9(z)+p10(z) = 0, (2.146)

where p7, p8, p9 and p10 are polynomials in the variable z. This finally
yields the following conditions to obtain a non-singular function W

AB in
the case of a double zero of A or B in the d.o.c.

p7(z∗
A) = p8(z∗

A) = 0, z∗
A ∈ [−a, a] , or (2.147)

p9(z∗
B ) = p10(z∗

B ) = 0, z∗
B ∈ [−a, a] . (2.148)
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• Double zeros of A in the d.o.c.

From p7(z∗
A) = 0 we obtain the equation

A JPQ
(
3P 2

(
3M +p

3Σ
)
−

(
3M −p

3Σ
)(

3M 2 −Σ2))= 0. (2.149)

By taking the constraint (2.10) for P into account, (2.149) reads as

27
p

3M 4 +54M 3Σ−27
p

3M 2Q2 −18MΣ3 +9
p

3Q2Σ2 −3
p

3Σ4 = 0.

(2.150)

The set of allowed solutions of this equation for Σ is given by{
−p

3(M +Q),
p

3(−M +Q)
}

. Both solutions inserted in (2.3) yield F = 0

and thus (2.95) implies A = 0 and z∗
A = 0. With those values (2.103)

yields

r A
max,+ = Σp

3
+

√
2P 2Σ

Σ−M
p

3
, (2.151)

and therefore the condition P = 0 for a double zero. Thus in the generic
case a double zero of A is forbidden in the d.o.c.

P = 0 case: In this case (2.95) and (2.118) yield A = 0, B = 0 and z∗
A = 0.

Thus from (2.103) we obtain

r A
max,+ = Σp

3
. (2.152)

Inserting those values and the solution of (2.10) for Q in (2.117) yields

r B
max,+ = Σp

3
. (2.153)

As a result a double zero of B is excluded and a curve γ, parametrized
by θ of zeros of B is located in the d.o.c., which is forbidden.

• Double zeros of B in the d.o.c.

In the generic case p9(z∗
B ) = 0 and p10(z∗

B ) = 0 yield complicated
non-polynomial equations, which are hard to analyse.

In the P = 0 case the conditions p9(z∗
B ) = 0 and p10(z∗

B ) = 0 reduce to

p
3M +Σ= 0 and M +p

3Σ= 0, (2.154)

with only the trivial solution M =Σ= 0 allowed, which is not of interest.
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• The a = 0 case:

In this case (2.138) reduces to

8P 2Q2Σ

Σ−p
3M

= 0,

36M 4Σ

(
Σ−2

p
6

√
Q2Σp
3M +Σ

)

−36M 3

(
3
p

2P 2

√
Q2Σp
3M +Σ +2

p
2Σ2

√
Q2Σp
3M +Σ −3

p
2Q2

√
Q2Σp
3M +Σ +

(
−p3

)
Σ

(
P 2 +Q2))

+3M 2

(
6P 2

(
2Σ

(
Σ−2

p
6

√
Q2Σp
3M +Σ

)
+3Q2

)
+8

p
6Σ3

√
Q2Σp
3M +Σ +9P 4 −27Q4 +12Q2Σ2 −8Σ4

)

+6MΣ
(
3
(
P 2 +Q2)−2Σ2)(−2

p
2Σ

√
Q2Σp
3M +Σ +p

3P 2 +p
3Q2

)
+(

3Σ
(
P 2 +Q2)−2Σ3)2 = 0. (2.155)

The first equation corresponds to a double zero case, discussed above, the
second one is fulfilled under the constraint (2.10). From (2.134) the
requirement follows additionally, that B has to factorize in the larger zero of
A, i.e.

B : (r − r A
+ ) (2.156)

has to vanish. This condition yields in the a = 0 case P =±
√

2
3

√
Σ2 −p

3MΣ.

By the insertion of this expression in (2.134) we obtain r B
max,+ = r B

max,− =− Σp
3

and thus the double zero case, which has been discussed above.

Summarising, we can exclude the possibility of zeros in the d.o.c., except
perhaps if P 6= 0, a 6= 0 and (2.142) holds.

2

2.9 Regularity at the outer Killing horizon H+

The outer Killing horizon H+ of the Killing field

k = ∂t +Ωφ∂φ+Ω4∂x4 , (2.157)

is given by the larger root r+ (2.88) of ∆. The condition that H+ is a Killing horizon
for k is that the pullback of

gµνkν , (2.158)

to H+ vanishes. This, together with

∆
∣∣
H+ = 0, ∆θ

∣∣
H+ =−a2 sin2(θ) , (2.159)
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yields

Ωφ = − 1

ω0
φ

∣∣∣∣∣
H+

= a2

2J
(r++E)−1 ,

Ω4 = −2(Atω
0
φ− Aφ)

ω0
φ

∣∣∣∣∣
H+

= Q
(−3Mr+−p

3MΣ+3P 2 +3Q2 +p
3rΣ−3Σ2

)
(E + r+)

(
3M 2 +2

p
3MΣ−3Q2 +Σ2

) . (2.160)

Under the coordinate transformation

φ̄=φ−Ωφd t , x̄4 = x4 −Ω4 d t , (2.161)

the metric (2.1) takes the following form

g = gS + dr 2

∆
+∆Ud t 2 , (2.162)

where gS is a smooth (0,2)-tensor and U = g t t

∆ . Introducing a new time coordinate
by

τ= t −σ ln(r − r+) =⇒ dτ= d t − σ

r − r+
dr , (2.163)

where σ is a constant to be chosen, in (2.162) yields

g = gS +∆U

(
dτ+ σ

r − r+
dr

)2

+ dr 2

∆

= gS +∆Udτ2 + 2∆Uσ

r − r+
dτdr +

(
1

∆
+ ∆Uσ2

(r − r+)2

)
dr 2

= gS +∆Udτ2 + 2∆Uσ

r − r+
dτdr + (r − r+)2 +∆2Uσ2

∆(r − r+)2︸ ︷︷ ︸
V

dr 2 . (2.164)

In order to obtain a smooth metric in the d.o.c., σ has to be chosen in a way that
the numerator of V attains a triple-zero at r = r+. A computation, using
MATHEMATICA, gives a lengthy algebraic expression(therefore, not given in explicit
form her) for σ, fulfilling this requirement.

2.9.1 Kerr case: Σ= 0, Q = 0 and P = 0

In the Kerr case (2.160) reduces to

Ωφ = a

Mr+
= a

r 2++a2
,

Ω4 = 0. (2.165)

31



The coordinate transformation

v = t +
∫

r 2 +a2

∆
dr , u =φ+

∫
a

∆
dr , (2.166)

resolves the ∆= 0 coordinate singularity in the Kerr case and thus provides an
analytic extension of the metric.

2.10 Stable causality

LEMMA 2.6 If (2.124) and (2.126) hold,

i) g 00 has no zeros in the d.o.c. if

r+ ≥C , r+ >−E , (2.167)

or a = 0 holds, where C := E M+q
M+E and q := P 2 +Q2 −Σ2 +a2.

ii) The metric is stably causal for small values of |P | if M > Σp
3

.

PROOF:

i): With (2.11) and the insertion of the expression (2.4) for ω0
φ we obtain

g 00 =
(
− B

∆θ
+ (ω0

φ)2∆θ

A∆

1

sin2θ

)

=
(
− B

∆θ
+ 4J 2[r +E ]2 sin2θ

A∆∆θ

)
= 1

∆θ

(
−B + 4J 2[r +E ]2 sin2θ

A∆

)
︸ ︷︷ ︸

:=w(r,θ)

. (2.168)

We list the following properties of important functions involved in the proof:

• A,B(if (2.124) and (2.126) hold) and ∆ are strictly monotonically
increasing(s.m.i.) for r ∈ [r+,∞) for all values of θ,

• ∆θ > 0 if r > R+, ∆θ < 0 for r+ < r < R+, for all values of θ,

• g 00 →−1 as r →∞ ,

• w(r = R+(θ),θ) = 0 (MATHEMATICA result: The numerator of w
factorizes in ∆θ),
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where r+ and R+ are given by (2.88).

Since w factorizes in ∆θ, g 00 has no poles in the doc and R+ is a zero of w .
From the properties above it follows, if w is strictly monotonically decreasing
for r ∈ [r+,∞), for all values of θ, we have ∆θ > 0, w < 0 ⇒ g 00 < 0 if r > R+
and ∆θ < 0, w > 0 ⇒ g 00 < 0 for r+ < r < R+, for all values of θ, and thus by the
continuity of the functions involved no zeros of g 00 in the d.o.c. In order to
derive the conditions, so that w is strictly monotonically decreasing , we
write (2.168) in the form

w(r,θ) = −B︸︷︷︸
strictly monotonically decreasing

+ 4J 2 sin2Θ

A︸ ︷︷ ︸
monotonically decreasing

· (r +E)2

∆︸ ︷︷ ︸
:=u(r )

. (2.169)

Thus it remains to derive the restrictions on the parameters, so that u(r ) is a
monotonically decreasing function. We define q := P 2 +Q2 −Σ2 +a2 and
write u(r ) in the form

u(r ) = (r +E)2

∆
= (r +E)2

r 2 −2Mr +q
= (r +E)2

(r +E)2 −2Mr −2r E −E 2 +q

= (r +E)2

(r +E)2 −2r (E +M)−E 2 +q

= (r +E)2

(r +E)2 −2(r +E)(E +M)+2E(E +M)−E 2 +q

= 1

1− 2(E+M)
(r+E) + 2E(E+M)−E 2+q

(r+E)2

. (2.170)

We define the denominator function of (2.170) by

D(r ) := 1− 2(E +M)

(r +E)
+ 2E(E +M)−E 2 +q

(r +E)2 . (2.171)

If r >−E , (2.170) is monotonically decreasing, if

D ′(r ) = 2(E +M)

(r +E)2 −2
2E(E +M)−E 2 +q

(r +E)3 ≥ 0

⇒ (E +M)(r +E) ≥ 2E(E +M)−E 2 +q

⇒ r >−E + 2E(E +M)−E 2 +q

M +E
, (2.172)

Thus if

r+ ≥−E + 2E(E +M)−E 2 +q

M +E
= E M +q

M +E︸ ︷︷ ︸
:=C

, (2.173)

and r+ >−E it follows, that u is monotonically decreasing and thus w is
strictly monotonically decreasing on r ∈ [r+,∞) for all values of θ, where
r+ = M +

√
M 2 −q , given by (2.88).
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From (2.173) we can derive the following inequality

M +
√

M 2 −q ≥ E M +q

M +E

(M +E)(M +
√

M 2 −q) ≥ E M +q

M(M +
√

M 2 −q)+E
√

M 2 −q ≥ q

(E +M)
√

M 2 −q ≥ q −M 2 =−
(√

M 2 −q

)2

E +M ≥ −
√

M 2 −q . (2.174)

In the E +M ≥ 0 case (2.174) is fulfilled trivially, for the E +M < 0 case we
obtain

E 2 +2ME +M 2 ≤ M 2 −q

−E(E +2M) ≥ q . (2.175)

Thus finally

r+ ≥C ⇐⇒ E +M ≥ 0 ∨ (
E +M < 0 ∧ −E(E +2M) ≥ q

)
. (2.176)

a = 0: In this case (2.168) yields g 00 =−B
∆ . Since B and ∆ are positive

functions in the d.o.c. if (2.126) holds, g 00 < 0 in the d.o.c. holds as well.

Remarks:

• For M = 8, a = 33
10 , Q = 8

5 , Σ=−23
5 , P =−1

5

√
2
(
4105960

p
3+2770943

)
12813 ≈−7.86

(see Fig. 1 in Section 4) for example one obtains r+ ≈ 11.16 >C ≈ 5.67
and r+ > E ≈−3.70 and thus a stably causal d.o.c.

• The if and only if statement:

(2.169) can alternatively be written in the form

w = −AB∆+4J 2(E + r )2 sin2θ

A∆
. (2.177)

We define the numerator function of (2.177) by

Nw :=−AB∆+4J 2(E + r )2 sin2θ . (2.178)

Since w factorizes in ∆θ, it follows from (2.168) that the exclusion of
zeros of g 00 in the d.o.c. leads to the following question:

Are all real zeros of Nw : G located inside the outer Killing
horizon(r = r+), for all values of θ, if the constraint and a, M , Q, Σ, P ∈R
hold?
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The question leads to the general localisation of the zeros of the
fourth-order polynomial Nw : G in relation to the location outer Killing
horizon r+ in the variable r . We have neither been able to pursue a
reasonable strategy, nor to construct a counter example. For small
values of |P | the problem has been solved in the section on the
equivalent Larsen metrics, see Lemma 3.3, where the relevant terms
take an easier form due to the more favourable parametrization.

ii): • P = 0 case:

With (2.88), we can write r+ <C in the form√
−a2 +M 2 −Q2 +Σ2 <

(
3M 2 +2

p
3MΣ−3Q2 +Σ2

)(
a2 −M 2 +Q2 −Σ2

)(
3M +p

3Σ
)(

M 2 −Q2 +Σ2
) .

(2.179)

Solving (2.10) for Q and insertion in (2.179) yields

M +
√(

M − Σp
3

)2

−a2 < Σp
3
+ a2

M − Σp
3

.

(2.180)

Simplifying (2.180) yields

1 <−

√(
M − Σp

3

)2 −a2(
M − Σp

3

) , (2.181)

and thus a contradiction.

• Small |P | case:

From iii) of Lemma 3.3, requiring m > 0, together with m = M − Σp
3

from

(3.20), the statement follows.

2
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3 The Larsen solutions

The line element of the Larsen solutions [14] is given by

d s2
5 =

H2

H1
(d x4 +AL)2 − H3

H2
(d t +BL)2 +H1

(
dr 2

∆L
+dθ2 + ∆L

H3
sin2θdφ2

)
, (3.1)

where

H1 = r 2 +a2
L cos2θ+ r (p −2m)+ p

p +q

(p −2m)(q −2m)

2

− p

2m(p +q)

√
(q2 −4m2)(p2 −4m2) aL cosθ , (3.2)

H2 = r 2 +a2
L cos2θ+ r (q −2m)+ q

p +q

(p −2m)(q −2m)

2

+ q

2m(p +q)

√
(q2 −4m2)(p2 −4m2) aL cosθ , (3.3)

H3 = r 2 +a2
L cos2θ−2mr , (3.4)

∆L = r 2 +a2
L −2mr , (3.5)

the 1-forms in (3.1) are given by

AL = At d t + Aφdφ , BL = Bφdφ , (3.6)

where

At = −
[

2QL

(
r + p −2m

2

)
+

√
q3(p2 −4m2)

4m2(p +q)
aL cosθ

]
H−1

2

Aφ = −
[

2PL(H2 +a2
L sin2θ)cosθ+

√
p(q2 −4m2)

4m2(p +q)3 ×

× [
(p +q)(pr −m(p −2m))+q(p2 −4m2)

]
aL sin2θ

H−1
2 ,

Bφ = −ppq
(pq +4m2)r −m(p −2m)(q −2m)

2m(p +q)H3
aL sin2θ . (3.7)

The parameters (m, a, q, p) are related to the physical mass M , angular momentum
J , electric charge Q, and magnetic charge P by

G4ML = p +q

4
, (3.8)

G4 JL = a

p
pq(pq +4m2)

4m(p +q)
, (3.9)

Q2
L = q(q2 −4m2)

4(p +q)
, (3.10)

P 2
L = p(p2 −4m2)

4(p +q)
, (3.11)
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where G4 is the gravitational constant of four-dimensional gravity. Furthermore,
the requirement

q, p ≥ 2m ,

is imposed. Note that the equality case corresponds to the absence of electric or
magnetic charge, respectively.
Here we have corrected a typographic error in [14], where the overall sign of Bφ was
opposite to the one in (3.7). I am grateful to Maciej Maliborski for pointing this out.
We have not been able to check by a direct MATHEMATICA calculation that the
metric (3.1) satisfies the Einstein equation for all parameters, but have checked
that it does so for a sample of random values of parameters. We note that the
opposite sign in (3.7) does not lead to a vacuum metric
In order to make explicit the correspondence between the parameters of the
Larsen and the Rasheed solutions, we will calculate the global charges of the
Larsen metric, compare them to the corresponding parameters of the Rasheed
solutions, and use this correspondence to derive an isometric transformation
between the metrics.

3.1 Asymptotic expansion and global charges

With the expansion of the metric coefficients

g t t = −1+ q

r
+O

(
r−2) ,

gr r = 1+ p

r
+O

(
r−2) ,

gθθ = r 2 + r (p −2m)+O (1) ,

gφφ = r 2 sin2θ+ r sin2θ(p −2m)+4P 2
L cos2θ+O (1) ,

g44 = 1+ q −p

r
+O

(
r−2) ,

g tφ = O
(
r−1) ,

g t4 = −2QL

r
+O

(
r−2) ,

gφ4 = −2PL cosθ+O
(
r−1) , (3.12)

we can take the line element (3.1) of the Larsen solutions in the asymptotic form

d s2 =
(
−1+ q

r

)
d t 2 +

(
1+ p

r

)
dr 2 + (

r 2 + r (p −2m)
)

dθ2

+ (
r 2 sin2θ+ r sin2θ(p −2m)+4P 2

L cos2θ
)

dφ2

+
(
1+ q −p

r

)
(d x4)2 −4PL cosθdφd x4 − 4QL

r
d td x4 +O

(
r−2)

=−d t 2 +dr 2 + r 2dθ2 + r 2 sin2θdφ2 + (d x4)2 −4PL cosθdφd x4 +4P 2
L cos2θdφ2

+ q

r
d t 2 + p

r
dr 2 + r (p −2m)dθ2 − 4QL

r
d td x4 +O

(
r−2)

=−d t 2 +dr 2 + r 2dθ2 + r 2 sin2θdφ2 +
(
d x4 −2PL cosθdφ

)2

+ q

r
d t 2 + p

r
dr 2 + r (p −2m)dθ2 − 4QL

r
d td x4 +O

(
r−2)
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= (ĝL)µνd xµd xν+ q

r
d t 2 + p

r
dr 2 + r (p −2m)dθ2 − 4QL

r
d td x4 +O

(
r−2) , (3.13)

where the decay order of the error terms is indicated with respect to the obvious
asymptotically Cartesian coordinates (t , x, y, z, x4). Here we have defined

ĝL :=−d t 2 +dr 2 + r 2dθ2 + r 2 sin2θdφ2 +
(
d x4 −2PL cosθdφ

)2
, (3.14)

as the (asymptotic) background metric of the Larsen solutions. By comparing
(3.14) with the background metric (2.80) of the Rasheed solutions, we obtain that
the magnetic charge parameter of the Rasheed- and Larsen solutions are related by
P =−PL and that x4 has to be 8πP-periodic (for details see Section 4). In the PL = 0
case in a Cartesian-type basis (t , x, y, z, x4) (3.13) takes the form

g =


−1+ q

r 0 0 0 −2QL
r

0 1+ 2mx2

r 3
2mx y

r 3
2mxz

r 3 0

0 2mx y
r 3 1+ 2my2

r 3
2my z

r 3 0

0 2mxz
r 3

2my z
r 3 1+ 2mz2

r 3 0

−2QL
r 0 0 0 1− 2m

r + q
r

+O
(
r−2) (3.15)

When PL 6= 0 the expansions are considerably more complicated and not very
enlightening, therefore we do not include them here.
From (3.15) and for the analogous expansion for P 6= 0, with the formulae derived
in Section 4, we obtain for the Hamiltonian momentum pµ of the level sets of t , the
ADM four-momentum pµ,ADM of the space-metric gi j d xi d x j :

pi ,ADM = pi = 0, p0,ADM =
{

m, P = 0,
p
2 , P 6= 0,

, p0 =
 2π

(
m
2 + q

4

)
, P = 0,

4πP
(

p
4 + q

4

)
P 6= 0,

p4 =
{ −2πQL , P = 0,

−8πPQL , P 6= 0.

(3.16)
The Komar integrals associated with X = ∂t are

1

8π
lim

R→∞

∫
S(R)

∫
S1

Xα;βdSαβ =
{

2π q
2 , P = 0,

8πP q
2 , P 6= 0,

(3.17)

wheras those associated with X = ∂4 are given by

1

8π
lim

R→∞

∫
S(R)

∫
S1

Xα;βdSαβ =
{ −4πQL , P = 0,

−16πPQL , P 6= 0.
(3.18)

Furthermore, we note that the inequality (6.9) of Section 4, resulting from a
Witten-type positive energy argument, in terms of the parameters of the Larsen
solutions reads as

(p +q)2 ≥ 4q(q2 −4m2) . (3.19)

3.1.1 A comparison with the global charges of the Rasheed metrics

By comparing the ADM mass and the Komar integrals (3.16)- (3.18) with those of
the Rasheed solutions (2.82)-(2.84), we obtain

M − Σp
3
= p

2
, M + Σp

3
= q

2
, Q =−QL . (3.20)
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Solving (3.20) for M ,P,Q,Σ yields

M = p +q

4
, Σ=

p
3(q −p)

4
, Q =−QL , P =−PL . (3.21)

By insertion of (3.21) in (2.10) it verifies, that the Rasheed constraint holds. The
insertion of (3.21) in (2.2) and (2.4) yields

J =±aL

p
pq(pq +4m2)

4m(p +q)
. (3.22)

A comparison of (3.21) and (3.22) with (3.8), (3.9), setting G4 = 1 in those
expressions, finally yields the following relations

M = ML , Q =−QL , P =−PL , |J | = |JL | , |a| = |aL | , (3.23)

between the physical parameters of the Rasheed and Larsen solutions.

3.1.2 An isometric transformation

LEMMA 3.1

i) The Rasheed and Larsen metrics are isometric.

ii) The isometric transformation is given by the parameter transformation

M = p +q

4
, Σ=

p
3(q −p)

4
, Q =−QL , P =−PL , a =−aL , (3.24)

and the coordinate transformation

r = r̂ +ML −m . (3.25)

PROOF:

We rewrite the Rasheed metrics (2.1) in the form

d s2
(5) =

B

A

(
d x4 +2Aµd xµ︸ ︷︷ ︸

:=A

)2 − ∆θ
B

(
d t +ω0

φdφ︸ ︷︷ ︸
:=B

)2 + A

(
dr 2

∆
+dθ2 + ∆

∆θ
sin2θdφ2

)
.

(3.26)
A comparison of (3.26) with the Larsen metrics (3.1), given by

d s2
5 =

H2

H1
(d x4 +AL)2 − H3

H2
(d t +BL)2 +H1

(
dr̂ 2

∆L
+dθ2 + ∆L

H3
sin2θdφ2

)
, (3.27)

where we have applied the replacement r → r̂ to distinguish the radial coordinate
from that of the Rasheed solutions, yields that both metrics are isometric if

A = H1 , B = H2 , ∆=∆L , ∆θ = H3 , A = AL , B = BL , (3.28)
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provided that the coordinates r and r̂ differ by an additive constant. A
computation with MATHEMATICA yields, that if the reparametrizations

M = p +q

4
, Σ=

p
3(q −p)

4
, Q =−QL , P =−PL , a =−aL , (3.29)

and the coordinate transformation

r = r̂ +ML −m , (3.30)

where ML , QL and PL are given by (3.8)-(3.11), are applied to (2.4)-(2.8), then (3.28)
holds. 2

3.2 Killing horizons, the ergosurface and the zeros of H1 and H2

From (3.1), by the same arguments as in the case of the equivalent Rasheed
metrics, it follows, that the Killing horizons of the Larsen solutions are given by the
zeros of (3.5), i.e.

r± = m ±
√

m2 −a2
L , (3.31)

and the ergosurface is given by the lager zero of (3.4), i.e.

R+ = m +
√

m2 −a2
L cos2θ . (3.32)

In the following, for completeness we analyse directly the zeros of H1 (3.2) and H2

(3.3), which determine the singularities in the Larsen solutions.

LEMMA 3.2

i) H1 (3.2) has no zeros in the d.o.c., if and only if

|AL | > 2 and

{
A 0

L −a2
L(1−|AL |) < 0, or

m +
√

m2 −a2
L >− p−2m

2 +
√

A 0
L −a2

L(1−|AL |) ,

or

|AL | ≤ 2 and

 A 0
L + a2

LA 2
L

4 < 0, or

m +
√

m2 −a2
L >− p−2m

2 +
√

A 0
L + a2

LA 2
L

4 ,

where

A 0
L = (p −2m)2

4
− p

p +q

(p −2m)(q −2m)

2
, AL = p

√
(q2 −4m2)(p2 −4m2)

2maL(p +q)
.

ii) H2 (3.3) has no zeros in the d.o.c., if and only if

|BL | > 2 and

{
B0

L −a2
L(1−|BL |) < 0, or

m +
√

m2 −a2
L >− q−2m

2 +
√

B0
L −a2

L(1−|BL |) ,

or

|BL | ≤ 2 and

 B0
L +

a2
LB2

L
4 < 0, or

m +
√

m2 −a2
L >− q−2m

2 +
√

B0
L +

a2
LB2

L
4 ,
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where

B0
L = (q −2m)2

4
− q

p +q

(p −2m)(q −2m)

2
, BL =−q

√
(q2 −4m2)(p2 −4m2)

2maL(p +q)
.

iii) i) and ii) are equivalent to the corresponding conditions (2.124) and (2.126)
for A and B of the Rasheed metrics.

PROOF:
We rewrite (3.2) and (3.3) in the form

H1 =
(
r + p −2m

2

)2

+a2
L cos2θ+ p

p +q

(p −2m)(q −2m)

2
− (p −2m)2

4

− p

2m(p +q)

√
(q2 −4m2)(p2 −4m2) a cosθ , (3.33)

H2 =
(
r + q −2m

2

)2

+a2
L cos2θ+ q

p +q

(p −2m)(q −2m)

2
− (q −2m)2

4

+ q

2m(p +q)

√
(q2 −4m2)(p2 −4m2) aL cosθ . (3.34)

i): From (3.33) the set of zeros of H1 is given by(
r + p −2m

2

)2

= (p −2m)2

4
− p

p +q

(p −2m)(q −2m)

2

−a2

(
cos2θ+ p

√
(q2 −4m2)(p2 −4m2)

2maL(p +q)
cosθ

)
.

(3.35)

We define

hA(θ) := cos2θ+AL cosθ , (3.36)

where

AL = p
√

(q2 −4m2)(p2 −4m2)

2maL(p +q)
, (3.37)

and

A 0
L = (p −2m)2

4
− p

p +q

(p −2m)(q −2m)

2
. (3.38)

With these notations (3.35) reads as(
r + p −2m

2

)2

= A 0
L −a2

LhA(θ) . (3.39)

By a comparison of the analogous function in the case of the Rasheed
solutions (2.100) it follows, that the minimum of (3.36) is given by

hA,mi n :=
{

1−|AL |) , if |AL | > 2,

−A 2
L

4 , if |AL | ≤ 2
. (3.40)
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From (3.40) it follows, that maximum of the right side of (3.39) is given by{
A 0

L −a2
L(1−|AL |) , if |AL | > 2,

A 0
L + a2

LA 2
L

4 , if |AL | ≤ 2
. (3.41)

(3.41) together with (3.31) yields, that H1 has no zeros in the d.o.c., if and
only if

|AL | > 2 and

{
A 0

L −a2
L(1−|AL |) < 0, or

m +
√

m2 −a2
L >− p−2m

2 +
√

A 0
L −a2

L(1−|AL |) ,

or

|AL | ≤ 2 and

 A 0
L + a2

LA 2
L

4 < 0, or

m +
√

m2 −a2
L >− p−2m

2 +
√

A 0
L + a2

LA 2
L

4 .
(3.42)

ii): From (3.34) the set of zeros of H2 is given by(
r + q −2m

2

)2

= (q −2m)2

4
− q

p +q

(p −2m)(q −2m)

2

−a2
L

(
cos2θ− q

√
(q2 −4m2)(p2 −4m2)

2maL(p +q)
cosθ

)
.

(3.43)

We define

hB (θ) := cos2θ+BL cosθ , (3.44)

where

BL =−q
√

(q2 −4m2)(p2 −4m2)

2maL(p +q)
, (3.45)

and

B0
L = (q −2m)2

4
− q

p +q

(p −2m)(q −2m)

2
. (3.46)

With these notations (3.43) reads as(
r + q −2m

2

)2

= B0
L −a2

LhB (θ) . (3.47)

Then it follows from a completely analogous analysis as in the case for H1,
that H2 has no zeros in the d.o.c., if and only if

|BL | > 2 and

{
B0

L −a2
L(1−|BL |) < 0, or

m +
√

m2 −a2
L >− q−2m

2 +
√

B0
L −a2

L(1−|BL |) ,

or

|BL | ≤ 2 and

 B0
L +

a2
LB2

L
4 < 0, or

m +
√

m2 −a2
L >− q−2m

2 +
√

B0
L +

a2
LB2

L
4 .

(3.48)

iii): By applying the isometric transformation, given in Lemma 3.1, we obtain

∆=∆L , A = H1 , B = H2 . (3.49)

From (3.49) iii) follows immediately. 2
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3.3 Stable causality

In this section we revisit the issue of stable causality of the Rasheed-Larsen metrics
using the Larsen coordinates. Recall that well behaved black holes should be
globally hyperbolic, and stable causality is a necessary condition for global
hyperbolicity.
The analysis here allows us to find new regions of parameters where stable
causality holds, namely small values of |PL |. This was not apparent in an analysis in
Rasheed coordinates.

LEMMA 3.3
If i) and ii) of Lemma 3.2 hold, the Larsen solutions (3.1) are stably causal

i) if (but not if and only if)

r+ ≥ E m +a2
L

m +E
, and r+ >−E , (3.50)

where E :=−m(p−2m)(q−2m)
(pq+4m2) ,

ii) if PL = 0 or QL = 0,

iii) for small values of |PL | if m > 0.

iv) i) is equivalent to Lemma 2.6.

PROOF:

i): We write g 00 in the form

g 00 = −H2

H3
+

B 2
φH3

sin2θ∆L H1

= 1

H3

(
−H2 +

B 2
φH 2

3

sin2θ∆L H1

)
. (3.51)

By rewriting (3.7)

Bφ = −ppq
(pq +4m2)r −m(p −2m)(q −2m)

2m(p +q)H3
a sin2θ

= −ppq
(pq +4m2)

2m(p +q)H3

(
r − m(p −2m)(q −2m)

(pq +4m2)

)
a sin2θ

= −ppq
(pq +4m2)

2m(p +q)H3

(
r − m(p −2m)(q −2m)

(pq +4m2)

)
a sin2θ

= −2JL

H3

(
r − m(p −2m)(q −2m)

(pq +4m2)

)
sin2θ , (3.52)
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where we have used (3.9), and the insertion of this expression in (3.51), we
obtain

g 00 = −H2

H3
+

B 2
φH3

sin2θ∆L H1

= 1

H3

−H2 +
4J 2

L (r +E )2 sin2θ

∆L H1︸ ︷︷ ︸
=:w(r,θ)

 , (3.53)

where we have defined E :=−m(p−2m)(q−2m)
(pq+4m2) .

We list the following properties of important functions involved, where we
have defined r+ and R+ as the largest zero of ∆ and H3 respectively:

• H1, H2(if they have no zeros in the d.o.c.(see Lemma 3.2)) and ∆ are
strictly increasing for r ∈ [r+,∞), for all values of θ,

• H3 < 0 if r+ < r < R+, H3 > 0 if r > R+, for all values of θ,

• g 00 →−1 as r →∞ ,

• w(r = R+(θ),θ) = 0 ( MATHEMATICA result: The numerator of w
factorizes in H3),

where r+ and R+ are given by (3.31) and (3.32) respectively.
Since the numerator of w factorizes in H3, g 00 has no poles in the d.o.c. and
R+ is a zero of w . From the properties above it follows, that if w is strictly
monotonically decreasing for r ∈ [r+,∞), for all values of θ, we obtain
H3 > 0, w < 0 ⇒ g 00 < 0 if r > R+ and H3 < 0, w > 0 ⇒ g 00 < 0 if r+ < r < R+,
for all values of θ, and it follows, together with the properties of the functions
involved, g 00 has no zeros the d.o.c. To derive the corresponding condition,
we write w in the form

w(r,θ) = −H2︸︷︷︸
strictly monotonically decreasing

+ 4J 2
L sin2θ

H1︸ ︷︷ ︸
monotonically decreasing

· (r +E )2

∆︸ ︷︷ ︸
:=u(r )

. (3.54)

Thus it remains to derive the restrictions on the parameters so that u(r ) is a
monotonically decreasing function. Assuming r >−E , we write u(r ) in the
form

u(r ) = (r +E )2

∆
= (r +E )2

r 2 −2mr +a2
L

= (r +E )2

(r +E )2 −2mr −2r E −E 2 +a2
L

= (r +E )2

(r +E )2 −2r (E +m)−E 2 +a2
L
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= (r +E )2

(r +E )2 −2(r +E )(E +m)+2E (E +m)−E 2 +a2
L

= 1

1− 2(E+m)
(r+E ) + 2E (E+m)−E 2+a2

L
(r+E )2

, (3.55)

and define the denominator function of (3.55) by

D(r ) = 1− 2(E +m)

(r +E )
+ 2E (E +m)−E 2 +a2

L

(r +E )2 . (3.56)

If r >−E , (3.56) is monotonically decreasing if

D ′(r ) = 2(E +m)

(r +E )2 −2
2E (E +m)−E 2 +a2

L

(r +E )3 ≥ 0

⇒ (E +m)(r +E ) ≥ 2E (E +m)−E 2 +a2
L

⇒ r ≥−E + 2E (E +m)−E 2 +a2
L

m +E︸ ︷︷ ︸
:=CL

. (3.57)

Thus if

r+ ≥−E + 2E (E +m)−E 2 +a2
L

m +E
= E m +a2

L

m +E︸ ︷︷ ︸
CL

, (3.58)

and r+ >−E , then u is monotonically decreasing and therefore w is strictly
monotonically decreasing on r ∈ [r+,∞) for all values of θ. Then from (3.54)
we finally obtain, that g 00 has no zeros in the d.o.c.

An if and only if statement would require to derive conditions, so that the
polynomial h := N (w) : H3, where N (w) denotes the numerator of w , has no
zeros in the d.o.c. In the PL = 0(p = 2m) case the polynomial is given by

h = (
4m2(2m +q)2)r 4 + (

4m2(q −2m)(2m +q)2)r 3

+ (
2a2

Lm2(cos(2θ)+3)(2m +q)2)r 2

+ (−4a2
Lm2(2m +q)2(m cos(2θ)+m −q)

)
r

+4a4m2 cos2(θ)(2m +q)2 . (3.59)

Even for this reduced problem it seems hard to derive a compact system of
inequalities, imposed on the parameters, guaranteeing that all real zeros of h
are smaller than r+ for all values of θ. At least in this setting the question can
be answered in the following.

ii): In the PL = 0(p = 2m) and/or QL = 0(q = 2m) case (3.58) reduces to

m +
√

m2 −a2
L ≥ a2

L

m
⇐⇒|m| ≥ |aL | , (3.60)

which is imposed anyway from (3.31) to avoid naked singularities.
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iii): We write the criterion for stable causality (3.58) in the form

r+−CL︸ ︷︷ ︸
:=WL

≥ 0. (3.61)

With the expansion of CL at PL = 0 ⇐⇒ p = 2m

CL = a2
L

m
+

(
m2 −a2

L

)
(2m −q)(

2m2
)

(2m +q)
(p −2m)+O

(
(p −2m)2) (3.62)

WL can be written near PL = 0 in the non-extremal case(|m| > |aL |) in the
form

WL = m +
√

m2 −a2
L −

a2
L

m
−

(
m2 −a2

L

)
(2m −q)(

2m2
)

(2m +q)
(p −2m)+O

(
(p −2m)2)

= m
(
1−

( aL

m

)2 )
+

√
m2

(
1−

( aL

m

)2 )
︸ ︷︷ ︸

:=ε>0

−
(
m2 −a2

L

)
(2m −q)(

2m2
)

(2m +q)
(p −2m)+O

(
(p −2m)2)

= ε−
(
m2 −a2

L

)
(2m −q)(

2m2
)

(2m +q)
(p −2m)+O

(
(p −2m)2) , (3.63)

(3.61) together with (3.63) yields stable causality for small values of |PL | if
m > 0 holds.

iv): By applying the transformation, given by Lemma 3.1, to the expressions in i)
of Lemma 2.6, a computation with MATHEMATICA yields i).

2
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We derive expressions for the total Hamiltonian energy of gravitating systems in higher-dimensional
theories in terms of the Riemann tensor, allowing a cosmological constant Λ ∈ R. Our analysis covers
asymptotically anti–de Sitter spacetimes, asymptotically flat spacetimes, as well as Kaluza-Klein
asymptotically flat spacetimes. We show that the Komar mass equals the Arnowitt-Deser-Misner
(ADM) mass in stationary asymptotically flat spacetimes in all dimensions, generalizing the four-
dimensional result of Beig, and that this is no longer true with Kaluza-Klein asymptotics. We show that the
Hamiltonian mass does not necessarily coincide with the ADM mass in Kaluza-Klein asymptotically flat
spacetimes, and that the Witten positivity argument provides a lower bound for the Hamiltonian mass—and
not for the ADM mass—in terms of the electric charge. We illustrate our results on the five-dimensional
Rasheed metrics, which we study in some detail, pointing out restrictions that arise from the requirement of
regularity, which have gone seemingly unnoticed so far in the literature.
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I. INTRODUCTION

A key notion in any physical theory is that of total energy,
momentum, and similar global charges. The corresponding
definitions, and their properties, depend very much upon the
asymptotic conditions satisfied by the fields. There are
various possibilities here, dictated by the physical problem
at hand. For instance, the vanishing and the sign of the
cosmological constant play a crucial role. Next, onemay find
it convenient to use direct coordinate methods [1–3] or
conformalmethods [4,5], or else [6], to define the asymptotic
conditions and the objects at hand. Finally, one may want to
use definitions arising fromHamiltonian techniques [7,8], or
appeal to the Noether theorem [9], or use ad hoc conserved
currents [10–14]. See alsoRef. [15] for an excellent reviewof
early work on the subject.
A natural class of asymptotic conditions arises when

considering isolated systems in Kaluza-Klein-type theories;
see Sec. II below.Much to our surprise, no systematic study of
the notion of energy in this context appears to exist in the
literature, and one of the aims of thiswork is to fill this gap. For
this, we derive new expressions for the total Hamiltonian
energy in higher dimensions in terms of theRiemann tensor, in
asymptotically flat, asymptotically Kaluza-Klein (KK), or
asymptotically anti–de Sitter (AdS) spacetimes. Our defini-
tions arise fromaHamiltonian analysis of the fields and invoke
direct coordinate- or tetrad-based asymptotic conditions. We
relate these integrals to Komar-type integrals.We useWitten’s
argument to derive global inequalities between the
Hamiltonian energy-momentum and the Kaluza-Klein

charges.We test our energy expressions on theRasheed family
of five-dimensional vacuum metrics, clarifying furthermore
some aspects of the global structure of these solutions.
This paper is organized as follows. In Sec. II we make

precise our notion of Kaluza-Klein asymptotic flatness. At
the beginning of Sec. III we review the definition of energy
within the Hamiltonian framework of Refs. [16,17]. In
Sec. III Awe apply the framework to spacetimes which are
asymptotically flat in a Kaluza-Klein sense. In Sec. III B we
derive general formulas which apply for a large class of
asymptotic conditions. In Sec. IV we show how to rewrite
the formulas derived so far in terms of the curvature tensor.
This is done in Sec. IVA for KK-asymptotically flat
solutions, and in Sec. IV B for general backgrounds. The
formulas are then specialized in Sec. IV B 1 to asymptoti-
cally anti–de Sitter solutions, and in Sec. IV B 2 to a class
of Kaluza-Klein solutions with vanishing cosmolo-
gical constant which are not KK-asymptotically flat. In
Sec. IV C we rewrite some of our Riemann-integral energy
expressions in terms of a space-and-time decomposition of
the metric. In Sec. V we show how to establish Komar-type
expressions for energy in spacetimes with Killing vectors.
In Sec. VI we show how a Witten-type positivity argument
applies to obtaining global inequalities for KK-asymptoti-
cally flat metrics. Appendix A is devoted to a study of the
geometry of Rasheed’s Kaluza-Klein black holes, which
provide a nontrivial family of examples for which our
energy expressions can be explicitly calculated.

II. KALUZA-KLEIN ASYMPTOTICS

The starting point for our notion of Kaluza-Klein
asymptotics is initial data surfaces in an ðnþ K þ 1Þ-
dimensional spacetime containing asymptotic ends of the
form

*a1326719@unet.univie.ac.at
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‡mi.hoerz@gmail.com
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Sext ≔ ðRnnBð0;RÞÞ×S1× � � �×S1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
K factors

≕ ðRnnBð0;RÞÞ×TK;

ð2:1Þ

where S1 is the unit circle. We will say that the metric is
KK-asymptotically flat if g has the following asymptotic
form along Sext ≡ fx0 ¼ 0g:

g ¼ ηabdxadxb þ δABdxAdxB|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕ ημνdxμdxν

þ oðr−αÞ;

∂μgνρ ¼ oðr−α−1Þ; ð2:2Þ

where Greek indices run from 0 to nþ K, uppercase Latin
indices from the beginning of the alphabet run from nþ 1
to nþ K, lowercase Latin indices from the beginning of
alphabet run from 0 to n, and lowercase Latin indices from
the middle of alphabet run from 1 to n. Finally, uppercase
latin indices from the middle of the alphabet run from 1 to
nþ K. Summarizing:

ðxμÞ≡ ðx0; xi; xAÞ≡ ðxa; xAÞ≡ ðx0; xIÞ: ð2:3Þ

Last but not least,

r ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1Þ2 þ � � � þ ðxnÞ2

q
:

The exponent α will be chosen to be the optimal one for the
purpose of a well-posed definition of the total energy,
namely,

α ¼ n − 2

2
; ð2:4Þ

where, as in Eq. (2.1), n is the space dimension without
counting the Kaluza-Klein directions.
In Kaluza-Klein theories it is often assumed that the

vector fields ∂A are Killing vectors, but we will not make
this assumption unless explicitly indicated otherwise.

III. HAMILTONIAN CHARGES

In this section we adapt the Hamiltonian analysis of
Ref. [17] (based on Ref. [16], cf. Ref. [18]) to the asymp-
totically KK setting, which also provides convenient alter-
native expressions for the formulas for the Hamiltonians
derived there. We use a background metric ḡμν, which is
assumed to be asymptotically KK as defined in Sec. II, to
determine the asymptotic conditions. The metric ḡμν should
be thought of as being the metric ημν of Sec. II at large
distances, but itmight be convenient in some situations to use
coordinate systems where ḡμν does not take an explicitly
flat form.
Every such metric ḡμν determines a family of metrics gμν

which asymptote to it in the sense of Eq. (2.2). We will

denote by Γ̄α
βγ the Christoffel symbols of the Levi-Civita

connection of ḡμν.
Given a vector field X, the calculations in Ref. [17]

showed that the flow of X in the spacetime obtained by
evolving the initial data on S is Hamiltonian with respect to
a suitable symplectic structure, with a HamiltonianHðX;SÞ
which, in vacuum, is given by the formula

HðX;SÞ ¼
Z
S
ðpμ

αβLXgαβ − XμLÞdΣμ; ð3:1Þ

where

L ≔ gμν
�
ðΓα

σμ − Γ̄α
σμÞðΓσ

αν − Γ̄σ
ανÞ

− ðΓα
μν − Γ̄α

μνÞðΓσ
ασ − Γ̄σ

ασÞ þ R̄μν −
2

dþ K
Λgμν

�

−
1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ḡ

p
ḡμν

�
R̄μν −

2

dþ K
Λḡμν

�
; ð3:2Þ

with R̄μν being the Ricci tensor of the background metric
ḡμν, Λ the cosmological constant, d the dimension of the
physical spacetime, K the number of Kaluza-Klein dimen-
sions (possibly zero), and

gμν
1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
gμν;

pλ
μν ≔

∂L
∂gμν;λ ¼ ðΓ̄λ

μν − δλðμΓ̄
κ
νÞκÞ − ðΓλ

μν − δλðμΓ
κ
νÞκÞ: ð3:3Þ

Finally, the volume forms dΣα and dΣαβ are defined as

dΣα ¼ ∂α⌋ðdx0 ∧ � � �∧ dxnþKÞ; dΣαβ ¼ ∂β⌋dΣα; ð3:4Þ

where ⌋ denotes the contraction: for any vector field X and
skew-form α we have X⌋αð·;…Þ ≔ αðX;…Þ.
We note that the last two, g-independent “renormaliza-

tion” terms in Eq. (3.2) have been added for convergence of
the integrals at hand.
We will write det g≡ detðgμνÞ for the determinant of the

full metric tensor, and explicitly write detðgIJÞ for the
determinant of the metric gIJdxIdxJ induced on the level
sets of x0, etc., when the need arises.
We emphasize that the formal considerations in

Ref. [17] were quite general, and they apply regardless
of the asymptotic conditions and of dimensions. However,
the question of the convergence and well posedness of the
resulting formulas appears to require a case-by-case analy-
sis, once a set of asymptotic conditions has been imposed.
If X is a Killing vector field of ḡμν and if the Einstein

equations with sources and with a cosmological constant Λ
are satisfied,
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Rμν −
1

2
Rgμν þ Λgμν ¼ 8πTμν; ð3:5Þ

the integrand (3.1) can be rewritten as the divergence of a
“Freud-type superpotential,” up to source and renormali-
zation terms:

Hμ ≡ pμ
αβLXgαβ − XμL

¼ ∂αUμα −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Tμ

αXα þ 1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ḡ

p
ḡαβ

×
�
R̄αβ−

2

dþ K
Λḡαβ

�
Xμ; ð3:6Þ

with

Uνλ ¼ Uνλ
βXβ −

1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
gα½νδλ�β ∇̄αXβ; ð3:7Þ

Uνλ
β ¼

2j det ḡj
16π

ffiffiffiffiffiffiffiffiffiffiffiffiffij det gjp gβγ∇̄κðe2gγ½λgν�κÞ; ð3:8Þ

where ∇̄ denotes the covariant derivative of the background
metric ḡμν and

e2 ≡ det g
det ḡ

: ð3:9Þ

In vacuum this leads to the formula

HðX;SÞ ¼ HbðX;SÞ ≔
1

2

Z
∂S
ðUνλ − Uνλjg¼ḡÞdΣνλ; ð3:10Þ

where the subscript “b” on Hb stands for “boundary.” For
vector fieldsXwhich are not necessarily Killing vector fields
of the background, the Hamiltonian might have some
supplementary volume terms, cf. Refs. [18,19]. In non-
vacuumLagrangian diffeomorphism-invariant field theories,
this formula for the total Hamiltonian of the coupled system
of fields remains true after adding toHμ a contribution from
the matter fields; cf., e.g., Refs. [16,19,20].

A. Kaluza-Klein asymptotics

For Kaluza-Klein asymptotically flat field configurations
we have

gμν ¼ ημν þ oðr−αÞ; ∂σgμν ¼ oðr−α−1Þ;
ḡμν ¼ ημν þ oðr−αÞ; ∂σ ḡμν ¼ oðr−α−1Þ: ð3:11Þ

In particular, this implies

Γ̄α
βγ ¼ oðr−α−1Þ:

First, let us assume that X is ḡ-covariantly constant (and
hence also a Killing vector of the background metric ḡμν).
One then checks that in the coordinates of Eq. (3.11) the
vector field X has to be of the form

Xμ ¼ Xμ
∞ þ oðr−αÞ; ∂νX

μ
∞ ¼ 0: ð3:12Þ

As Λ ¼ 0 in the current case, the convergence of the
boundary integrals in vacuum will be guaranteed if one
assumes, e.g.,

X
μαβ

Z
S∩fr≥Rg

j∂μgαβj2dnþKx < ∞: ð3:13Þ

This follows immediately from Stokes’ theorem together
with Eqs. (3.1)–(3.3) and (3.6), keeping in mind that Λ ¼
0 ¼ R̄μν in the current context.
We note that Eq. (3.13) will hold if Eq. (2.4) is replaced

by α > ðn − 2Þ=2, which provides a sufficient but not a
necessary condition.
While we are mostly interested in vacuum solutions, the

analysis below applies to nonvacuum ones, provided that
one also has

Tμν ¼ oðr−nÞ and
X
αβ

Z
S∩fr≥Rg

jTαβjdnþKx<∞: ð3:14Þ

Equations (3.13)–(3.14) will be assumed in the calculations
that follow.
Since the last term in Eq. (3.7) drops out when

∇̄βXα ¼ 0, we obtain

Uνλ ¼Uνλ
βXβ

¼−
1

16π
ð1þoðr−αÞÞðηβγ þoðr−αÞÞXβ½ðηγνηλκηρσ −ηγληνκηρσÞgρσ ;κþgγλ;κηνκ −gγν;κηλκþηγλgνκ ;κ−ηγνgλκ ;κþoðr−2α−1Þ�

¼−
1

16π
½ðηλκXν−ηνκXλÞηρσgρσ ;κþηνκηβγgγλ;κXβ−ηλκηβγgγν;κXβþgνκ ;κXλ−gλκ ;κXν�þoðr−2α−1Þ

¼−
1

16π
ηδκηβγgγτ ;κXξðδλδδνξδβτ −δλξδ

ν
δδ

β
τ þδλτδ

ν
δδ

β
ξ −δλδδ

ν
τδ

β
ξ þδλξδ

ν
τδ

β
δ −δλτδ

ν
ξδ

β
δÞþoðr−2α−1Þ

¼ 3

8π
ηδκηβγgγτ ;κXξδνλβτδξ þoðr−2α−1Þ: ð3:15Þ
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Plugging the result into Eq. (3.7) and renaming indices, in
the limit r → ∞, we obtain the following form of
Eq. (3.10), which will be seen to be convenient in our
further considerations:

HbðX;SÞ ¼
3

16π
lim
R→∞

Z
SðRÞ×TK

δαβγλμνX
νηλρηγσ∂ρgσμdSαβ;

ð3:16Þ

where SðRÞ denotes a sphere of radius R in the Rn factor of
Sext, and

δαβγλμν ≔ δα½λδ
β
μδ

γ
ν�: ð3:17Þ

We see from Eq. (3.12) that HbðX;SÞ can be written as

HbðX;SÞ ≕ pμX
μ
∞: ð3:18Þ

When K ¼ 0, the coefficients pμ are called the Arnowitt-
Deser-Misner (ADM) four-momentum of S [1].
If X ¼ ∂0, we find a formula somewhat resembling the

usual one:

p0 ≔Hbð∂t;SÞ

¼ 1

16π
lim
R→∞

Z
SðRÞ

Z
TK

XnþK

I¼1

ð∂IgiI − ∂igIIÞ
xi

R
dnþK−1μ

¼ jTKjp0;ADM

þ 1

16π
lim
R→∞

Z
SðRÞ

Z
TK

XnþK

A¼nþ1

ð∂AgiA − ∂igAAÞ
xi

R
dnþK−1μ:

ð3:19Þ

Here dnþK−1μ is the measure induced on SðRÞ × TK by the
flat metric, jTKj denotes the volume of TK , and p0;ADM is
the usual (total) ADM energy of the physical-space metric
gijdxidxj. Perhaps not unexpectedly, the ADM energy
p0;ADM does not coincide with the Hamiltonian generating
time translations in general.
Next, when X0 ¼ 0, after using Stokes’ theorem in the

integralZ
SðRÞ×TK

∂JðgJ0δLI − gL0δJI Þ∂L⌋ðdx1 ∧ � � � ∧ dxKþnÞ ¼ 0;

ð3:20Þ

we obtain the formula

pI ≔ Hbð∂I;SÞ ¼
1

8πR
lim
R→∞

Z
SðRÞ

Z
TK

PIixidnþK−1μ:

ð3:21Þ

Here, PIJ is the usual canonical ADM momentum

PIJ ≔ gLMkLMgIJ − kIJ;

kIJ ≔
1

2
LTgIJ ¼

1

2
ð∂0gIJ − ∂Ig0J − ∂Jg0IÞ þ oðr−2α−1Þ;

ð3:22Þ

while LT denotes the Lie derivative in the direction of the
unit-timelike future-directed field T of normals to the level
sets of x0.
As an example, we compute the above integrals for the

Rasheed metrics, described in Appendix A, with P ¼ 0:

p0 ¼ 2πM; pi ¼ 0; p4 ¼ 2πQ: ð3:23Þ

Equation (3.23) includes a 2π factor arising from a
normalization in which the Kaluza-Klein coordinate x4

in the Rasheed solutions runs over a circle of length 2π.
This should be compared with the ADM four-momen-

tum pμ;ADM of the n-dimensional space metric gijdxidxj,
which reads

p0;ADM ¼ M −
Σffiffiffi
3

p ; pi;ADM ¼ 0: ð3:24Þ

B. General backgrounds

As discussed in detail in Appendix A 3, the Rasheed
solutions with P ≠ 0 are not KK-asymptotically flat in the
sense set forth above. To cover this case we need to
generalize the calculations so far to the case where the
background metric is not flat, with an asymptotic region
Sext ⊂ S diffeomorphic to

Sext ≈EðR0Þ; where EðRÞ≔ ðRnnBðRÞÞ× KN ; ð3:25Þ

with some K-dimensional compact manifold KN , for some
R0 ≥ 0. We therefore have an associated global coordinate
system xi on RnnBðR0Þ, as well as the dilation vector
field Z ¼ xi∂i ≡ r∂r which will play a key role in some
calculations below.
Somewhat more generally, in order to be able to

include general “Birmingham-Kottler-Schwarzschild
anti–de Sitter” metrics, we will consider ends EðRÞ
equipped with a radial function r so that

Sext ≈ EðR0Þ; with EðRÞ ≔ fr ≥ Rg≡ ½R;∞Þ ×K;

ð3:26Þ

where K is a compact manifold. Here r is a coordinate
running along the ½R0;∞Þ factor of Sext, and the dilation
vector Z is defined as Z ≔ r∂r.
For the usual (nþ 1)-dimensional Schwarzschild–

anti de Sitter metric the manifold K will be an (n − 1)-
dimensional sphere, but it can be an arbitrary compact
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manifold admitting Einstein metrics in the case of metrics
(B1)–(B3) below.
Along Sext we are given two Lorentzian metrics g and ḡ,

with g asymptotic to the background ḡ in a sense which we
make precise now. Denoting by ∇̄ the Levi-Civita con-
nection associated with ḡ, we assume the existence of a ḡ-
orthonormal frame fēμ̂g defined along Sext such that
(decorating frame indices with hats)

gμ̂ ν̂ ≔ gðēμ̂; ēν̂Þ ¼ ḡμ̂ ν̂ þ oðr−αÞ;
∇̄λ̂gμ̂ ν̂ ¼ oðr−βÞ: ð3:27Þ

It seems that the specific values of α and β as needed for our
mass formulas can only be chosen after a case-by-case study
of the background metric ḡ; cf. Eqs. (3.31)–(3.32) below.
In what follows we will use the following convention:

given two tensor fields u and v, we will write

u ¼ vþ oðr−αÞ ð3:28Þ

if the frame components of u − v, within the class of ḡ-ON
frames chosen, decay as oðr−αÞ. If ē0̂ is orthogonal to Sext
(which will often be assumed) then, if we denote by

ḡS ≔ ḡIJdxIdxJ the Riemannian metric induced by ḡ on
Sext, and by j · jḡS the associated norm, we have, e.g.,

uμν¼oðr−αÞ⇔ ju0̂ 0̂jþ ju0̂IdxIjḡS þjuIJdxIdxJjḡS ¼oðr−αÞ:

Assuming again that X is ḡ-covariantly constant, the
second term of Eq. (3.7) vanishes and for the first term we
have the same expression as in the KK-asymptotically flat
case, with the difference that instead of ημν we have ḡμν and
instead of partial derivatives we have covariant derivatives
of the background metric, i.e.,

Uνλ ¼ Uνλ
ξXξ

¼
�
3

8π
δνλστδξ ḡ

δκḡσγXξ∇̄κgγτ þ oðjXjr−α−βÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

j det gj
p

;

ð3:29Þ
where

jXj2 ≔
X
μ

ðXμ̂Þ2: ð3:30Þ

In order to control the error terms appearing in Eq. (3.29)
we will assume that

α and β are such that the subleading terms oðjXjr−α−βÞ in Eq: ðIII.29Þ give
a vanishing contribution to the boundary integrals after passing to the limit: ð3:31Þ

This will be the case, e.g., for all Rasheed metrics when
α ¼ ðn − 2Þ=2 as in Eq. (2.4), β ¼ αþ 1, with X asymp-
totic to ∂μ in coordinates as in Eq. (A33).
Similarly, Eq. (3.31) will be satisfied for asymptotically

anti–de Sitter metrics with

α ¼ β ¼ n=2; ð3:32Þ

where r is the area coordinate for the anti–de Sitter metric.
Note that in this case we have jXj ¼ OðrÞ.
Instead of Eq. (3.16) we now obtain

HbðX;SÞ ¼
3

16π
lim
R→∞

Z
∂EðRÞ

δαβγλμνX
νḡλρḡγσ∇̄ρgσμdSαβ;

ð3:33Þ

where the two-forms dSαβ in dþ K ≡ nþ 1þ K space-
time dimensions take the form

dSαβ ¼
1

ðnþ K − 1Þ! ϵαβξ1���ξnþK−1
dxξ1 ∧ � � � ∧ dxξnþK−1

≡ ∂β⌋∂α⌋
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
dx0 ∧ � � � ∧ dxnþK|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕dμg

: ð3:34Þ

We can now compute the Hamiltonian charges for this
general case. We have

3

16π
δαβγλμνX

νḡλρḡγσ∇̄ρgσμdSαβ

¼ 1

16π
ðδαβλμδγν þ δαβμνδ

γ
λ þ δαβνλ δ

γ
μÞXνḡλρḡγσ∇̄ρgσμdSαβ

¼ 1

16π
ðXγ ḡλρḡγσ∇̄ρgσμdSλμ þ Xν∇̄σgσμdSμν

þ Xνḡλρḡγσ∇̄ρgσγdSνλÞ: ð3:35Þ

To continue, it is best to use a ḡ-orthonormal frame ēî
with ē0̂ orthogonal to S and ēÂ tangent to ∂EðRÞ. Then
only the forms dS0̂ î give a nonvanishing contribution to the
boundary integral. In the calculations that follow we will
write “n.c.” for the sum of those terms which do not
contribute to the integral either because of the integration
domain, or by Stokes’ theorem, or by passage to the limit.
If X ¼ ∂0, and assuming that

∂0 ¼ X0̂ē0̂; ð3:36Þ

one finds, using frame indices throughout the calculation,
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3

16π
δαβγλμνX

νḡλρḡγσ∇̄ρgσμdSαβ

¼ 3

8π
X0̂δ0̂ k̂ Ĵ

λ̂ μ̂ 0̂
ḡλ̂ ρ̂ḡĴ ν̂∇̄ρ̂gν̂ μ̂dS0̂ k̂

¼ 1

16π
X0̂½∇̄k̂ðḡĴ L̂gĴ L̂Þ − ∇̄Ĵg

Ĵ k̂�dσk̂ þ n:c:; ð3:37Þ

where

dσ î ≔ dS0̂ î

≡ ēî⌋ē0̂⌋ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
dx0 ∧ � � � ∧ dxnþKÞ

¼ ēî⌋ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gIJj

p
dx1 ∧ � � � ∧ dxnþKÞ þ n:c: ð3:38Þ

Hence, we obtain the following generalization of the ADM
energy:

p0 ¼ Hbð∂t;SÞ

¼ 1

16π
lim
R→∞

Z
∂EðRÞ

X0̂½∇̄iðḡJKgJKÞ − ∇̄JgJi�dσi: ð3:39Þ

The existence of the limit in Eq. (3.39) will be guaranteed
if, instead of Eqs. (3.13)–(3.14), one now assumes, e.g.,Z
S∩fr≥Rg

jXj
�X

μ̂α̂β̂

j∇̄μ̂gα̂β̂j2þ
X
α̂β̂

jT α̂β̂jþjΛjjgμνðgμν− ḡμνÞj
�

×dμḡS <∞; ð3:40Þ
where dμḡS is the (nþ K)-dimensional Riemannian mea-
sure induced on S by ḡ. A condition on the metric and the
energy-momentum tensor of matter fields naturally asso-
ciated with Eq. (3.40) is

lim
R→∞

jXjj∂EðRÞjT μ̂ ν̂ ¼ 0;

lim
R→∞

jXjj∂EðRÞjjΛjjgμνðgμν − ḡμνÞj ¼ 0; ð3:41Þ

where j∂EðRÞj denotes the area of ∂EðRÞ; cf. Eq. (3.14).
This will be assumed whenever relevant.
As an example, we consider the Rasheed metrics of

Appendix A with P ≠ 0, which are vacuum. The ḡ-Killing
vector X ¼ ∂t is ḡ-covariantly constant so that Eq. (3.39)
applies. The asymptotic behavior of the metric coefficients
in the frame (A39) coincides with the asymptotic behavior
of the metric coefficients in manifestly asymptotically
Minkowskian coordinates we have seen in the case
P ¼ 0, and is given by Eq. (A33). One obtains

p0 ¼ 4πPM; ð3:42Þ
where the extra factor 4P, as compared to Eq. (3.23), is due
to the 8Pπ periodicity of the coordinate x4 [cf. Eq. (A37)],
as enforced by the requirement of the smoothness of the
metric. Note that the formulas (3.24) for the ADM four-
momentum remain unchanged.
We emphasize that the calculations above are done at

fixed P, since every P defines its own class of asymptotic
backgrounds. As a result, the phase space of all configu-
rations considered above splits into sectors parametrized by
P. It would be interesting to investigate the question of the
existence of a Hamiltonian in a phase space where P is
allowed to vary. We leave this question to future work.
If X is not ḡ-covariantly constant, the second term of

Eq. (3.7) does not vanish. Thus, disregarding those terms
which do not involve the forms dΣ0i, we obtain (keeping in
mind that X is a Killing vector field of ḡ)

1

2
ðUαβ −Uαβjg¼ḡÞdΣαβ ¼

1

2

�
Uαβ

λXλ −
1

8π

ffiffiffiffiffiffiffiffiffiffiffiffi
jdetgj

p
gμ½αδβ�ν ∇̄μXν −Uαβjg¼ḡ

�
dΣαβ

¼ 3

16π
δαβγλμνX

νḡλρḡγσ∇̄ρgσμdSαβ −
1

16π

� ffiffiffiffiffiffiffiffiffiffiffiffi
jdetgj

p
gμ½α −

ffiffiffiffiffiffiffiffiffiffiffiffi
jdet ḡj

p
ḡμ½α

	
∇̄μXβ�dΣαβ þ n:c:

¼ 1

8π
ð3δ0iγλμνX

νḡλρḡγσ∇̄ρgσμ − ðgμ½0 − e−1ḡμ½0Þ∇̄μXi�ÞNdσi þ n:c:

Here we have used dS0i ¼ Ndσi, where N is the
lapse function of the foliation by the level sets of t,
defined by writing the metric as g ¼ −N2dt2 þ
gIJðdxI þ NIdtÞðdxJ þ NJdtÞ. We conclude that

HbðX;SÞ ¼
1

8π
lim
R→∞

Z
∂EðRÞ

ð3δ0iγλμνX
νḡλρḡγσ∇̄ρgσμ

− ðgμ½0 − e−1ḡμ½0Þ∇̄μXi�ÞNdσi: ð3:43Þ

We can apply the last formula to the background Killing
vectors ∂i and ∂4 for Rasheed metrics with P ≠ 0.
A calculation gives

pi ¼ 0; p4 ¼ 4πPQ: ð3:44Þ

Here one can note that ∂z is ḡ-covariantly constant so that
the last term in Eq. (3.43) certainly does not contribute,
while px ¼ py ¼ 0 follows from the axisymmetry of the
Rasheed metrics. [In fact, ∇̄X ¼ Oðr−2Þ or better for these
Killing vectors so that the last term never contributes in the
current case.]
Equation (3.43) applies for completely general background

metrics ḡ, assuming that Eqs. (3.40) and (3.31) hold, for a large
class of field equations. In particular, it applies to asymptoti-
cally Kottler (“anti–de Sitter”) metrics, cf. Refs. [19,21–23].
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IV. ENERGY-MOMENTUM AND THE
CURVATURE TENSOR

For our further purposes it is convenient to rewrite
Eq. (3.10) in terms of the Christoffel symbols. As a first
step towards this we note the following consequence of
Eq. (3.34):

δαβγλμνdSαβ ¼
1

3
·

1

ðnþ K − 2Þ! ϵλμνξ1���ξnþK−2
dxγ

∧ dxξ1 ∧ � � � ∧ dxξnþK−2 : ð4:1Þ

A. KK-asymptotic flatness

We assume again that X is ḡ-covariantly constant; of
course, it would suffice to assume that ∇̄X falls off fast
enough to provide a vanishing contribution to the integral
defining the Hamiltonian in the limit.
In the KK-asymptotically flat case, Eq. (3.16) can be

rewritten as

pμX
μ
∞ ¼ ð−1ÞnþK−1

16πðnþ K − 2Þ! limR→∞

Z
SðRÞ×Tn

ϵλμνξ1���ξnþK−2

× XνgλρΓμ
γρdxξ1 ∧ � � � ∧ dxξnþK−2 ∧ dxγ: ð4:2Þ

In the standard asymptotically flat case, without Kaluza-
Klein directions, Eq. (4.2) can be used to obtain an
expression for the ADM energy-momentum in terms of
the Riemann tensor, generalizing a similar formula derived
by Ashtekar and Hansen in spacetime dimension four [5]
(cf. Refs. [4,24]), as follows. We can write

ϵλμνξ1���ξn−2X
νgλρΓμ

γρdxξ1 ∧ � � � ∧ dxξn−2 ∧ dxγ

¼ dðϵλμνξ1���ξn−2Xνxξ1gλρΓμ
γρdxξ2 ∧ � � � ∧ dxξn−2 ∧ dxγÞ

− ð−1Þn−3ϵλμνξ1���ξn−2Xνgλρxξ1dxξ2 ∧ � � � ∧ dxξn−2

∧ ð∂σΓγμρdxσ ∧ dxγÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

2
Rμρσγdxσ∧dxγ

þ n:c: ð4:3Þ

Inserting this into Eq. (4.2) and applying Stokes’ theorem,
one obtains

pμX
μ
∞ ¼ 1

32πðn − 2Þ! limR→∞

Z
SðRÞ

ϵνξ1���ξn−2λμX
νxξ1Rλμ

δγ

× dxξ2 ∧ � � � ∧ dxξn−2 ∧ dxδ ∧ dxγ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
−1
2
ϵξ2…ξn−2δγμνdSμν

¼ 1

16ðn − 2Þπ lim
R→∞

Z
SðRÞ

XμxνRμνρσdSρσ; ð4:4Þ

which is the desired new formula.
Let us now pass to a derivation of a version of Eq. (4.4)

relevant for Kaluza-Klein asymptotically flat spacetimes. In
this case we will be integrating the integrand of Eq. (4.2)
over

Sn−1 × TK ¼ Sd−2 × TK:

So only those forms in the sum which contain a dxd ∧
� � � ∧ dxdþK−1 factor will survive integration. We will use
the following symbols:
(1) Rα

βγδ denotes the Riemann tensor of the (dþ K)-
dimensional metric gμνdxμdxν.

(2) Ra
bcd denotes the Riemann tensor of the d-

dimensional metric gabdxadxb.
(3) RI

JKL denotes the Riemann tensor of the (nþ K)-
dimensional metric gIJdxIdxJ.

(4) Ri
jkl denotes the Riemann tensor of the n-

dimensional metric gijdxidxj.
No distinction between gabdxadxb and gμνdxμdxν

will be made when K ¼ 0. Keeping in mind that n.c.
denotes the sum of those terms which do not contribute
to the integral either because of the integration domain,
or by Stokes’ theorem, or by passage to the limit,
we find

ϵλμνξ1…ξdþK−3
XνgλρΓμ

γρdxξ1 ∧ � � � ∧ dxξdþK−3 ∧ dxγ

¼ ðdþ K − 3Þ!
ðd − 3Þ!N!

ϵbcfa1…ad−3A1…AK
XfgbeΓc

aedxa1 ∧ � � � ∧ dxAK ∧ dxa

þ ðdþ K − 3Þ!
ðd − 2Þ!ðN − 1Þ! ϵλμνa1…ad−2A1…AK−1

XνgλρΓμ
Aρdxa1 ∧ � � � ∧ dxAK−1 ∧ dxA

¼ ðdþ K − 3Þ!
ðd − 3Þ!N!

dðϵbcfa1…ad−3A1…AK
XfηbeΓc

aexa1dxa2 ∧ � � � ∧ dxAK ∧ dxaÞ

−
ðdþ K − 3Þ!
ðd − 3Þ!N!

ϵbcfa1…ad−3A1…AK
Xfηbexa1dΓc

ae ∧ � � � ∧ dxAK ∧ dxa

þ ðdþ K − 3Þ!
ðd − 2Þ!ðN − 1Þ! dðϵλμνa1…ad−2A1…AK−1

XνηλρΓμ
Aρxa1dxa2 ∧ � � � ∧ dxAK−1 ∧ dxAÞ

−
ðdþ K − 3Þ!

ðd − 2Þ!ðN − 1Þ! ϵλμνa1…ad−2A1…AK−1
Xνηλρxa1dΓμ

Aρ ∧ � � � ∧ dxAK−1 ∧ dxA þ n:c:
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¼ ðdþ K − 3Þ!
2ðd − 3Þ!N!

ϵbcfa1…ad−3A1…AK
Xfxa1Rbc

ad−1ad−2dx
ad−1 ∧ dxa2 ∧ � � � ∧ dxAK ∧ dxad−2

þ ðdþ K − 3Þ!
ðd − 2Þ!ðN − 1Þ! ϵλμνa1…ad−2A1…AK−1

Xνxa1Rλμ
ad−1Adx

ad−1 ∧ dxa2 ∧ � � � ∧ dxAK−1 ∧ dxA þ n:c: ð4:5Þ

Using

ϵλμνa1…ad−2A1…AK−1
dxad−1 ∧ dxa2 ∧ � � � ∧ dxAK−1 ∧ dxA ¼ 3ðN − 1Þ!ð−1ÞdþK−1δAabλμν ϵaba1…ad−2dx

ad−1 ∧ dxa2 ∧ � � �
∧ dxad−2 ∧ dxdþ1 ∧ � � � ∧ dxdþK;

after some reordering of indices one obtains

pμX
μ
∞ ¼ ð−1Þn

32πðn− 1Þ! limR→∞

Z
SðRÞ

Z
TK

xa1 ½ðn− 1Þϵa1a2���an−2abcXaRbc
an−1an

− ϵa1a2���an−1abð4XaRbA
anAþ 2XARab

anAÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð�Þ

�dxa2 ∧ � � �∧ dxan ∧ dxdþ1 ∧ � � �∧ dxdþK: ð4:6Þ

Using

dxa2 ∧ � � � ∧ dxan ∧ dxdþ1 ∧ � � � ∧ dxdþK ¼ −
1

2
ϵa2���anefdSef ð4:7Þ

and

Rad
bd ¼ Ra

b −RaA
bA;

one obtains for the first term of the Hamiltonian integral [where in the fourth line below we use Eq. (C3)]

ϵa1a2���an−2abcx
a1XaRbc

an−1andx
a2 ∧ � � � ∧ dxan ∧ dxdþ1 ∧ � � � ∧ dxdþK

¼ −
1

2
ϵa1a2���an−2abcϵ

a2���anefxa1XaRbc
an−1andSef

¼ 1

2
ð−1Þn−1ðn − 3Þ!4!δan−1anefa1a b c

xa1XaRbc
an−1andSef

¼ 2ð−1Þn−1ðn − 3Þ!xa1XaðRef
a1a þ δefa1aR

bc
bc − 4δ½e½a1R

f�c
a�cÞdSef

¼ 2ð−1Þn−1ðn − 3Þ!xa1Xa½Ref
a1a þ δefa1aðRc

c −RcA
cAÞ − 4ðδ½e½a1Rf�

a� − δ½e½a1R
f�A

a�AÞ�dSef: ð4:8Þ

Now, recall that finiteness of the total energy of matter
fields together with the dominant energy condition
requires, essentially, that

Tμν ¼ oðr−nÞ; ð4:9Þ

cf. Eq. (3.14). This, together with the Einstein equations,
implies that the Ricci-tensor contribution to the integrals

will vanish in the limit R → ∞. Nevertheless, we will keep
the Ricci tensor terms for future reference.
Using

−
1

2
ϵa1a2���an−1abϵ

a2���anefdSef ¼ 3ð−1Þnðn − 2Þ!δanefa1ab
dSef;

the terms involving ð�Þ in Eq. (4.6) can be manipulated as

6ð−1Þnðn − 2Þ!δanefa1ab
xa1ð2XaRbA

anA þ XARab
anAÞdSef

¼ 2ð−1Þnðn − 2Þ!xa1ðδanea1aδ
f
b þ δefa1aδ

an
b þ δfana1aδ

e
bÞð2XaRbA

anA þ XARab
anAÞdSef

¼ 2ð−1Þnðn − 2Þ!½2ðx½anXe�RfA
anA þ x½eXf�RanA

anA þ x½fXan�ReA
anAÞ

þ XAðx½anRe�f
anA þ x½eRf�an

anA þ x½fRan�e
anAÞ�dSef:
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Renaming the indices, rearranging terms, and plugging the results into the integral, one obtains our final expression

pμX
μ
∞ ¼ 1

32πðn − 2Þ lim
R→∞

Z
SðRÞ

Z
TK



−2xbXa½Ref

ba þ δefbaðRc
c −RcA

cAÞ − 4ðδ½e½bRf�
a� − δ½e½bR

f�A
a�AÞ�

− 2
n − 2

n − 1
½2ð2x½bXe�RfA

bA þ xeXfRbA
bAÞ þ 3XAxeRfb

bA�gdSef

¼ 1

16ðn − 2Þπ lim
R→∞

Z
SðRÞ

Z
TK

�
XaxbRab

ef þ 4x½eXa�Rf
a − xeXfRc

c

−
1

n − 1
½ðn − 3ÞxeXfRbA

bA þ 4x½eXa�RfA
aA þ 3ðn − 2ÞXAxeRfb

bA�
�
dSef: ð4:10Þ

Some special cases are of interest:
(1) Suppose that Xμ ¼ δμ0; thus, X has only a time

component. At x0 ¼ 0 we have

p0 ¼
1

8ðn− 2Þπ

× lim
R→∞

Z
SðRÞ

Z
TK

�
xjR0j

0i þ 1

2
xiðRj

j −R0
0Þ

− xjRi
j −

1

n− 1

�
1

2
xiR0A

0A − xjRiA
jA

��
dS0i;

ð4:11Þ
where the terms involving the Ricci tensor give a
vanishing contribution in view of Eq. (4.9) [and
similarly for Eq. (4.12) below].

(2) Suppose that XA ¼ 0; thus, X has only spacetime
components. Then

paXa
∞ ¼ 1

16ðn− 2Þπ

× lim
R→∞

Z
SðRÞ

Z
TK

�
XaxbRab

ef þ 4x½eXa�Rf
a

− xeXfRc
c −

1

n− 1
½ðn− 3ÞxeXfRbA

bA

þ 4x½eXa�RfA
aA�

�
dSef: ð4:12Þ

We will see below that the first term on the right-
hand side is related to the Komar integral. It is not
clear whether or not the remaining terms vanish in
general. However, when X0 ¼ 0, at t ¼ 0 the third
term in the integrand gives a vanishing contribution,
so that the generators of space translations read

piXi
∞ ¼ 1

8ðn − 2Þπ lim
R→∞

Z
SðRÞ

Z
TK

�
XixkRik

0j

þ 2x½iXj�
�

2

n − 1
R0A

iA þR0
i

��
dS0j:

ð4:13Þ

We also note that whenK ¼ 1 the contribution of the
fourth term in the integrand in Eq. (4.12) always
vanishes because then, denoting by x4 the Kaluza-
Klein coordinate,

RbA
bA ¼ Rb4

b4 ¼ Rμ4
μ4 ¼ R4

4 ¼ oðr−nÞ;

which gives a zero contribution in the limit.
(iii) Suppose instead that Xa ¼ 0; thus, X has only

components tangential to the Kaluza-Klein fibers.
Then, again at x0 ¼ 0,

pAXA
∞ ¼ 3

16ðn − 1Þπ lim
R→∞

Z
SðRÞ

Z
TK

XAxeRAb
fbdSef

¼ 3

16ðn − 1Þπ lim
R→∞

Z
SðRÞ

Z
TK

XAxiRAB
0BdS0i;

ð4:14Þ

where the decay oðr−nÞ of the Ricci tensor of the
ðnþ K þ 1Þ-dimensional metric has been used.

B. General case

For general background metrics, still assuming a
covariantly-constant ḡ-Killing vector, we start by rewriting
Eq. (3.33) as

HbðX;SÞ ¼
ð−1ÞnþK−1

16πðnþ K − 2Þ! limR→∞

Z
∂EðRÞ

ϵλμνξ1���ξnþK−2

× XνgλρδΓμ
γρdxξ1 ∧ � � � ∧ dxξnþK−2 ∧ dxγ;

ð4:15Þ

where

Γδαβγ ≔ Γα
βγ − Γ̄α

βγ ¼ oðr−βÞ; ð4:16Þ

with the last equality following from Eq. (3.27).
In order to obtain a version of Eq. (4.3) suitable to the

current setting. we will assume that there exists a vector
field Z with ZA ¼ 0 and a real number γ > 0 such that
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∇̄aZb ¼ δba þOðr−γÞ mod ðδrμ; δtμÞ: ð4:17Þ

Here we write “mod ðδrμ; δtμÞ” for a tensor which has the

form δrμα
∘
… þ δtμβ

∘
… for some tensor fields α

∘
and β

∘
. That is

to say, if X is a vector field tangent to the submanifolds
of constant t, r, and if “uμ… ¼ 0 mod ðδrμ; δtμÞ,” then
Xμuμ… ¼ 0.
We show in Appendix B that the vector field defined in

appropriate coordinates as

Z ¼ r∂r ð4:18Þ

satisfies Eq. (4.17) for a) asymptotically anti–de Sitter
metrics and b) general Rasheed metrics, in both cases
without the error term Oðr−γÞ; equivalently, the exponent γ
can be taken as large as desired. We have introduced the
Oðr−γÞ term for possible future generalizations.
We further assume that

∇̄μXν ¼ OðjXjr−βÞ mod ðδrμ; δtμÞ; ð4:19Þ

which will certainly be the case if X is ḡ-covariantly
constant. Last but not least, we replace Eq. (3.31) by the
requirement that

terms oðjXjr−α−βÞ; oðjZjjXjr−2βÞ; ando ðjXjr−β−γÞ give a vanishing contribution

to boundary integrals at fixed r and t; after passing to the limit r → ∞: ð4:20Þ

Now, the identity that we are about to derive will be integrated on submanifolds of fixed r and t, so that any forms
containing a factor dr or dt will give zero integral. Assuming that there are no Kaluza-Klein directions (K ¼ 0), we find

dðϵλμνξ1���ξn−2XνZξ1gλρδΓμ
γρdxξ2 ∧ � � � ∧ dxξn−2 ∧ dxγÞ

¼ ∇̄σð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ϵ
∘
λμνξ1���ξn−2X

νZξ1gλρδΓμ
γρÞdxσ ∧ dxξ2 ∧ � � � ∧ dxξn−2 ∧ dxγ

¼ Zξ1ϵλμνξ1���ξn−2g
λρδΓμ

γρ∇̄σXνdxσ|fflfflfflfflffl{zfflfflfflfflffl}
n:c:

∧ dxξ2 ∧ � � � ∧ dxξn−2 ∧ dxγ

þ ϵλμνξ1���ξn−2X
νgλρδΓμ

γρ∇̄σZξ1dxσ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dxξ1þn:c:

∧ dxξ2 ∧ � � � ∧ dxξn−2 ∧ dxγ

þ ð−1Þn−3ϵλμνξ1���ξn−2XνgλρZξ1dxξ2 ∧ � � � ∧ dxξn−2 ∧ ð∇̄σδΓ
μ
γdxσ ∧ dxγÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ð1
2
δRμ

ρσγþoðr−2βÞÞdxσ∧dxγ
þ n:c:

¼ ϵλμνξ1���ξn−2X
νgλρδΓμ

γρdxξ1 ∧ � � � ∧ dxξn−2 ∧ dxγ

þ ð−1Þn−3 1
2
ϵλμνξ1���ξn−2X

νgλρδRμ
ρσγZξ1dxξ2 ∧ � � � ∧ dxξn−2 ∧ dxσ ∧ dxγ þ n:c: ð4:21Þ

This identity replaces Eq. (4.3) in the current setting. One
can now repeat the remaining calculations of Sec. IVA by
replacing every occurrence of the Christoffel symbols by
the difference of those of g and ḡ, every occurrence of the
Riemann tensor by the difference of the Riemann tensors of
g and ḡ, and every occurrence of an undifferentiated xα by
Zα. Some care must be taken when generalizing Eq. (4.10)
when passing from the background Riemann tensor to the
background Ricci tensor, because in Eq. (C1) all indices
are lowered and raised with g. Thus, Eq. (C1) is now
replaced by

3!δσγαβλμνξ ðRμ
ρσγ − R̄μ

ρσγÞgλρ

¼ ðRαβ
ξν − R̄½α

ρξνgβ�ρÞ þ ðR − R̄ρλgρλÞδαβξν
− 4δ½α½ξR

β�
ν� þ 2δ½α½ξg

β�ρR̄ν�ρ − 2R̄½α
ρλ½ξδ

β�
ν�g

ρλ: ð4:22Þ

The simplest situation is obtained when K ¼ 0 so that
KN is reduced to a point, and Eq. (3.43) becomes

HbðX;SÞ ¼
1

8ðn− 2Þπ lim
R→∞

Z
SðRÞ

fXνZξðR0i
νξ− R̄½0

ρνξgi�ρÞ

þX½0Zi�ðR− R̄ρλgρλÞþ 2XνZ½0Ri�
ν

− 2ZνX½0Ri�
νþðZνX½0gi�ρ−XνZ½0gi�ρÞR̄νρ

−X½νZi�R̄0
ρλνgρλþX½νZ0�R̄i

ρλνgρλ

− ðn− 2Þðgμ½0− e−1ḡμ½0Þ∇̄μXi�ÞgNdσi: ð4:23Þ

1. Λ ≠ 0

We wish to analyze Eq. (4.23) for metrics g which
asymptote a maximally symmetric background ḡ with
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Λ ≠ 0. This case requires separate attention as then the
background curvature tensor does not approach zero as we
recede to infinity. We note that the calculations in this
section are formally correct independently of the sign of Λ,

but to the best of our knowledge they are only relevant in
the case Λ < 0.
It is useful to decompose the Riemann tensor into its

irreducible components,

Rαβγδ ¼Wαβγδ þ
1

d− 2
ðRαγgβδ −Rαδgβγ þRβδgαγ −RβγgαδÞ−

R
ðd− 1Þðd− 2Þ ðgβδgαγ − gβγgαδÞ

¼Wαβγδ þ
1

d− 2
ðPαγgβδ −Pαδgβγ þPβδgαγ −PβγgαδÞ þ

R
dðd− 1Þ ðgβδgαγ − gβγgαδÞ;

where Wαβγδ is the Weyl tensor and Pαβ is the trace-free part of the Ricci tensor,

Pμν ¼ Rμν −
R
d
gμν:

This leads to the following rewriting of Eq. (4.23):

HbðX;SÞ ¼
1

8ðn − 2Þπ lim
R→∞

Z
∂EðRÞ



XνZξ

�
W0i

νξ − W̄½0
ρνξgi�ρ þ

2R
nðnþ 1Þ δ

½0
½νδ

i�
ξ� −

2R̄
nðnþ 1Þ δ

½0
½νḡξ�ρg

i�ρ
�

þ X½0Zi�ðR − R̄ρλgρλÞ þ 2XνZ½0Ri�
ν − 2ZνX½0Ri�

ν þ ðZνX½0gi�ρ − XνZ½0gi�ρÞR̄νρ

−
2R̄

nðnþ 1Þ ðX
½νZi�δ0½λḡν�ρ − X½νZ0�δi½λḡν�ρÞgρλ − ðn − 2Þðgμ½0 − e−1ḡμ½0Þ∇̄μXi�gNdσi: ð4:24Þ

Assuming that the background Weyl tensor falls off sufficiently fast so that it does not contribute to the integrals (e.g.,
vanishes, when the background is a space-form such as the anti–de Sitter metric), that both the energy-momentum tensor of
matter and e − 1 decay fast enough [cf. Eq. (3.41)], and setting

Δμν ≔ gμν − ḡμν;

we obtain

HbðX;SÞ ¼
1

8ðn − 2Þπ lim
R→∞

Z
∂EðRÞ



XνZξ

�
W0i

νξ −
2R̄

nðnþ 1Þ δ
½0
½ν ḡξ�ρΔ

i�ρ
�
− X½0Zi�R̄ρλΔρλ þ ðZνX½0Δi�ρ − XνZ½0Δi�ρÞR̄νρ

−
2R̄

nðnþ 1Þ ðX
½νZi�δ0½λḡν�ρ − X½νZ0�δi½λḡν�ρÞΔρλ − ðn − 2ÞΔμ½0∇̄μXi�

�
Ndσi; ð4:25Þ

where we have also used the hypothesis (3.31) that terms such as jXjjZjΔμνΔρσ and jXjjZjgμνΔμν fall off fast enough so that
they give no contribution to the integral in the limit. With some further work, one gets

HbðX;SÞ ¼
1

8ðn − 2Þπ lim
R→∞

Z
∂EðRÞ



XνZξW0i

νξ þ ðn − 2ÞΔμ½0
�

R̄
nðnþ 1Þ ðXμZi� − ZμXi�Þ − ∇̄μXi�

��
Ndσi: ð4:26Þ

To continue, we assume the Birmingham-Kottler form
(B1)–(B3) of the background metric ḡ. If X is the ḡ-Killing
vector field ∂t then, writing momentarily Xν for ḡνμXν,

∇̄σXνdxσ ⊗ dxν ¼ ∇̄½σXν�dxσ ⊗ dxν ¼ ∂ ½σXν�dxσ ⊗ dxν

¼ ∂ ½σ ḡν�0dxσ ⊗ dxν ¼ 1

2
∂rḡ00dxr ∧ dx0

¼ 1

2
∂rḡ00Θ̄1 ∧ Θ̄0:

Using this, one checks that all terms linear in Δ in
Eq. (4.26) cancel out, leading to the elegant formulas

HbðX;SÞ¼
1

8ðn−2Þπ lim
R→∞

Z
∂EðRÞ

XνZξW0i
νξNdσi

¼ 1

16ðn−2Þπ lim
R→∞

Z
∂EðRÞ

XνZξWαβ
νξdSαβ; ð4:27Þ

which, at this stage, hold for all X belonging to the (nþ 1)-
dimensional family of Killing vectors of the anti–de Sitter
background which are normal to ft ¼ 0g.
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If X ¼ ∂φ, then we have

∇̄σXνdxσ ⊗ dxν ¼ ∇̄½σXν�dxσ ⊗ dxν ¼ 1

2
∂σ ḡνφdxσ ∧ dxν ¼ 1

2
∂rḡφφdr ∧ dφþ 1

2
∂θḡφφdθ ∧ dφ

¼
ffiffiffiffi
V

p
sin θΘ̄1 ∧ Θ̄3 þ cos θΘ̄2 ∧ Θ̄3;

where we used the coframe of the background metric (B1) with the following cobasis:

Θ̄0 ¼
ffiffiffiffi
V

p
dt; Θ̄1 ¼ 1ffiffiffiffi

V
p dr; Θ̄2 ¼ rdθ; Θ̄3 ¼ r sin θdφ: ð4:28Þ

Hence, in this coframe one obtains

∇̄1̂X3̂ ¼
ffiffiffiffi
V

p
sinθ ¼ −∇̄3̂X1̂; ∇̄2̂X3̂ ¼ cosθ ¼ −∇̄3̂X2̂:

Therefore, the second term of the integrand in Eq. (4.26) vanishes for r → ∞, since (keeping in mind that dS0̂ î for i ≠ 1

gives zero contribution to the integrals)

R̄
nðnþ 1ÞΔ

μ½0ðXμZ1� − ZμX1�Þ − Δμ½0∇̄μX1� ¼ −
λ

2
Δμ̂ 0̂Xμ̂Z1̂ −

1

2
Δμ̂ 0̂∇̄μ̂X1̂ ¼ −

λ

2
Δ3̂ 0̂ X3̂|{z}

¼ðḡ3̂ 3̂þΔ3̂ 3̂ÞX3̂

Z1̂ −
1

2
Δ3̂ 0̂∇̄3̂X1̂

¼
�
−
λ

2
·
r2ffiffiffiffi
V

p þ 1

2

ffiffiffiffi
V

p �
sin θΔ3̂ 0̂ →

r→∞
0:

Hence, Eq. (4.27) also holds for X ¼ ∂φ. Since all Killing
vectors of AdS spacetime can be obtained as linear
combinations of images of these two vectors by isometries
preserving ft ¼ 0g, we conclude that Eq. (4.27) holds for
all Killing vectors of the AdS metric.
Once this work was completed, we were informed that

Eq. (4.27) had already been observed in Ref. [25], follow-
ing up on the pioneering definitions in Refs. [26,27]. We
note that our conditions for the equality in Eq. (4.27) are
quite weaker than those in Ref. [25].

2. Λ= 0

We pass to the case Λ ¼ 0. We will impose conditions
which guarantee that all terms which are quadratic or higher
in gμν − ḡμν give zero contribution to the integrals in the
limit R → ∞. Without these assumptions the final formulas
become unreasonably long. Hence, we assume Eqs. (4.16),
(4.17), (4.19), and (4.20).
In the current context, the calculation (4.5) is

replaced by

ϵλμνξ1…ξdþK−3
XνgλρδΓμ

γρdxξ1 ∧ … ∧ dxξdþK−3 ∧ dxγ

¼ ðdþ K − 3Þ!
ðd − 3Þ!N!

ϵbcfa1…ad−3A1…AK
XfgbeδΓc

ae dxa1|{z}
∇̄hZa1 dxhþn:c:¼δ

a1
h

dxhþn:c:

∧ … ∧ dxAK ∧ dxa

þ ðdþ K − 3Þ!
ðd − 2Þ!ðN − 1Þ! ϵλμνa1…ad−2A1…AK−1

XνgλρδΓμ
Aρdxa1 ∧ … ∧ dxAK−1 ∧ dxA

¼ ðdþ K − 3Þ!
ðd − 3Þ!N!

½∇̄hðϵbcfa1…ad−3A1…AK
XfgbeδΓc

aeZa1Þdxh ∧ dxa2 ∧ … ∧ dxAK ∧ dxa

− ϵbcfa1…ad−3A1…AK
∇̄hXf|{z}

n:c:

gbeδΓx
aeZa1dxh ∧ dxa2 ∧ … ∧ dxAK ∧ dxa

− ϵbcfa1…ad−3A1…AK
XfgbeZa1∇̄hδΓc

aedxh ∧ dxa2 ∧ … ∧ dxAK ∧ dxa þ n:c:�

þ ðdþ K − 3Þ!
ðd − 2Þ!ðN − 1Þ! ½∇̄hðϵλμνa1…ad−2A1…AK−1

XνgλρδΓμ
AρZa1Þdxh ∧ dxa2 ∧ … ∧ dxAK−1 ∧ dxA

− ϵλμνa1…ad−2A1…AK−1
∇̄hXν|{z}

n:c:

gλρδΓμ
AρZa1dxh ∧ dxa2 ∧ … ∧ dxAK−1 ∧ dxA

− ϵλμνa1…ad−2A1…AK−1
XνgλρZa1∇̄hδΓμ

Aρdxh ∧ dxa2 ∧ … ∧ dxAK−1 ∧ dxA þ n:c:�
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¼ ðdþ K − 3Þ!
ðd − 3Þ!N!

dðϵbcfa1…ad−3A1…AK
XfgbeδΓc

aeZa1dxa2 ∧ … ∧ dxAK ∧ dxaÞ

þ ðdþ K − 3Þ!
ðd − 2Þ!ðN − 1Þ! dðϵλμνa1…ad−2A1…AK−1

XνgλρδΓμ
AρZa1dxh ∧ dxa2 ∧ … ∧ dxAK−1 ∧ dxAÞ

−
ðdþ K − 3Þ!
ðd − 3Þ!N!

ϵbcfa1…ad−3A1…AK
Xfxa1gbeδRc

ead−1ad−2dx
ad−1 ∧ dxa2 ∧ � � � ∧ dxAK ∧ dxad−2

−
ðdþ K − 3Þ!
2ðd − 3Þ!N!

ϵλμνa1…ad−2A1…AK−1
Xνxa1gλρδRμ

ρad−1 A
dxad−1 ∧ dxa2 ∧ … ∧ dxAK−1 ∧ dxA þ n:c:

As before, in the last equality we have used the fact that the
first ∇̄h terms in the first expression in each of the square
brackets can be replaced by ∇̄μ, because each form
appearing in the first line above must already contain K
factors of the KK differentials dxA; otherwise, it will give
zero contribution to the integral.
In addition to all of the hypotheses so far, we will also

assume that the Riemann tensor decays at a rate oðr−βRÞ:

Rα
βγδ ¼ oðr−βRÞ; R̄α

βγδ ¼ oðr−βRÞ; ð4:29Þ

with βR chosen so that

termsjXjjZjoðr−α−βRÞ give no contribution to the integral

in the limit R → ∞: ð4:30Þ

All of these conditions are satisfied by the five-
dimensional Rasheed metrics, with α > 0 as close to one
as one wishes, β ¼ 1þ α, βR ¼ 3, and with γ as large as
desired.
In line with our previous notation, we will write

Rα
βγδ − R̄α

βγδ for the difference of Riemann tensors of
the (dþ K)-dimensional metrics gμνdxμdxν and ḡμνdxμdxν,
Ra

bcd − R̄a
bcd for that of the d-dimensional metrics

gabdxadxb and ḡabdxadxb, RI
JKL − R̄I

JKL for that of the
(nþ K)-dimensional metrics gIJdxIdxJ and ḡIJdxIdxJ, and
Ri

jkl − R̄i
jkl for that of the n-dimensional metrics

gijdxidxj and ḡijdxidxj.
With the above hypotheses, the derivation of the key

formula (4.10) follows closely the remaining calculations in
Sec. IVA, and leads to

HbðX;SÞ ¼
1

16ðn − 2Þπ lim
R→∞


Z
∂EðRÞ

�
XaZbðRab

ef − R̄ab
efÞ þ 4Z½eXa�ðRf

a − R̄f
aÞ

− ZeXfðRc
c − R̄c

cÞ −
1

n − 1
½ðn − 3ÞZeXfðRbA

bA − R̄bA
bAÞ þ 4Z½eXa�ðRfA

aA − R̄fA
aAÞ

þ 3ðn − 2ÞXAZeðRfb
bA − R̄fb

bAÞ�
�
dSef − ðn − 2Þ

Z
∂EðRÞ

ðgμ½a − e−1ḡμ½aÞ∇̄μXb�dSab

�
: ð4:31Þ

For Rasheed solutions, or more generally for solutions
which asymptote to the Rasheed backgrounds ḡ given by
Eq. (A34) with the usual decay oðr−ðn−2Þ=2Þ, with
Tμν¼oðr−3Þ, one has [cf. Eqs. (A43)–(A44)] R̄0

λμν ¼ 0,
R̄μ̂

4̂ α̂ 4̂ ¼ Oðr−4Þ, and R̄μν ¼ Oðr−4Þ. Thus, for X ¼ ∂μ

and after passing to the limit R → ∞, we obtain an
integrand which is formally identical to that for metrics
which are KK-asymptotically flat:

HbðX;SÞ¼
1

16ðn−2Þπ lim
R→∞

Z
SðRÞ×S1

XνZμRαβ
νμdSαβ

¼ 1

8ðn−2Þπ lim
R→∞

Z
SðRÞ×S1

XνxjR0i
νjNdσi: ð4:32Þ

Some special cases, without necessarily assuming that g
asymptotes to the Rasheed background, are of interest:
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(1) Suppose that Xμ ¼ δμ0; thus, X has only a time component. Keeping in mind that Z0 ¼ 0 and ∂EðRÞ ⊂ fx0 ¼ 0g, we
have

Hbð∂0;SÞ ¼
1

8ðn − 2Þπ lim
R→∞


Z
∂EðRÞ

�
ZjðR0j

0i − R̄0j
0iÞ þ 1

2
ZiðRj

j −R0
0 þ R̄j

j − R̄0
0Þ − ZjðRi

j − R̄i
jÞ

−
1

2ðn − 1Þ ½Z
iðR0A

0A − R̄0A
0AÞ − 2ZjðRiA

jA − R̄iA
jAÞ�

�
dS0i

− ðn − 2Þ
Z
∂EðRÞ

ðgμ½0 − e−1ḡμ½0Þ∇̄μXi�dS0i

�

¼ 1

8ðn − 2Þπ lim
R→∞


Z
∂EðRÞ

�
1

2
ZiðRj

j − R̄j
jÞ − ZjðRIj

Ii − R̄Ij
IiÞ

−
1

2ðn − 1Þ ½Z
iðR0A

0A − R̄0A
0AÞ − 2ZjðRiA

jA − R̄iA
jAÞ�

�
dS0i

− ðn − 2Þ
Z
∂EðRÞ

ðgμ½0 − e−1ḡμ½0Þ∇̄μXi�dS0i

�
: ð4:33Þ

(2) Suppose that XA ¼ 0; thus, X has only spacetime components. Then

HbðX;SÞ ¼
1

16ðn − 2Þπ lim
R→∞


Z
∂EðRÞ

�
XaZbðRab

ef − R̄ab
efÞ þ 4Z½eXa�ðRf

a − R̄f
aÞ

− ZeXfðRc
c − R̄c

cÞ −
1

n − 1
½ðn − 3ÞZeXfðRbA

bA − R̄bA
bAÞ þ 4Z½eXa�ðRfA

aA − R̄fA
aAÞ�

�
dSef

− 2ðn − 2Þ
Z
∂EðRÞ

ðgμ½0 − e−1ḡμ½0Þ∇̄μXi�dS0i

�
: ð4:34Þ

We will see below that the first term on the right-hand side is related to the Komar integral. It is not clear whether or
not the remaining terms vanish in general. However, when X0 ¼ 0, at t ¼ 0 the third and fourth terms in the integrand
in Eq. (4.34) give a vanishing contribution so that the generators of space translations read

HbðX;SÞ ¼
1

8ðn − 2Þπ lim
R→∞


Z
∂EðRÞ

�
XiZkðRik

0j − R̄ik
0jÞ þ Z½iXj�

�
2

n − 1
ðR0A

iA − R̄0A
iAÞ þR0

i − R̄0
i

��
dS0j

− ðn − 2Þ
Z
∂EðRÞ

ðgμ½0 − e−1ḡμ½0Þ∇̄μXi�dS0i

�
: ð4:35Þ

(3) Suppose instead that Xa ¼ 0; thus, X has only components tangential to the Kaluza-Klein fibers. Then, again at
x0 ¼ 0,

HbðX;SÞ ¼ lim
R→∞



3

16ðn − 1Þπ
Z
∂EðRÞ

XAZeðRAB
fb − R̄Ab

fbÞdSef −
1

8π

Z
∂EðRÞ

ðgμ½0 − e−1ḡμ½0Þ∇̄μXi�dS0i

�
: ð4:36Þ

C. ðn+KÞ + 1–decomposition

In a Cauchy-data context it is convenient to express
the global charges explicitly in terms of Cauchy data.
Here one can use the Gauss-Codazzi-Mainardi embedding
equations to reexpress our spacetime-Riemann-tensor inte-
grals in terms of the Riemann tensor of the initial-data

metric and of the extrinsic curvature tensor. For this
we consider Xμ ¼ δμ0 and x0 ¼ 0, i.e., we consider
Eq. (4.33).
We start with the case of KK-asymptotically flat initial

data sets. Keeping in mind our convention that ðxIÞ ¼
ðxi; xAÞ, we can replaceRi

JKLwith the (nþ K)-dimensional
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Riemann tensor, whichwe denote byRI
JKL, bymeans of the

Gauss-Codazzi relation

RI
JKL ¼ RI

JKL þ oðr−2α−2Þ: ð4:37Þ

Hence, from Eq. (4.11) we obtain

p0 ¼ −
1

8ðn − 2Þπ lim
R→∞

Z
SðRÞ

Z
TN

xj
�
Ri

j þ
1

2ðn − 1ÞR
k
kδ

i
j

þ 1

n − 1
RiA

jA

�
Ndσi: ð4:38Þ

Wenote that in the usual asymptotically flat case,K ¼ 0, the
last integral is not present. Further, Rk

k then becomes the
Ricci scalar of the initial data metric, with Rk

k ¼ oðr−2α−2Þ
because of the scalar constraint equation, and hence does not
contribute to the integral. Thus, the above reproduces the
well-known-by-now formula for the ADMmass in terms of
the Ricci tensor of the initial data metric [28–31] when the
Ricci scalar decays fast enough, as we assumed here.
We pass now to the case covered in Sec. IV B 1, namely,

K ¼ 0 but Λ < 0, with the background metric ḡ as in

Eqs. (B1)–(B3). Let kIJ be the extrinsic curvature tensor of
the slices fx0 ¼ constg. If we assume that kIJ satisfies

jkj ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gIJgLMkILkJM

q
¼ oðr−n=2Þ; ð4:39Þ

from Eq. (4.27) we obtain a formula first observed in
Ref. [30]:

HbðX;SÞ ¼ −
1

16ðn − 2Þπ lim
R→∞

Z
∂EðRÞ

X0Zj

�
Ri

j −
R
n
δij

�
× Ndσi; ð4:40Þ

where in Eq. (4.40) we have assumed that X is a Killing
vector of the anti–de Sitter background which is normal to
the hypersurface ft ¼ 0g.
Finally, consider general configurations as in Sec. IV B 2.

Under the hypothesis that

jkj2jZjj∂EðRÞj→R→∞ 0; ð4:41Þ

from Eq. (4.33) we find

Hbð∂0;SÞ ¼
1

8ðn − 2Þπ lim
R→∞


Z
∂EðRÞ

��
1

2
ZiðRj

j − R̄j
jÞ − ZjðRi

j − R̄i
jÞ�

−
1

2ðn − 1Þ ½Z
iððRA

A − R̄A
AÞ − ðRA

A − R̄A
AÞÞ − 2ZjððRi

j − R̄i
jÞ − ðRik

jk − R̄ik
jkÞÞ�

�
Ndσi

−ðn − 2Þ lim
R→∞

Z
∂EðRÞ

ðgμ½0 − e−1ḡμ½0Þ∇̄μXi�Ndσi

�
: ð4:42Þ

V. KOMAR INTEGRALS

If Xα is a Killing vector field of both g and ḡ, we have

XμRμbcd ¼ ∇b∇cXd; and XμR̄μbcd ¼ ∇̄b∇̄cXd: ð5:1Þ

This allows us to express some of the integrals above as
Komar-type integrals.

We start with the setup of Sec. IV B 2; the KK-asymp-
totically flat case can be obtained directly from the
calculations here by setting R̄αβγδ ¼ 0. To make things
clear, we assume Eqs. (4.16)–(4.17) and (4.19)–(4.20),
together with Eqs. (4.29)–(4.30), and recall that all these
hypotheses are satisfied under the corresponding hypoth-
eses made in the KK-asymptotically flat case.
The contribution from the first integrand in Eq. (4.31)

can be manipulated as [32]

lim
R→∞

Z
∂EðRÞ

XaZbðRab
ef − R̄ab

efÞdSef ¼ lim
R→∞

Z
∂EðRÞ

½ðX½f;e�
;b − X½f∥e�

∥bÞZb − XAZbðRAb
ef − R̄Ab

efÞ�dSef

¼ lim
R→∞

Z
∂EðRÞ

fðn − 1ÞðX½e;f� − X½e∥f�Þ − 3ðX½e;fZb�Þ;b þ 3ðX½e∥fZb�Þ∥b
þ 2ðRμb

b½fZe� − R̄μb
b½fZe�ÞXμdSef − XAZbðRAb

ef − R̄Ab
efÞgdSef

¼ lim
R→∞



ðn − 1Þ

Z
∂EðRÞ

ðX½α;β� − X½α∥β�ÞdSαβ þ
Z
∂EðRÞ

½2XμZeðRfb
bμ − R̄fb

bμÞ

− XAZbðRAb
ef − R̄Ab

efÞ�dSef
�
; ð5:2Þ
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where the semicolon (;) denotes the covariant derivative of the metric g and the double bar (∥) denotes the covariant
derivative of the background metric ḡ. Moreover, we used Gauss’ theorem, e.g.,

lim
R→∞

Z
∂EðRÞ

ðX½e∥fZb�Þ∥b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
dΣef ¼ lim

R→∞

Z
∂EðRÞ

ðX½e∥fZb�Þ∥b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ḡj

p
dΣef ¼ 0: ð5:3Þ

Hence, under the hypotheses used in the derivation of Eq. (4.31), we can rewrite Eq. (4.31) as

HbðX;SÞ ¼
1

16ðn − 2Þπ lim
R→∞


Z
∂EðRÞ

ðn − 1ÞðX½α;β� − X½α∥β�ÞdSαβ

þ
Z
∂EðRÞ

�
2XμZeðRfb

bμ − R̄fb
bμÞ − XAZbðRAb

ef − R̄Ab
efÞ þ 4Z½eXa�ðRf

a − R̄f
aÞ

− ZeXfðRc
c − R̄c

cÞ −
1

n − 1
½ðn − 3ÞZeXfðRbA

bA − R̄bA
bAÞ þ 4Z½eXa�ðRfA

aA − R̄fA
aAÞ

þ 3ðn − 2ÞXAZeðRfb
bA − R̄fb

bAÞ�
�
dSef − ðn − 2Þ lim

R→∞

Z
∂EðRÞ

ðgμ½a − e−1ḡμ½aÞ∇̄μXb�dSab

�
: ð5:4Þ

The first integrand is the difference of the Komar integrands of g and ḡ.
Specializing to the KK-asymptotically flat case for background-covariantly constant Killing vectors, this reads

pμX
μ
∞ ¼ 1

16ðn − 2Þπ lim
R→∞



ðn − 1Þ

Z
SðRÞ

Z
TN

Xα;βdSαβ

þ
Z
SðRÞ

Z
TN

�
2XμxeRfb

bμ − XAxbRAb
ef −

1

n − 1
½ðn − 3ÞxeXfRbA

bA þ 4x½eXa�RfA
aA

þ 3ðn − 2ÞXAxeRfb
bA�

�
dSef

�
: ð5:5Þ

Thus, it appears that in general Komar-type integrals do
not coincide with the Hamiltonian generators. This is really
the case, as can be seen for the Rasheed solutions. Using
Eq. (A33), one readily finds for X ¼ ∂t (keeping in mind
that n ¼ 3)

1

8π
lim
R→∞

Z
SðRÞ

Z
S1
Xα;βdSαβ ¼

(
2πðM þ Σffiffi

3
p Þ; P ¼ 0;

8πPðM þ Σffiffi
3

p Þ; P ≠ 0;

ð5:6Þ

which does neither coincide with p0 [cf. Eq. (3.23)] nor
with the ADMmass of the space metric gijdxidxj. Note that
the Komar integral of the spacetime metric gabdxadxb will
equal M þ Σffiffi

3
p regardless of the value of P.

Next, for X ¼ ∂4 we obtain

1

8π
lim
R→∞

Z
SðRÞ

Z
S1
Xα;βdSαβ ¼



4πQ; P ¼ 0;

16πPQ; P ≠ 0;
ð5:7Þ

which is twice the Hamiltonian charge p4.
As a simple application of Eq. (5.6), suppose that there

exists a Rasheed metric without a black-hole region. Since

the divergence of the Komar integrand is zero, we obtain
M ¼ −Σ=

ffiffiffi
3

p
. But this is precisely one of the parameter

values excluded in the Rasheed metrics, cf. Eq. (A4) below.
We conclude that the regular metrics in the Rasheed family
must be black-hole solutions.
For the case of metrics which asymptote to a maximally

symmetric background ḡ with Λ ≠ 0, as in Sec. IV B 1, the
Komar integral resulting from Eq. (4.27) reads

HbðX;SÞ ¼
1

16ðn− 2Þπ lim
R→∞

Z
∂EðRÞ

XνZξWαβ
νξdSαβ

¼ lim
R→∞



n− 1

16ðn− 2Þπ
Z
∂EðRÞ

X½α;β�dSαβ

−
Λ

4ðn− 2Þðn− 1Þnπ
Z
∂EðRÞ

XαZβdSαβ

�
: ð5:8Þ

VI. WITTEN’S POSITIVITY ARGUMENT

The Witten positive-energy argument [33,34]
(cf. Ref. [35]) generalizes in an obvious manner to KK-
asymptotically flat metrics. Assuming that the initial data
hypersurface S is spin, we consider the Witten boundary
integral W defined as
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Wðϕ∞Þ ≔ lim
R→∞

Z
SðRÞ×TK

U idσi; ð6:1Þ

UI ¼ hϕ; DIϕþ γIDϕi; ð6:2Þ

where ϕ is a spinor field which asymptotes to a constant
spinor ϕ∞ at an appropriate rate as one recedes to infinity in
the asymptotic end, and D ≔ γJDJ is the Dirac operator
on S. (Note that the asymptotic spinors ϕ∞ might be
incompatible with the spin structure of S, in which case
the argument below of course does not apply; cf. Refs. [36–
38].) It is standard to show that in the natural spin frame
we have

UI ¼ 1

4

XnþK

L¼1

ð∂LgIL − ∂IgLLÞjϕ∞j2 þ oðr−2α−1Þ: ð6:3Þ

Assuming a positive and suitably decaying energy density
on a maximal (i.e., gIJKIJ ¼ 0) initial data hypersurface,
such that

S is metrically complete and either is boundaryless

or has a trapped compact boundary; ð6:4Þ

the proof of the existence of the desired solutions of the
Witten equation Dϕ ¼ 0 can be carried out along lines
identical to the usual asymptotically flat case, cf., e.g.,
Refs. [39,40]. Comparing with Eq. (3.19), we conclude that
the positivity of W is equivalent to positivity of the
Hamiltonian mass:

p0 ≥ 0:

It should be emphasized that p0 does not necessarily
coincide with the ADM mass of gIJdxIdxJ.
The above argument required the positivity of the scalar

curvature of gIJdxIdxJ. This is not needed if one replaces
the usual spinor covariant derivative in Eq. (6.2) by

DI → DI þ
1

2
KI

JγJγ0: ð6:5Þ

The Witten quadratic form W instead becomes

lim
R→∞

I
SðRÞ×TK

U idσi ¼ 4πpμhϕ∞; γμγ0ϕ∞i; ð6:6Þ

and is non-negative for all ϕ∞ when the dominant energy
condition is assumed on initial data hypersurfaces as in
Eq. (6.4). The positivity of W is equivalent to the time-
likeness of the ðnþ K þ 1Þ-vector pμ. Equivalently,

p2
0 −

Xn
i¼1

p2
i ≥

XnþK

A¼nþ1

p2
A ≥ 0: ð6:7Þ

The first inequality is saturated if and only if the initial data
set can be isometrically embedded in R ×Rn × TK

equipped with the flat Lorentzian metric (cf. Ref. [41]).
As an example, consider the Rasheed metrics with

P ¼ 0. The corresponding domains of outer communica-
tions have the topology R × S1 × ðR3nBðRÞÞ, where the R
factor corresponds to the time variable, S1 is the Kaluza-
Klein factor, and the R3nBðRÞ factor describes the space
topology of the black hole. It thus has the obvious spin
structure inherited from a flat R × S1 ×R3, together with
the obvious associated parallel spinors. Therefore the
Witten-type argument just described applies, leading to

M2 ≥ Q2; ð6:8Þ

where the inequality is strict for black-hole solutions. If we
denote by MADM the ADM mass of the three-dimensional-
space part of the Rasheed metric, this can be equivalently
rewritten as �

MADM þ Σffiffiffi
3

p
�

2

≥ Q2; ð6:9Þ

cf. Ref. [42].
Note that Eq. (6.9) does not exclude the possibility of a

negative or vanishing MADM (cf. Refs. [36,43,44]). We
have not attempted a systematic analysis of this issue, and
only checked that all Rasheed solutions with a ¼ 0 and
M ¼ 0 have naked singularities outside of the horizon.

VII. SUMMARY

In this work we have considered families of metrics
asymptotic to various background metrics, and studied the
Hamiltonians associated with the flow of Killing vectors of
the background. We have derived several new formulas for
these Hamiltonians, generalizing previous work by
allowing a cosmological constant, or nonstandard back-
grounds, and allowing higher dimensions. In particular:
We have derived an ADM-type formula for Hamilto-

nians generating time translations for a wide class of
background metrics, cf. Eq. (3.39).
We have provided a formula for Hamiltonians generating

translations for KK-asymptotically flat metrics in terms of
the spacetime curvature tensor [Eq. (4.10)].
We have derived a formula for Hamiltonians associated

with generators of all background Killing fields for
asymptotically anti–de Sitter spacetimes in terms of the
spacetime curvature tensor [Eq. (4.27)].
Equation (4.31) provides a similar formula for a wide

class of backgrounds with Λ ¼ 0.
Equations (4.40) and (4.42) provide space-and-time

decomposed versions of the last two Hamiltonians.
In Sec. V we have derived several Komar-type formulas

for the Hamiltonians above for vector fields X which are
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Killing vectors for both the background and the physical
metric.
In Sec. VI we have pointed out the consequences of a

Witten-type positivity argument for KK-asymptotically flat
spacetimes: instead of proving the positivity of the ADM
energy, the argument provides an inequality involving the
Kaluza-Klein charges and the energy. An explicit version of
the inequality has been established for KK-asymptotically
flat Rasheed metrics.
In addition to the above, we have carried out a careful

study of Rasheed metrics (see Appendix A) to obtain a
nontrivial family of metrics with singularity-free domains
of outer communications to which our formulas apply. We
have pointed out the restrictions (A20) and (A22) on the
parameters needed to guarantee the absence of naked
singularities in the metric. We have shown that all metrics
satisfying these conditions together with P ¼ 0 have a
stably causal domain of outer communications, and we
have given sufficient conditions for stable causality when
P ≠ 0 in Eq. (A24). In Appendix A 3 we point out that the
Rasheed metrics with P ≠ 0 are not KK-asymptotically
flat, and describe their asymptotics. We have determined
their global charges, which are significantly different
according to whether or not P vanishes.
Last but perhaps not least, Eq. (C3) provides a useful

identity—which we have not seen in the literature—that is
satisfied by the Riemann tensor in any dimensions and
generalizing the usual double-dual identity valid in four
dimensions.
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APPENDIX A: AN EXAMPLE:
RASHEED’S SOLUTIONS

Rasheed [45] has constructed a family of stationary
axisymmetric solutions of the five-dimensional vacuum
Einstein equations which take the form

ds2ð5Þ ¼
B
A
ðdx4 þ 2AμdxμÞ2 þ

ffiffiffiffi
A
B

r
ds2ð4Þ; ðA1Þ

where a, M, P, Q, and Σ are real numbers satisfying

Q2

ΣþM
ffiffiffi
3

p þ P2

Σ −M
ffiffiffi
3

p ¼ 2Σ
3
; ðA2Þ

M2 þ Σ2 − P2 −Q2 ≠ 0; ðM þ Σ=
ffiffiffi
3

p
Þ2 −Q2 ≠ 0;

ðM − Σ=
ffiffiffi
3

p
Þ2 − P2 ≠ 0; ðA3Þ

M� Σffiffiffi
3

p ≠ 0;

F2 ≔
½ðMþΣ=

ffiffiffi
3

p Þ2 −Q2�½ðM −Σ=
ffiffiffi
3

p Þ2 −P2�
M2 þΣ2 −P2 −Q2

> 0;

ðA4Þ

and where

ds2ð4Þ ¼ −
Gffiffiffiffiffiffiffi
AB

p ðdtþ ω0
ϕdϕÞ2 þ

ffiffiffiffiffiffiffi
AB

p

Δ
dr2

þ
ffiffiffiffiffiffiffi
AB

p
dθ2 þ Δ

ffiffiffiffiffiffiffi
AB

p

G
sin2ðθÞdϕ2; ðA5Þ

with

A ¼ ðr − Σ=
ffiffiffi
3

p
Þ2 − 2P2Σ

Σ −M
ffiffiffi
3

p þ a2cos2ðθÞ

þ 2JPQ cosðθÞ
ðM þ Σ=

ffiffiffi
3

p Þ2 −Q2
;

B ¼ ðrþ Σ=
ffiffiffi
3

p
Þ2 − 2Q2Σ

ΣþM
ffiffiffi
3

p þ a2cos2ðθÞ

−
2JPQ cosðθÞ

ðM − Σ=
ffiffiffi
3

p Þ2 − P2
;

G ¼ r2 − 2Mrþ P2 þQ2 − Σ2 þ a2cos2ðθÞ;
Δ ¼ r2 − 2Mrþ P2 þQ2 − Σ2 þ a2;

ω0
ϕ ¼ 2Jsin2ðθÞ

G
½rþ E�;

J2 ¼ a2F2; ðA6Þ

whereas E is given by

E ¼ −M þ ðM2 þ Σ2 − P2 −Q2ÞðM þ Σ=
ffiffiffi
3

p Þ
ðM þ Σ=

ffiffiffi
3

p Þ2 −Q2
: ðA7Þ

The physical-space Maxwell potential is given by

2Aμdxμ ¼
C
B
dtþ

�
ω5

ϕ þ
C
B
ω0

ϕ

�
dϕ; ðA8Þ

where

C ¼ 2Qðr − Σ=
ffiffiffi
3

p
Þ − 2PJ cosðθÞðM þ Σ=

ffiffiffi
3

p Þ
ðM − Σ=

ffiffiffi
3

p Þ2 − P2
; ðA9Þ

ω5
ϕ ¼ H

G
; ðA10Þ

BARZEGAR, CHRUŚCIEL, and HÖRZINGER PHYSICAL REVIEW D 96, 124002 (2017)

124002-18



and

H≔2PΔcosðθÞ

−
2QJsin2ðθÞ½rðM−Σ=

ffiffiffi
3

p ÞþMΣ=
ffiffiffi
3

p þΣ2−P2−Q2�
½ðMþΣ=

ffiffiffi
3

p Þ2−Q2� :

ðA11Þ

The Rasheed metrics (A1) have been obtained by
applying a solution-generating technique [45]
(cf. Ref. [46]) to the Kerr metrics. This guarantees that
these metrics solve the five-dimensional vacuum Einstein
equations when the constraint (A3) is satisfied. As the
procedure is somewhat involved, it appears useful to cross-
check the vanishing of the Ricci tensor using computer
algebra. We have been able to verify this in the P ¼ 0 case
with SAGE (which required a week-long computation on a
personal computer), as well as for a set of samples for the
parameters ðM; a; P;Q;ΣÞ in the P ≠ 0 case with
MATHEMATICA. We have, however, not been able to do
it for the full set of parameters.
Let us address the question of the global structure of the

metrics above. We have

det g ¼ −A2 sin2ðθÞ;

which shows that the metrics are smooth and Lorentzian
except possibly at the zeros of A, B, G, Δ, and sinðθÞ.
After a suitable periodicity of ϕ (as in Sec. A 3 below)

has been imposed, regularity at the axes of rotation away
from the zeros of denominators follows from the factor-
izations�
Δ
G
− 1

�
¼ a2sin2ðθÞ

a2cos2ðθÞ − 2Mrþ P2 þQ2 þ r2 − Σ2
;

ðA12Þ

2Aϕ−2P
Δ
G
cosðθÞ¼ sin2ðθÞ

G

�
Hþ2JC

B
½rþE�

�
; ðA13Þ

where

H ≔ −
2QJ½rðM − Σ=

ffiffiffi
3

p Þ þMΣ=
ffiffiffi
3

p þ Σ2 − P2 −Q2�
½ðM þ Σ=

ffiffiffi
3

p Þ2 −Q2� :

ðA14Þ

It will be seen below that, after restricting the parameter
ranges as in Eqs. (A20) and (A22), the location of Killing
horizons is determined by the zeros of

������
gtt gtϕ gt4
gϕt gϕϕ gϕ4
g4t g4ϕ g44

������ ¼ −Δsin2ðθÞ; ðA15Þ

and thus by the real roots rþ ≥ r− of Δ, if any:

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2 − P2 −Q2 − a2

p
: ðA16Þ

1. Zeros of the denominators

The norms

gtt ¼
W
AB

and g44 ¼
B
A

of the Killing vectors ∂t and ∂4 are geometric invariants,
where W ¼ −GAþ C2. So zeros of A and AB correspond
to singularities in the five-dimensional geometry except if
(1) a zero of A is a joint zero of A, B, and W, or if
(2) a zero of B which is not a zero of A is also a zero

of W.
Setting

A ≔
2JPQ

a2ððM þ Σ=
ffiffiffi
3

p Þ2 −Q2Þ ; ðA17Þ

one checks that if

8<
:

2P2Σ
Σ−M

ffiffi
3

p − a2ð1 − jAjÞ ¼ 0; when jAj > 2 or

2P2Σ
Σ−M

ffiffi
3

p þ a2A2

4
¼ 0; when jAj ≤ 2;

ðA18Þ

then A vanishes exactly at one point. Otherwise the set of
zeros of A forms a curve in the ðr; θÞ plane. Let θ ↦ rþA ðθÞ
denote the curve (say, γ) corresponding to the set of largest
zeros of A.
Note thatW and A are polynomials in r, with A of second

order. If W=A is smooth, the remainder of the polynomial
division of W by r − rþA must vanish on the part of γ that
lies outside the horizon. One can calculate this remainder
with MATHEMATICA, obtaining a function of θ which
vanishes at most at isolated points, if at all. It follows that
the division of W by A is singular on the closure of the
domain of outer communications (d.o.c.), i.e., the region
fr ≥ rþg, if A has zeros there, except perhaps when
Eq. (A18) holds.
One can likewise exclude a joint zero of W and B in the

closure of the d.o.c. without a zero of A, except possibly for
the case where this zero is isolated for B as well, which
happens if

8<
:

2Q2Σ
ΣþM

ffiffi
3

p − a2ð1 − jBjÞ ¼ 0; if jBj > 2 or

2Q2Σ
ΣþM

ffiffi
3

p þ a2B2

4
¼ 0; if jBj ≤ 2:

ðA19Þ

See Ref. [47] for a more detailed analysis of the border-
line cases.
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To summarize, a necessary condition for a black hole without obvious singularities in the closure of the domain of outer
communications is that all zeros of A lie under the outermost Killing horizon r ¼ rþ. One finds that this will be the case if
and only if

jAj > 2 and

8<
:

2P2Σ
Σ−M

ffiffi
3

p − a2ð1 − jAjÞ < 0; or

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2 − P2 −Q2 − a2

p
> Σ

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P2Σ

Σ−M
ffiffi
3

p − a2ð1 − jAjÞ
q

;

or

jAj ≤ 2 and

8<
:

2P2Σ
Σ−M

ffiffi
3

p þ a2A2

4
< 0; or

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2 − P2 −Q2 − a2

p
> Σ

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P2Σ

Σ−M
ffiffi
3

p þ a2A2

4

q
;

ðA20Þ

except perhaps when Eq. (A18) holds.
An identical argument applies to the zeros of B, with the zeros of B lying on a curve unless Eq. (A19) holds. Ignoring this

last case, the zeros of B need to be similarly hidden behind the outermost Killing horizon. Setting

B ≔ −
2JPQ

a2ððM − Σ=
ffiffiffi
3

p Þ2 − P2Þ ; ðA21Þ

one finds that this will be the case if and only if

jBj > 2 and

8<
:

2Q2Σ
ΣþM

ffiffi
3

p − a2ð1 − jBjÞ < 0; or

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2 − P2 −Q2 − a2

p
> − Σ

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q2Σ

ΣþM
ffiffi
3

p − a2ð1 − jBjÞ
q

;

or

jBj ≤ 2 and

8<
:

2Q2Σ
ΣþM

ffiffi
3

p þ a2B2

4
< 0; or

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2 − P2 −Q2 − a2

p
> − Σ

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q2Σ

ΣþM
ffiffi
3

p þ a2B2

4

q
;

ðA22Þ

except perhaps when Eq. (A19) holds.
While the above guarantees the lack of obvious singu-

larities in the d.o.c. fr > rþg, there could still be causality
violations there. Ideally, the d.o.c. should be globally
hyperbolic, a question which we have not attempted to
address. Barring global hyperbolicity, a decent d.o.c.
should at least admit a time function, and the function t
provides an obvious candidate. In order to study the issue
we note the identity

g00 ¼ 4J2½rþ E�2 sin2ðθÞ − ABΔ
AΔG

: ðA23Þ

A MATHEMATICA calculation shows that the numerator
factorizes through G, so that g00 extends smoothly through
the ergosphere. When P ¼ 0, one can verify that g00 is
negative on the d.o.c. For P ≠ 0 one can find open sets of
parameters which guarantee that g00 is strictly negative for
r > rþ when A and B have no zeros there. An example is
given by the condition

rþ ≥
EM þ q
M þ E

; ðA24Þ

which is sufficient but not necessary, where q ≔
P2 þQ2 − Σ2 þ a2. We hope to return to the question of
causality violations in the future.
In Fig. 1 we show the locations of the zeros of A and B

for some specific sets of parameters satisfying, or violating,
the conditions above.
Another potential source of singularities of the metric

(A1) could be the zeros of G. It turns out that they are
irrelevant, which can be seen as follows. The relevant
metric coefficient is gϕϕ, which reads

gϕϕ ¼ B
A

�
ω5

ϕ þ
C
B
ω0

ϕ

�
2

þ
ffiffiffiffi
A
B

r �
−

Gffiffiffiffiffiffiffi
AB

p ðω0
ϕÞ2 þ

Δ
ffiffiffiffiffiffiffi
AB

p

G
sin2ðθÞ

�
: ðA25Þ

Taking into account a G−1 factor in ω0
ϕ, it follows that gϕϕ

can be written as a fraction ð…Þ=ABG2. A MATHEMATICA

BARZEGAR, CHRUŚCIEL, and HÖRZINGER PHYSICAL REVIEW D 96, 124002 (2017)

124002-20



calculation shows that the denominator ð…Þ factorizes
through AG2, which shows indeed that the zeros of G are
innocuous for the problem at hand.
Let us write ds2ð4Þ as

ð4Þgabdxadxb. The factorization just
described works for gϕϕ but does not work for ð4Þgϕϕ. From
what has been said we see that the quotient metric
ð4Þgabdxadxb is always singular in the d.o.c., a fact which
seems to have been ignored, and unnoticed, in the literature
so far.

2. Regularity at the outer Killing horizon H+

The location of the outer Killing horizon Hþ of the
Killing field

k ¼ ∂t þΩϕ∂ϕ þ Ω4∂x4 ðA26Þ
is given by the larger root rþ of Δ, cf. Eq. (A16). The
condition that Hþ is a Killing horizon for k is that the
pullback of gμνkν to Hþ vanishes. This, together with

ΔjHþ ¼ 0; GjHþ ¼ −a2sin2ðθÞ; ðA27Þ
yields

Ωϕ ¼ −
1

ω0
ϕ

����
Hþ

¼ a2

2J
ðrþ þ EÞ−1;

Ω4 ¼ −
2ðAtω

0
ϕ − AϕÞ

ω0
ϕ

����
Hþ

¼ Qð−3Mrþ −
ffiffiffi
3

p
MΣþ 3P2 þ 3Q2 þ ffiffiffi

3
p

rΣ − 3Σ2Þ
ðEþ rþÞð3M2 þ 2

ffiffiffi
3

p
MΣ − 3Q2 þ Σ2Þ :

ðA28Þ

After the coordinate transformation

ϕ̄ ¼ ϕ −Ωϕdt; x̄4 ¼ x4 −Ω4dt; ðA29Þ

the metric (A1) becomes

g ¼ gS þ
dr2

Δ
þ ΔUdt2; ðA30Þ

where gS is a smooth (0, 2) tensor, with U ≔ gtt=Δ
extending smoothly across Δ ¼ 0. Introducing a new time
coordinate by

τ ¼ t − σ lnðr − rþÞ ⇒ dτ ¼ dt −
σ

r − rþ
dr; ðA31Þ

where σ is a constant to be determined, Eq. (A30) takes the
form

g ¼ gS þ ΔU
�
dτ þ σ

r − rþ
dr

�
2

þ dr2

Δ

¼ gS þ ΔUdτ2 þ 2ΔUσ

r − rþ
dτdrþ

�
1

Δ
þ ΔUσ2

ðr − rþÞ2
�
dr2

¼ gS þ ΔUdτ2 þ 2ΔUσ

r − rþ
dτdrþ ðr − rþÞ2 þ Δ2σ2U

Δðr − rþÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V

dr2:

ðA32Þ

In order to obtain a smooth metric in the domain of
outer communications the constant σ has to be chosen

–10 –5 5 10

–10

–5

5

10

inner Killing horizon

outer Killing horizon

ergosurface

zero set of A

zero set of B

–4 –2 2 4

– 4

–2

2

4

FIG. 1. Two sample plots for the location of the ergosurface (zeros of G), the outer and inner Killing horizons (zeros of Δ), and the

zeros of A, B. Left plot: M ¼ 8; a ¼ 33
10
; Q ¼ 8

5
;Σ ¼ − 23

5
; P ¼ − 1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4105960 ffiffi

3
p þ2770943Þ
12813

q
≈ −7.86, with zeros of A and B under both

horizons, consistently with Eq. (A20) and (A22). Right plot:M ¼ 1; a ¼ 1; Q ¼ 0;Σ ¼ ffiffiffi
6

p
; P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 2

ffiffiffi
2

pp
≈ 1.08; here, Eq. (A20) is

violated, while the zeros of B occur at negative r.
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so that the numerator of V has a triple zero at r ¼ rþ.
A MATHEMATICA computation gives an explicit formula
for the desired constant σ, which is too lengthy to be
explicitly presented here. This establishes the smooth
extendibility of the metric in suitable coordinates across
r ¼ rþ.

3. Asymptotic behavior

When P ¼ 0 the Rasheed metrics satisfy the KK-
asymptotic flatness conditions. This can be seen by
introducing manifestly asymptotically-flat coordinates
ðt; x; y; zÞ in the usual way. With some work one finds
that the metric takes the form

0
BBBBBBBBBB@

2M
r þ 2Σffiffi

3
p

r
− 1 0 0 0 2Q

r

0 2Mx2

r3 − 2Σffiffi
3

p
r
þ 1 2Mxy

r3
2Mxz
r3 0

0 2Mxy
r3

2My2

r3 − 2Σffiffi
3

p
r
þ 1 2Myz

r3 0

0 2Mxz
r3

2Myz
r3

2Mz2

r3 − 2Σffiffi
3

p
r
þ 1 0

2Q
r 0 0 0 4Σffiffi

3
p

r
þ 1

1
CCCCCCCCCCA

þOðr−2Þ: ðA33Þ

It turns out that when P ≠ 0, the Rasheed metrics do not
satisfy the KK-asymptotic flatness requirements anymore;
indeed, the phase space decomposes into sectors, labeled
by P ∈ R, in which the metrics g asymptote to the back-
ground metric

ḡ ≔ ðdx4 þ 2P cosðθÞdφÞ2 − dt2 þ dr2 þ r2dθ2

þ r2sin2ðθÞdφ2: ðA34Þ

The metrics (A1) and (A34) are singular at sinðθÞ ¼ 0.
This can be resolved by replacing x4 by x̄4 (respectively, by
~x4) on the following coordinate patches:



x̄4 ≔ x4 þ 2Pφ; θ ∈ ½0; πÞ;
~x4 ≔ x4 − 2Pφ; θ ∈ ð0; π�: ðA35Þ

Indeed, the one-form

dx4 þ 2P cosðθÞdφ ¼ dx̄4 þ 2PðcosðθÞ − 1Þdφ

¼ dx̄4 −
2P

rðrþ zÞ ðxdy − ydxÞ

is smooth for r > 0 on fθ ∈ ½0; πÞg. Similarly the one-form

dx4 þ 2P cosðθÞdφ ¼ d~x4 þ 2PðcosðθÞ þ 1Þdφ

¼ d~x4 þ 2P
rðr − zÞ ðxdy − ydxÞ

is smooth on fθ ∈ ð0; π�; r > 0g. The smoothness of both g
and ḡ in the d.o.c., under the constraints discussed above,
readily follows.
We note the relation

x̄4 ¼ ~x4 þ 4Pφ; ðA36Þ

which implies a smooth geometry with periodic coordi-
nates x̄4 and ~x4 if and only if

both x̄4 and ~x4 are periodic with period 8Pπ: ðA37Þ

From this perspective x4 is not a coordinate anymore;
instead, the basic coordinates are x̄4 for θ ∈ ½0; πÞ and ~x4

for θ ∈ ð0; π�, with dx4 (but not x4) well defined away from
the axes of rotation fsinðθÞ ¼ 0g as

dx4 ¼


dx̄4 − 2Pdφ; θ ∈ ½0; πÞ;
d~x4 þ 2Pdφ; θ ∈ ð0; π�: ðA38Þ

a. Curvature of the asymptotic background

We continue with a calculation of the curvature tensor of
the asymptotic background. It is convenient to work in the
coframe

Θ̄0̂ ¼ dt; Θ̄1̂ ¼ dx; Θ̄2̂ ¼ dy;

Θ̄3̂ ¼ dz; Θ̄4̂ ¼ dx4 þ 2P cosðθÞdφ; ðA39Þ

which is manifestly smooth after replacing dx4 as in
Eq. (A38). Using

dΘ̄4̂ ¼ −2P sinðθÞdθ ∧ dφ ¼ −2P
xi

r3
∂i⌋ðdx ∧ dy ∧ dzÞ

¼ −
P
r3
ϵ
∘
î ĵ k̂x

idxĵ ∧ dxk̂; ðA40Þ

where ϵ
∘
î ĵ k̂ ∈ f0;�1g denotes the usual epsilon symbol,

one finds the following nonvanishing connection
coefficients:
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ω̄4̂
î ¼

P
r3
ϵ
∘
î ĵ k̂x

ĵΘ̄k̂; ω̄î
ĵ ¼

P
r3
ϵ
∘
î ĵ k̂x

k̂Θ̄4̂; ðA41Þ

where xî ≡ xi. This leads to the curvature forms

Ω̄î
ĵ ¼

P
r3
ϵ
∘
î ĵ k̂

�
−

3

r2
xk̂xl̂ þ δk̂

l̂

�
Θ̄l̂ ∧ Θ̄4̂

−
2P2

r6
ϵ
∘
î m̂ðk̂ϵĵÞn̂ l̂x

m̂xn̂Θ̄k̂ ∧ Θ̄l̂;

Ω̄4̂
î ¼

P
r3
ϵ
∘
î ĵ k̂

�
−

3

r2
xĵxl̂ þ δĵ

l̂

�
Θ̄l̂ ∧ Θ̄k̂

þ P2

r6
ϵ
∘
k̂ m̂ ĵϵ

∘
k̂ î l̂x

m̂xl̂Θ̄ĵ ∧ Θ̄4̂; ðA42Þ

and hence the following nonvanishing curvature tensor
components:

R̄î
ĵ k̂ 4̂ ¼

P
r3
ϵ
∘
î ĵ l̂

�
−

3

r2
xl̂xk̂ þ δl̂

k̂

�
;

R̄4̂
î ĵ 4̂ ¼

P2

r6
ϵ
∘
k̂ m̂ ĵϵ

∘
k̂ î l̂x

m̂xl̂;

R̄î ĵ k̂ l̂ ¼ −
2P2

r6
ðϵ∘ î ĵ n̂ϵ

∘
k̂ l̂ m̂ þ ϵ

∘
î m̂½k̂ϵ

∘
l̂�ĵ n̂Þxm̂xn̂: ðA43Þ

The nonvanishing components of the Ricci tensor
read

R̄î ĵ ¼ −
2P2

r6
ϵ
∘
k̂ m̂ îϵ

∘
k̂ n̂ ĵx

m̂xn̂;

R̄4̂ 4̂ ¼ −
P2

r6
ϵ
∘
k̂ m̂ îϵ

∘
k̂ î l̂x

m̂xl̂: ðA44Þ

Subsequently, the Ricci scalar is R̄ ¼ −2P2=r4.

4. Global charges: A summary

For ease of future reference, we summarize the global
charges of the Rasheed metrics. Let pμ be the Hamiltonian
momentum of the level sets of t, and let pμ;ADM be the
ADM four-momentum of the space metric gijdxidxj.
Then,

pi;ADM ¼ pi ¼ 0; p0;ADM ¼ M −
Σffiffiffi
3

p ;

p0 ¼


2πM; P ¼ 0;

4πPM; P ≠ 0;
p4 ¼



2πQ; P ¼ 0;

8πPQ; P ≠ 0:

ðA45Þ

The Komar integrals associated with X ¼ ∂t are

1

8π
lim
R→∞

Z
SðRÞ

Z
S1
Xα;βdSαβ ¼


 2πðM þ Σffiffi
3

p Þ; P ¼ 0;

8πPðM þ Σffiffi
3

p Þ; P ≠ 0;

ðA46Þ

The Komar integrals associated with X ¼ ∂4 are

1

8π
lim
R→∞

Z
SðRÞ

Z
S1
Xα;βdSαβ ¼



4πQ; P ¼ 0;

16πPQ; P ≠ 0:
ðA47Þ

APPENDIX B: THE VECTOR FIELD Z

Let

Z ¼ r∂r:

We wish to calculate ∇̄μZν for the Kottler metrics and the
Rasheed metrics.
First, let ḡ be the (nþ 1)-dimensional anti–de Sitter

(Kottler) metric,

ḡ ¼ −Vdt2 þ V−1dr2 þ r2h̄; ðB1Þ

with

V ¼ λr2 þ κ; ðB2Þ

where κ ∈ f0;�1g is a constant,

λ ¼ −
2Λ

nðn − 1Þ ; ðB3Þ

and where h̄ is an (r-independent) Einstein metric on an
(n − 1)-dimensional compact manifold K, with scalar
curvature ðn − 1Þðn − 2Þκ. It holds that (cf., e.g., Ref. [48])

R̄ ¼ −nðnþ 1Þλ: ðB4Þ

Further,
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∇̄ðμZνÞdxμ ⊗ dxν ¼ 1

2
LZḡ ¼

1

2
ðZα∂αḡμν þ ∂μZαḡαν þ ∂νZαḡαμÞdxμdxν

¼ 1

2
ðrð∂rð−VÞdt2 þ ∂rðV−1Þdr2 þ ∂rðr2ÞdΩÞ þ 2V−1dr2Þ

¼ 1

2

�
r∂rV
V

ð−Vdt2Þ þ ð2 − rV−1∂rVÞV−1dr2 þ 2r2dΩ2

�
; ðB5Þ

∇̄½μZν�dxμ ⊗ dxν ¼ ∂ ½μZν�dxμ ⊗ dxν ¼ 0: ðB6Þ

Adding, we find

∇̄μZνdxμ ⊗ dxν ¼ ḡ mod ðδtμ; δrμÞ; ðB7Þ

which gives Eq. (4.17).
Next, for the Rasheed background metrics (A34) one

finds

LZḡ ¼ 2ðdr2 þ r2dΩ2Þ;
dðḡαβZαdxβÞ ¼ dðrdrÞ ¼ 0; ðB8Þ

and Eq. (4.17) without the oðr−γÞ term readily follows.

APPENDIX C: AN IDENTITY FOR THE
RIEMANN TENSOR

We write δαβγδ for δ½αγ δ
β�
δ ≡ 1

2
ðδαγ δβδ − δβγ δαδÞ, etc.

For completeness, we prove the following identity
satisfied by the Riemann tensor, which is valid in any
dimension, is clear in dimensions two and three, implies the
double-dual identity for the Weyl tensor in dimension four,
and is probably well known in higher dimensions as well:

δαβγδμνρσRρσ
γδ ¼

1

3!
ðRαβ

μν þ δαβμνR − 4δ½α½μR
β�
ν�Þ: ðC1Þ

The above holds for any tensor field satisfying

Rαβγδ ¼ −Rβαγδ ¼ Rβαδγ: ðC2Þ

To prove Eq. (C1) one can calculate as follows:

4!δαβγδμνρσRρσ
γδ ¼ 2½δαμðδβνδγρδδσ − δβρδ

γ
νδδσ þ δβσδ

γ
νδδρÞ − δανðδβμδγρδδσ − δβρδ

γ
μδδσ þ δβσδ

γ
μδδρÞ

þ δαρðδβμδγνδδσ − δβνδ
γ
μδδσ þ δβσδ

γ
μδδνÞ − δασðδβμδγνδδρ − δβνδ

γ
μδδρ þ δβρδ

γ
μδδνÞ�Rρσ

γδ

¼ 2ð2δαβμνδγρδδσ − 4δαγμνδ
βδ
ρσ þ 4δβγμνδαδρσ þ 2δαρδ

β
σδ

γ
μδδνÞRρσ

γδ

¼ 4ðδαβμνRγδ
γδ − 2δαγμνRβσ

γσ þ 2δβγμνRασ
γσ þ Rαβ

μνÞ
¼ 4ðRαβ

μν þ δαβμνRγδ
γδ − 4δ½α½μR

β�γ
ν�γÞ: ðC3Þ

If the sums are over all indices we obtain Eq. (C1). The
reader is warned, however, that in some of our calculations
the sums will be only over a subset of all possible indices,

in which case the last equation remains valid but the last
two terms in Eq. (C3) cannot be replaced by the Ricci
scalar and the Ricci tensor.
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5 The Brill and Pfister solution

Another family of interesting solutions with Kaluza-Klein asymptotics has been
constructed by Brill and Pfister. More precisely, in [3] the authors provide
time-symmetric initial data(with vanishing extrinsic curvature of the initial data
surface) in Kaluza-Klein theory with a negative lower limit for the ADM- as well for
the Hamiltonian mass, as defined in Section 4. It should be emphasised, that they
do not provide the full spacetime metric, but only the initial data, which satisfy the
general relativistic vacuum constraint equations(with vanishing cosmological
constant). But this is good enough to obtain an associated maximal globally
hyperbolic solution, by evolving the data using the vacuum Einstein equations.

The presentation in [3] does not provide convincing justification that the metrics
there are singularity-free. In particular it is not completely clear whether or not the
Riemann tensor has distributional components which could be responsible for the
negativity of mass. The aim of what follows is to fill this gap.

The four-dimensional initial data, which we refer to as the Brill-Pfister solution in
the following, are given by

d s2 =ψ4dσ2 +V 2(d x4)2 , (5.1)

where dσ2 = dr 2 + r 2dΩ2, with ψ, V being C 2-functions of r , and x4 is the fifth
coordinate of Kaluza-Klein theory, being 2πR-periodic, where R denotes the
compactification radius.
Asymptotic flatness is guaranteed if ψ and V take asymptotically the form

ψ= 1+ m

2r
+O

(
r−2) , V = 1+ µ

2r
+O

(
r−2) , (5.2)

with the obvious associated decay conditions on the derivatives. The
corresponding ADM- and Hamiltonian mass are discussed in section 5.2. The
inner boundary of a space with topology R2 ×S2 is called a bubble. The location of
the bubble is determined by the zeros of the Killing vector ∂

∂x4 and thus from (5.1)
by the zeros of V . We denote this location by r = B > 0. The five-dimensional
Einstein equations 5Gµν = 0, imply R = 0 on the Hamiltonian constraint, where
denotes R the four-dimensional scalar curvature. The momentum-constraint is
fulfilled automatically, due to time-symmetry. By introducing

W =Vψ , (5.3)

the four-dimensional scalar curvature of (5.1) in terms of W and ψ is given by

R =−2ψ−4
(
W −1∆W +3ψ−1∆ψ

)
, (5.4)

where ∆ denotes the flat-space Laplacian. The explicit solution, constructed by
Brill and Pfister, is given by

W =
{

D
r sin

(
k(r −B)

)
, B ≤ r ≤ A ,

1+ m
2r , r > A ,

ψ =
{

E
r cosh

(
kp

3
(r −C )

)
, B ≤ r ≤ A ,

1+ m
2r , r > A ,

(5.5)
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where k,C ,D,E ,m ∈R are real constants, constrained by (13)-(15) of [3], i.e.

2b = p
3coth

(
cp
3

)
, (5.6)

tan(a) = p
3coth

(
a + cp

3

)
, (5.7)

m

2B
= 1

b

(
tan(a)−a

)
−1, (5.8)

where a = k(A−B), b = kB and c = k(B −C ), obtained by the boundary conditions
at r = B and continuity conditions, imposed on V ,W and ψ. By inserting (5.5) in
(5.3), we obtain

V =


D
E

sin

(
k(r−B)

)
cosh

(
kp

3
(r−C )

) , B ≤ r ≤ A ,

1, r > A .

(5.9)

We point out a misprint in the original paper [3], i.e. in (5.5) the function cos is
printed instead of cosh. By computing the flat-space Laplacian for (5.5), we obtain

W −1∆W =
{−k2, B ≤ r ≤ A ,

0, r > A ,

ψ−1∆ψ =
{

k2

3 , B ≤ r ≤ A ,
0, r > A .

(5.10)

After this correction, we see that the scalar constraint equation (5.4) is indeed
solved by the Brill-Pfister solution.

5.1 Smoothness at r = B

In the following we show that the metric is not differentiable at r = B . The
expansions of (5.5) and (5.9) at r = B take the form

ψ4 = ψ0 +ψ1(r −B)+O((r −B)2) ,

V 2 = (r −B)2 (
α+β(r −B)

)+O((r −B)4) , (5.11)

where ψ0,ψ1,α,β ∈R. The insertion of (5.11) in (5.1) yields

d s2 =
(
ψ0 +ψ1(r −B)+O((r −B)2)

)
(dr 2 + r 2dΩ2)+ (r −B)2

(
α+β(r −B)+O((r −B)2)

)
(d x4)2

=
(
ψ0 +ψ1(r −B)+O((r −B)2)

)
dr 2 + (r −B)2

(
α+β(r −B)+O((r −B)2)

)
(d x4)2

+r 2
(
ψ0 +ψ1(r −B)+O((r −B)2)

)
dΩ2 . (5.12)

Differentiability at r = B would require the expansions of even functions to appear
in the variable r −B in the parentheses of (5.12), thus it follows immediately, that
the metric is not differentiable at r = B , unless perhaps a better coordinate system
can be found. To better investigate the behaviour of the curvature tensor as r tends
to B , we introduce the orthonormal co-frame

Θ1̂ =ψ2dr , Θ2̂ =ψ2r dθ , Θ3̂ =ψ2r sin(θ)dθ , Θ4̂ =V d x4 , (5.13)
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adapted to the metric, leading to the following non-vanishing connection
one-forms

ω1̂
2̂ = −2rψ′+ψ

ψ
dθ , ω1̂

3̂ =−2rψ′+ψ
ψ

sinθdφ ,

ω1̂
4̂ = −V ′

ψ2 d x4 , ω2̂
3̂ =−cosθdφ . (5.14)

The corresponding non-vanishing curvature-forms read as

Ω1̂
2̂ = −2

(
ψ

(
rψ′′+ψ′)− rψ′2)

rψ6 Θ1 ∧Θ2 ,

Ω1̂
3̂ = −2

(
ψ

(
rψ′′+ψ′)− rψ′2)

rψ6 Θ1 ∧Θ3 ,

Ω1̂
4̂ = 2V ′ψ′−ψV ′′

Vψ5 Θ1 ∧Θ4 ,

Ω2̂
3̂ = −4ψ′ (rψ′+ψ)

rψ6 Θ2 ∧Θ3 ,

Ω2̂
4̂ = −V ′ (2rψ′+ψ)

r Vψ5 Θ2 ∧Θ4 ,

Ω3̂
4̂ = −V ′ (2rψ′+ψ)

r Vψ5 Θ3 ∧Θ4 . (5.15)

From these curvature forms we can read off the relevant components of the
Riemann tensor, with potential critical behaviour where V vanishes, which are
given by

R4̂1̂4̂1̂ = 2V ′ψ′−ψV ′′

2Vψ5

=
2ψ′
ψ V ′−V ′′

2Vψ4 ,

R4̂2̂4̂2̂ = −V ′ (2rψ′+ψ)
2r Vψ5 ,

R4̂3̂4̂3̂ = −V ′ (2rψ′+ψ)
2r Vψ5 . (5.16)

From (5.16) we obtain the boundary conditions

V ′′+ V ′

r
= 0 at r = B ,

2ψ′

ψ
= −1

r
at r = B , (5.17)

necessary to avoid singularities, at r = B . By implementing those boundary
conditions in the coefficients of the series expansions for ψ and V , we obtain

ψ = ψ(B)

[
1− 2

B
(r −B)+ 1

2B 2 (r −B)2
]
+O((r −B)3) ,

V = V ′(B)

[
(r −B)− 1

2B
(r −B)2

]
+O((r −B)3) , (5.18)
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and in conclusion for their powers, appearing in the metric (5.1),

ψ4 = ψ(B)4
[

1− 2

B
(r −B)+ 3

2B 2 (r −B)2 − 1

2B
(r −B)3

]
+O((r −B)4) ,

V 2 = V ′(B)2
[

(r −B)2 − 1

B
(r −B)3

]
+O((r −B)4) . (5.19)

By introducing the coordinates ρ = r −B , φ= x4

λ , where λ ∈R\ {0}, chosen to a fixed
value later, we rewrite the metric in the form

d s2 = ψ4dρ2 + (ρ+B)2ψ4dΩ2 +V 2λ2dφ2

= ψ4dρ2 + (V 2λ2 −ψ4ρ2)dφ2 + (ρ+B)2ψ4dΩ2 +ψ4ρ2dφ2 . (5.20)

By ignoring and simplifying already smooth terms in (5.20) respectively, we obtain
the metric

d s2 = ψ4dρ2 + (V 2λ2 −ψ4ρ2)dφ2 + (ρ+B)2ψ4dΘ2 , (5.21)

conserving the potential critical behaviour of (5.20) at ρ = 0. By introducing polar
coordinates

x = ρ cos(φ) , y = ρ sin(φ) , (5.22)

we write (5.21) in the from

d s2 =ψ4 (
d x2 +d y2)+Φ(

xd y − yd x
)2 +ψ4 (

ρ+B
)2 dΘ2 , (5.23)

where

Φ=
λ2 V 2

ρ2 −ψ4

ρ2 . (5.24)

We require

lim
ρ→0

(
λ2 V 2

ρ2 −ψ4
)
= 0, (5.25)

i.e. that the numerator ofΦ is vanishing in this limit. (5.25) is solved by λ= ψ(B)2

V ′(B) .
We compute for this choice for λ the first-order expansions of the non-vanishing
components of the Riemann tensor of (5.23) at ρ = 0 with MATHEMATICA, which
are given by

Rx
xx y = −5sin(φ)cos(φ)

4B 3 ρ+O(ρ2) ,

Rx
y x y = 5

4B 2 + −6B 2 +5cos(2φ)+27

8B 3 ρ+O(ρ2) ,

Rx
Ax A = 3

2
+ 3

(
B 2 +1

)
(cos(2φ)+3)

8B
ρ+O(ρ2) ,

Rx
Ay A = 3

(
B 2 +1

)
sin(2φ)

8B
ρ+O(ρ2) ,
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R y
xx y = − 5

4B 2 + ρ
(
6B 2 +5cos(2φ)−27

)
8B 3 ρ+O(ρ2) ,

R y
y x y = 5ρ sin(2φ)

8B 3 +O(ρ2) ,

R y
Ax A = 3

(
B 2 +1

)
sin(2φ)

8B
ρ+O(ρ2) ,

R y
Ay A = 3

2
− 3

((
B 2 +1

)
(cos(2φ)−3)

)
8B

ρ+O(ρ2) ,

R A
xx A = − 3

2B 2 − 3ρ
((

B 2 −1
)

(cos(2φ)+3)
)

8B 3 ρ+O(ρ2) ,

R A
x y A = −3

(
B 2 −1

)
sin(2φ)

8B 3 ρ+O(ρ2) ,

R A
y x A = −3

(
B 2 −1

)
sin(2φ)

8B 3 ρ+O(ρ2) ,

R A
y y A = − 3

2B 2 + 3
(
B 2 −1

)
(cos(2φ)−3)

8B 3 ρ+O(ρ2) . (5.26)

Now, with the expressions above, some care has to be taken because of second
derivatives of ψ and W which could give a distributional contribution at r = B . In
order to address this problem, we introduce local Cartesian coordinates centred at
r = B :

(xi ) ≡ (x, y) := (ρ cosφ,ρ sinφ) = ((r −B)cosφ, (r −B)sinφ) .

For r close to B we have

ψ = E

B +ρ cosh
kp

3
(ρ+B −C ) ,

∂iψ =
E

(p
3k(B +ρ)sinh

(
k(B−C+ρ)p

3

)
−3cosh

(
k(B−C+ρ)p

3

))
3(B +ρ)2

xi

ρ
=O(1) , (5.27)

∂i∂ jψ =
E

(p
3k(B +ρ)sinh

(
k(B−C+ρ)p

3

)
−3cosh

(
k(B−C+ρ)p

3

))
3(B +ρ)2

ρ2δi
j −xi x j

ρ3

+
E

(
k2(B +ρ)2 +6

)
cosh

(
k(B−C+ρ)p

3

)
−2

p
3Ek(B +ρ)sinh

(
k(B−C+ρ)p

3

)
3(B +ρ)3

xi x j

ρ2

= O(ρ−1) . (5.28)

From the definition of the distributional derivative, given a smooth compactly
supported function f we have

〈∂iψ, f 〉 := −
∫
R2
ψ∂i f d 2µ=− lim

ε→0

∫
R2\D(ε)

ψ∂i f d 2µ

= − lim
ε→0

∫
R2\D(ε)

(∂i (ψ f )− f ∂iψ)d 2µ

= − lim
ε→0

∫
∂D(ε)

ψ f ni εdφ︸ ︷︷ ︸
=0

+
∫
R2\D(ε)

f ∂iψd 2µ ,
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and we see that the first distributional derivatives ofψ do not give any contribution
at the origin. One similarly finds

〈∂ j∂iψ, f 〉 := −〈∂iψ,∂ j f 〉
= −

∫
R2
∂ jψ∂i f d 2µ=− lim

ε→0

∫
R2\D(ε)

∂ jψ∂i f d 2µ

= − lim
ε→0

∫
R2\D(ε)

(∂i (∂ jψ f )− f ∂ j∂iψ)d 2µ

= − lim
ε→0

∫
∂D(ε)

∂ jψ f ni εdφ︸ ︷︷ ︸
=0

+
∫
R2

f ∂i∂ jψd 2µ ,

and there is no distributional contribution from second derivatives either.

5.2 The Hamiltonian and the ADM mass

Evaluating our formulae in Section 4 for the Hamiltonian mass m0 and the ADM
mass mADM for the Brill-Pfister initial data, under the decay assumptions (5.2),
gives

m0 = 2π(m +µ) , mADM = m . (5.29)

From (5.2) and (5.9) it follows that µ= 0. Therefore, we obtain

m0 = 2πm , mADM = m . (5.30)

By combining (5.6) and (5.8) we obtain

m

2B
=

2(tan(a)−a)
(p

3coth
(

ap
3

)
− tan(a)

)
p

3coth
(

ap
3

)
tan(a)−3

−1, (5.31)

which attains a negative maximum −0.2092 at a = π
3 . Together with B > 0 it follows

that m, and thus m0 and mADM , are negative.
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6 Conclusions

In the framework of this thesis we have investigated the Rasheed-Larsen black hole
solutions, i.e. we have proved their regularity at the outer Killing horizon, have
analysed and identified the singularities of the metrics and have derived
conditions, under which they are shielded by the outer Killing horizon.
Furthermore, we have excluded the existence of regular metrics without horizons
and have derived a criterion for stable causality in the domain of outer
communications. In our analysis of global quantities we have covered
asymptotically anti–de Sitter spacetimes, asymptotically flat spacetimes, as well as
Kaluza-Klein asymptotically flat spacetimes. We have shown that the Komar mass
equals the Arnowitt-Deser-Misner (ADM) mass in stationary asymptotically flat
spacetimes in all dimensions. It has been shown that the Hamiltonian mass does
not necessarily coincide with the ADM mass in Kaluza-Klein asymptotically flat
spacetimes. Furthermore, we have applied a Witten-type argument to derive
global inequalities between the Hamiltonian energy-momentum and the
Kaluza-Klein charges. We have applied our formulae to the five-dimensional
Rasheed metrics, from which we have computed the corresponding global charges.
Finally, by a comparison of them to those of the Larsen metrics, we have shown,
that those classes of metrics are isometric.
In our analysis of the four-dimensional initial data in Kaluza-Klein theory,
constructed by Brill and Pfister, we have pointed out and analysed, although the
corresponding initial data metric is not differentiable at the bubble, it is at least
twice weakly differentiable at this location, leading to a Riemann tensor without
distributional components which could be responsible for the negativity of the
ADM mass.

81





References

[1] Benjamin P. Abbott et al., Observation of Gravitational Waves from a Binary
Black Hole Merger, Phys. Rev. Lett. 116 (2016), 061102.

[2] Kazunori Akiyama, Katherine Bouman, and David Woody, First M87 Event
Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole,
Astrophysical Journal Letters 875 (2019).

[3] Dieter Brill and Herbert Pfister, States of negative total energy in Kaluza-Klein
theory, Physics Letters B 228 (1989), no. 3, 359 – 362.

[4] Gary Bunting and Abdul K. M. Masood-ul Alam, Nonexistence of multiple
black holes in asymptotically Euclidean static vacuum space-time, General
Relativity and Gravitation 19 (1987), 147–154.
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