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ABSTRACT

Kaluza-Klein theory constitutes an interesting extension of general relativity to five
spacetime dimensions, originally emerged from a historic attempt to unify the
known fundamental forces of nature at that time. The elegant feature of this theory
lies in the fact, that the involved dimensional reduction leads naturally to
electromagnetism coupled to four dimensional gravity without the need of the
introduction of a source term in the five dimensional Einstein equations. This
concept can also be extended to higher dimensions. Although not being a realistic
theory of nature, Kaluza-Klein theory gives interesting insights to advanced
theories, such as string theory, and provides a geometric link between higher- and
lower dimensional theories. Within this theory, black hole spacetimes exist. An
interesting class of black hole solutions in Kaluza-Klein theory has been derived
independently by Rasheed and Larsen, describing a family of axisymmetric,
rotating, dyonic (magnetically- and electrically charged) black holes.

We analyse the Rasheed-Larsen metrics in different limits of their parameter
family, prove regularity at the outer Killing horizon, identify and analyse the
singularities of the metrics and derive conditions, under which they are shielded
by the outer Killing horizon, exclude the existence of regular metrics without
horizons and derive a criterion for stable causality in the d.o.c. (domain of outer
communications).

In Kaluza-Klein theory, as in any other physical theory, the notion of total energy,
momentum and other global charges play a key role. Our analysis covers
asymptotically anti-de Sitter spacetimes, asymptotically flat spacetimes, as well as
Kaluza-Klein asymptotically flat spacetimes. We prove that the Komar mass equals
the Arnowitt-Deser-Misner (ADM) mass in stationary asymptotically flat
spacetimes in all dimensions, while this is no longer true with Kaluza-Klein
asymptotics. Furthermore, we show that the Hamiltonian mass does not
necessarily coincide with the ADM mass in Kaluza-Klein asymptotically flat
spacetimes. A Witten-type argument is applied to derive global inequalities
between the Hamiltonian energy-momentum and the Kaluza-Klein charges. Our
formulae are applied to the five-dimensional Rasheed metrics, from which the
corresponding global charges are computed. Furthermore, by a comparison of
them with those of the Larsen metrics, we show that these classes of metrics are
isometric.

We finish this thesis by a study of four-dimensional initial data with R? x S?
topology in Kaluza-Klein theory, constructed by Brill and Pfister. The resulting
spacetimes are particularly interesting because they have negative ADM mass.
Those four-dimensional initial data contain a so-called bubble, causing this
topology. We show that the initial data metric is non differentiable at the bubble,
which leads to the question, how problematic the resulting singularity is. We show
that the initial four-dimensional metric is at least twice weakly differentiable at this
location, leading to a Riemann tensor without distributional components which
could be responsible for the negativity of the ADM mass.
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ZUSAMMENFASSUNG

Die Kaluza-Klein-Theorie stellt eine interessante Erweiterung der allgemeinen
Relativitdtstheorie auf fiinf Raumzeitdimensionen dar, urpriinglich
hervorgegangen aus einem historischen Versuch, die damals bekannten
Fundamentalkréfte der Natur zu vereinheitlichen. Die Eleganz dieser Theorie liegt
darin, dass die damit verbundene Dimensionsreduzierung auf natiirliche Weise zu
Elektromagnetismus gekoppelt mit vierdimensionaler Gravitation fiihrt, ohne dass
es notwendig ist, einen entsprechenden Quellterm in den zugehdérigen
Einsteingleichungen einzufiihren. Dieses Konzept kann auf hohere Dimensionen
erweitert werden. Obwohl sie keine realistische Beschreibung der Natur darstellt,
so ermoglicht die Kaluza-Klein-Theorie interessante Einsichten in fortgeschrittene
Theorien, wie der String-Theorie, und stellt eine geometrische Verbindung
zwischen hoher- und niedrigerdimensionalen Theorien dar. Innerhalb dieser
Theorie existierten Raumzeiten, die schwarze Locher beschreiben. Fine
interessante Klasse von schwarzen Léchern, innerhalb der Kaluza-Klein-Theorie,
wurde unabhéngig von Rasheed und Larsen gefunden, welche eine Familie
axisymmetrischer, rotierender, dynonischer schwarzer Lécher beschreiben. Wir
analysieren die von Rasheed gefundenen Losungen in verschiedenen Grenzwerten
ihrer Parameterfamilie, beweisen ihre Regularitédt an ihrem duf3eren
Killinghorizont, identifizieren und analysieren Singularitdten der Metrik und leiten
Bedingungen her, unter denen diese durch den dulleren Killinghorizont
abgeschirmt werden, schliefen die Existenz von reguldren Metriken ohne
Killinghorizonte aus und leiten ein Kriterium fiir stabile Kausalitédt in der d.o.c. her.
Im Rahmen der Kaluza-Klein-Theorie, wie in jeder anderen physikalischen
Theorie, nehmen die Begriffe Gesamtenergie, Impuls und andere globalen
Ladungen eine Schliisselrolle ein. In unserer Analyse betrachten wir asymptotisch
Anti-de Sitter-, asymptotisch flache- und Kaluza-Klein asymptotisch flache
Raumzeiten. Wir beweisen, dass die Komarmasse und die ADM Masse in
stationdren, asymptotisch flachen Raumzeiten in beliebigen Dimensionen
dquivalent sind. Weiters zeigen wir, dass die Hamiltonmasse nicht
notwendigerweise dquivalent zur ADM Masse in Kaluza-Klein asymptotisch
flachen Raumzeiten ist. Ein Argument nach Witten wird angewandt, um globale
Ungleichungen zwischen dem Hamilton'schen Energie-Impuls und den
Kaluza-Klein Ladungen herzuleiten. Wir wenden unsere Formeln auf die
fiinfdimensionale Rasheed-Metrik an, aus denen wir die entsprechenden globalen
Ladungen berechnen. Durch einen Vergleich mit jenen der Larsen-Losungen
zeigen wird, dass die beiden Klassen von Metriken dquivalent sind. Zuletzt
betrachten wir vierdimensionale Anfangsdaten mit R? x S? Topologie, konstruiert
durch Brill und Pfister, in Kaluza-Klein-Theorie, welche speziell wegen ihrer
negativen ADM Masse interessant sind. Diese vierdimensionalen Anfangsdaten
enthalten eine sogenannte Bubble, die zu dieser Topologie fiihrt. In einer
sorgféltigen Analyse zeigen wir, dass die Metrik der Anfangsdaten nicht
differenzierbar auf der Bubble ist, was uns zur Frage fiihrt, wie problematisch diese
Singularitét ist. Wir zeigen, dass die Metrik der Anfangsdaten dort mindestens
zweimal schwach differenzierbar ist.
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1 Introduction

1.1 General relativity

General relativity is the geometric theory of gravitation, formulated by A. Einstein
in 1915 [6]. In contrast to the Newtonian theory, where gravity is directly described
as a force, it manifests in Einstein’s theory as the consequence of the curvature of
the spacetime, caused by the presence of matter. Freely falling test particles travel
along geodesics through the curved spacetime, i.e. the shortest possible curve
between two points of the space. This interplay is summarized in A. Wheeler’s
famous quote: "Space tells matter how to move, matter tells space how to curve.".
From the mathematical point of view, general relativity is formulated by the
so-called Einstein equations

1 8nG
R/,W_Eg/,w: TTyv» (1.1)

where T, denotes the energy-momentum tensor, describing the distribution of
energy and momentum in the spacetime, R,y is the Ricci tensor and R the Ricci
scalar, which encode the curvature of the spacetime, defined over the metric
tensor gy, which prescribes, how distances are measured locally in the spacetime.
In four spacetime dimensions, when fully written out, the Einstein equations
constitute a system of 10 nonlinear PDEs for the components of the metric tensor.
General relativity predicts and describes effects, that cannot be understood by
means of the Newtonian theory of gravity, among them the advance of the
perihelion of Mercury, the deflection of light in a gravitational field and the
emergence of gravitational waves, travelling through the spacetime.

The first class of metrics, providing a solution to the Einstein equations, was found
by K. Schwarzschild in 1915, describing a spherically symmetric, asymptotically
flat black hole in four dimensions. However, this metric and it’s physical
interpretation have been misunderstood for a long time. The prediction of general
relativity, that light is deflected in a gravitational field, was confirmed, due to a
observation by Eddington, by a shift of the observed positions of the stars during a
solar ellipse in 1919. This confirmation has brought great interest to the field
general relativity, as well as in the scientific community and in the public. After
that phase, the interest in general relativity has been dormant for quite a long time,
since the Newtonian theory provides an excellent approximation in the case of
weak gravitational fields and general relativity had the reputation of being
complicated and hard to understand. In the 30’s J. Oppenheimer and H.

Snyder [16] have been able to derive mathematically, based on the previous work
of S. Chandrasekhar on neutron stars, that the ultimate fate of a dying star, running
out of nuclear fuel, is a total gravitational collapse, resulting in a so-called black
hole, provided the mass of the star is exceeding a certain limit. Later, in the 60’s, the
experimental discovery of pulsars and other compact X-ray sources with strong
gravitational fields, requiring general relativity for an adequate description, and on
the theoretical side the groundbreaking work of S. Hawking and R. Penrose and
others on black holes, singularities and other important aspects of mathematical
relativity caused a revival of Einstein’s theory. Another source of interest emerged
with theories, attempting to unifying gravity with the other three fundamental



forces of nature(electromagnetism, the weak- and the strong force), such as
quantum gravity and string theory. The celebrated announcement of the detection
of gravitational waves in 2016 [1] has put general relativity once more into the
public spotlight, as a further impressive confirmation of it’s predictions. Today,
over 100 years after Einstein’s fundamental work, general relativity is well
established, explaining, or at least describing, every aspect of gravitational physics
ever observed.

1.2 Black holes

Stars gain their energy from the process of nuclear fission. It theory, if the star is
running out of nuclear fuel, a black hole forms under a total gravitational collapse,
provided the mass M of the star is large enough, i.e. M Z, 3 x My, where Mo
denotes the mass of our sun. The strongest evidence, that black holes do indeed
exist as physical objects, has been provided recently by the Event Horizon
Telescope(EHT)-cooperation [2]. Akiyama et al. have been able to obtain an image
of plasma Figure[1.1} orbiting M87*, depicting the object itself therefore as a
shadow. Further strong candidates for black holes are Cygnus X-1, the galactic
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Figure 1.1: EHT image of M87* from observations on 2017 April 11

nuclei of NGC 4258 and the center of our own Milky Way.

Black hole spacetimes are predicted from the theory general relativity. As the main
property of those spacetimes, an inner region, from which no matter or light can
escape, called the black hole region, is separated from an outer region, called the
domain of other communications(d.o.c.), through a so-called event horizon. The
first black hole solution that has been discovered, as already mentioned, is the
Schwarzschild metric. One year after, H. Reissner [18], G. Nordstrom and others
extended this result to the electrovacuum case, nowadays called the
Reissner-Nordstrom metric. In 1963 R. Kerr [12] derived a class of metrics,
describing rotating black holes, later extended by Newman to the electrically
charged case, finally describing black holes with mass, angular momentum and
charge, called the Kerr-Newman family.



1.2.1 The four-dimensional case

In four dimensions, in the electrovacuum case, the picture, regarding the
classification of asymptotically flat holes, is almost complete. The Hawking
topology theorem asserts, that in four-dimensional black hole spacetimes the
topology of the cross-sections of the event horizon is necessarily S?. W. Israel [10]
and later G. Bunting and A. Masood-ul Alam [4], under less restrictive
requirements, have shown, that any four-dimensional static, asymptotically flat
black hole is isometric to the Reissner-Nordstrom/Schwarzschild metrics. Later, in
2010, P. Chrusciel and G. Galloway [5] have been able to remove the analyticity
requirement of the metric, that was implicitly assumed in the previous proofs. It is
widely believed that all stationary, asymptotically flat, sufficiently well-behaved,
electrovacuum, four-dimensional black holes are isometric to the Kerr-Newman
family. It should, however, be mentioned that the existing theorems still contain
unsatisfactory assumptions on analyticity of the metric and connectedness of the
event horizon.

1.2.2 The higher-dimensional case

In higher dimensions less is known regarding the topology and the uniqueness of
black holes. After the discovery of the so-called black ring solutions, with S x S?
horizon topology, by R. Emparan and H. Reall [7], the question on the restrictions
on the topology of higher-dimensional black holes came up once more. This issue
has been addressed by G. Galloway and R. Schoen [8], giving a generalization of
Hawking’s theorem to higher dimensions. In this work the authors show, that the
cross-sections of the event horizon are of positive Yamabe type, i.e. admit metrics
of positive scalar curvature. This is a much less restrictive statement in comparison
to the four-dimensional case, and a full classification of the topology of
higher-dimensional black holes is still open. Regarding the uniqueness of
higher-dimensional black holes the territory is more or less open. In higher
dimensions the no-hair theorem doesn’t even hold in vacuum case, as in this
setting, apart from the already mentioned black ring solutions, also the
Myers-Perry [15] family additionally exists in five dimensions for example, for
details see [9].

1.3 Kaluza-Klein theory

The Kaluza-Klein theory arose for a historic attempt by T. Kaluza [11] and O.

Klein [13] to unify electromagnetism and gravity, starting from five-dimensional
vacuum Einstein gravity, leading to a four-dimensional theory with a Maxwell- and
a scalar field, called the dilaton field, therefore named Einstein-Maxwell-Dilaton
theory, after a so-called dimensional reduction/compactification of the
extradimension. This concept can also be extended to higher dimensions. Beside
the relevance of Einstein-Maxwell-Dilaton theory in high energy physics,
Kaluza-Klein theory gives further insights into the geometry of spacetimes,
providing a geometric link between higher- and lower dimensional theories.
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1.4 Kaluza-Klein black holes

Within Kaluza-Klein theory also black hole spacetimes exist, so-called
Kaluza-Klein black holes. An interesting class of black hole solutions of
five-dimensional Kaluza-Klein theory, being in the scope of this thesis, has been
derived independently by D. Rasheed [17] and E Larsen [14], via so-called solution
generating methods, describing a family of axisymmetric, rotating,
dyonic(magnetically- and electrically charged) black holes.

1.5 Energyin general relativity

The notion of total energy, momentum and other global charges play a key role in
any physical theory. In general, the definition of the these quantities depends on
the asymptotics of the corresponding spacetime. The most important applications
are the no-hair theorem, i.e. that a black hole is fully determined via it’s mass,
charge and angular momentum, the positive energy theorem, and within the
measurement of the energy transported by gravitational waves through the
spacetime.

1.6 Outline

This thesis consists of three parts, of which we give an outline in the following:
¢ Rasheed-Larsen black holes

We analyse the metrics presented by Rasheed and by Larsen in different
limits of their parameter family, prove regularity at the outer Killing horizon,
analyse and identify the singularities of the metrics and derive conditions,
under which they are shielded by the outer Killing horizon, exclude the
existence of regular metrics without horizons and derive a criterion for stable
causality in the domain of outer communications. Furthermore, we analyse
the asymptotic behaviour of the Rasheed-Larsen metrics and determine the
corresponding global charges with our formulae developed in Section 4}
Finally, we derive an isometric transformation, proving the equivalence of
the metrics written by Rasheed and by Larsen. The fact that these metrics are
isometric appears to be well known but, somewhat surprisingly, we have not
been able to find this transformation in the literature.

We list here some questions which remain to be answered in order to get a
more complete understanding of the geometry of the Rasheed solutions:

Xiv



Unanswered Questions

Issue

Do regular metrics without horizons exist in the
|ef/| > 2 or |98| > 2 case?

The corresponding system of inequalities
(2.62), (2.63) and (2.65) appears too hard to
analyse in this case.

Do regular solutions with a double zero of B in
the a #0, P # 0 case in the d.o.c. exist?

It seems hard to show under which condi-
tions the remainders of the polynomial divi-
sions are zero, which is necessary to an-
swer this question.

Is stable causality also guaranteed in the P # 0
case?

This leads to the question if all zeros of the
fourth-order polynomial are located be-
low the location r of the outer Killing horizon.
Due to the complexity of this problem in the
general setting, it appears hard to derive a cor-
responding criterion. In the small |P| case we
have been able to answer this question posi-
tively for the equivalent Larsen metrics.

* Energy in higher-dimensional spacetimes

We derive new expressions for the total Hamiltonian mass and the Komar
mass in higher dimensions, in terms of the Riemann tensor, in
asymptotically flat, Kaluza-Klein asymptotically flat, and asymptotically

anti—de Sitter (AdS) spacetimes.

Furthermore, we show that if the space-time is asymptotically flat, the
Komar mass coincides with the ADM mass in all dimensions, generalizing
the four-dimensional result of Beig. However, the quantities mentioned
above differ from each other in the non-asymptotically flat setting in general.
In line with our analysis, we derive formulae for the mass and momentum
associated with asymptotically Anti-de Sitter spacetimes, generalising results
by Ashtekar and Das, with stronger conditions required, in comparison to
ours. Here it not only shows, that the ADM and Komar mass differ from each
other in non-asymptotically flat space-times in general, but also from the
Hamiltonian mass. Furthermore, a Witten-type argument is used to derive
global inequalities between the Hamiltonian energy-momentum and the
Kaluza-Klein charges. Finally, as a non-trivial example at hand to test our
formulae, we apply our results to the metrics discovered by Rasheed,
describing rotating, dyonic black holes in Kaluza-Klein theory.




We attach the following paper, the results of which are an integral part of this
thesis:

”Energy in higher-dimensional spacetimes”,

Hamed Barzegar, Piotr T. Chrusciel, and Michael Horzinger
published in PHYSICAL REVIEW D 96, 124002 (2017),
arXiv: 1708.03122

Abstract: We derive expressions for the total Hamiltonian energy of
gravitating systems in higher-dimensional theories in terms of the Riemann
tensor, allowing a cosmological constant A € R. Our analysis covers
asymptotically anti-de Sitter spacetimes, asymptotically flat spacetimes, as
well as Kaluza-Klein asymptotically flat spacetimes. We show that the Komar
mass equals the Arnowitt-Deser-Misner (ADM) mass in stationary
asymptotically flat spacetimes in all dimensions, generalizing the
four-dimensional result of Beig, and that this is no longer true with
Kaluza-Klein asymptotics.We show that the Hamiltonian mass does not
necessarily coincide with the ADM mass in Kaluza-Klein asymptotically flat
spacetimes, and that the Witten positivity argument provides a lower bound
for the Hamiltonian mass and not for the ADM mass in terms of the electric
charge. We illustrate our results on the five-dimensional Rasheed metrics,
which we study in some detail, pointing out restrictions that arise from the
requirement of regularity, which have gone seemingly unnoticed so far in the
literature.

The Brill-Pfister initial data

Brill and Pfister [3] have constructed initial data with R? x S? topology in
Kaluza-Klein theory, which are particularly interesting because they have
negative ADM mass. Those four-dimensional initial data contain a so-called
bubble, causing this topology. A careful analysis shows, that the initial data
metric is non differentiable at the bubble, arising the question how
problematic the resulting singularity is. We show that the initial
four-dimensional metric is at least twice weakly differentiable at this
location, leading to a non-singular Riemann tensor. This fills a gap in the
original paper, excluding the possibility that the negativity of the total energy
could be caused by distributional negative energy density. We apply our
formulae of Section[4]to this initial data metric, obtaining a negative ADM-
and Hamiltonian mass as a upper bound for the energy, associated with this
class of initial data, in accordance with the work of Brill and Pfister.
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2 The Rasheed solutions

The Rasheed-Larsen metrics are particularly noteworthy by providing an example
of five dimensional solutions of vacuum Einstein equations with a non-product
structure in the Kaluza-Klein directions. They have been discovered by

Rasheed [17] and, independently by Larsen [14]. We will use the name “Rasheed
metric” for the Rasheed-Larsen metric written in the original coordinates used by
Rasheed, and “Larsen metric” when the coordinates in [14] are used.

The line element of the metrics in [17] is given by
B 2 A
dsg, = Z(dx4+2Audx“) +\/Eds(24), 2.1)

where we assume that

M2+32-P2-Q2#0, (M+2/V3)°-Q?#0, (M-2/v3)’-P?#0,
2. |(M+21v3)"-Q?| | (M-21v3)'- P2

Mz % #0, VTSP >0, 2.2)
and where
Ag 2 VAB AVAB
dspy, =~ (dt+a®pdp) +Tdr2+\/ABd02+—esm29dgb2, (2.3)
with
2 2Py 2JP 0
A = (T—Z/\/g) -——— +a*cos*0 + / Qcoz ,
-MV3 (M+2/V3)" - Q2
2 2Q°% 2JP 0
B = (r+2/\/§) o> +a®cos?6 — J Qcoz ,
T+MvV3 (M—-2/v3)" - p?
Ng = r?—2Mr+P?+Q*-3?+a’cos’,
A = rP-2Mr+P+Q*-3*+d*,
2]sin?0
a)o(p = ]SL(F+E),
Ag
o= a’F?, (2.4)

whereas E is given by

(M?+32-P?- Q%) (M+2/V3)

E = -M+ . : (2.5)
(M+2/v3)" - Q2
The Maxwell field in (2.1) is given by
C C
2Adx = Zdt+ (a)5¢, + E“’O“") do, (2.6)
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where

2PJcos (M +2/V3
¢ = 20(r-z/v3- Jeos( - ) @7
(M-2/v3)"—Pp?
W, = 2 (2.8)
¢ - Ag ’ .
and
2QJsin®0 [r (M -2/v3)+ MZ/V3+2*-P?-Q?
H=2PAcosf — Q7 [ ( \/_) > v3 Q] 2.9
|(M+21v3)* - Q2]
In addition, the parameters (M, %, B, Q) have to fulfil the constraint
2 p? 2%
Q , (2.10)

+ =—
>+MvV3 Z-Mv3 3

otherwise the metric does not satisfy the five-dimensional vacuum field equations.
The inverse metric of (2.1) reads

g =

A B 40g(Ap— A%p)? 1

— - —A§+ AT ks (6x4)2

B Ay AA sin%0

B Ag®y(Ap— A;®y) 1
A+ 00 ¢(Ap — A g

Ag AA sin?0
A Ng(Ap— Arwp) 1
AA sin?6

+4

) 0,04

0p0t + 81", 2.11)

where

B +(w°¢)2A9 1
AV AN sin®6

8 = -

A 1
)(at)z + Z(a,)z + Z(ae)z

Ae 1 2 Agﬂ)o(p
+— ) —2———0,0yp.
AA sin? 6 ¢ AAsin?6 i

(2.12)

We have verified with SAGE, that the metric fulfils the five-dimensional vacuum
field equations in the P = 0 case, whereas in the P # 0 case, due to the complexity
of the metric, we have have only been able to obtain a corresponding verification
for a sample of parameters, fulfilling (2.10), with MATHEMATICA.



2.1 The“Kerr” case (Z=Q=P=0)
IfwesetZ=Q=P=0in (2.4)-(2.2), we obtain for

A vV AB AV AB
ds?, = ——2— (dt + 0’ pd¢)’ + = dr® + VABAO? + —"sin’0d¢?, (2.13)
VvV AB Ag
where
A = r2+a200520,
B = r2+a2c0520,
0 2Jsin%60
w = —r,
Ag
A = r’-2Mr+a?, (2.14)
with
Ng = r*—2Mr+a®cos’0,
J] = Ma. (2.15)
By introducing
2Mr
o= r’+ a260320, 7= , (2.16)
[y
we obtain
A=B=p, Ag=p-2Mr. 2.17)

With this conventions we obtain for the terms, appearing in the metric (2.13),

AVAB _ Ap A A 218
o Cp-2Mr -7’ '
A@ P 2Mr o 0
VAB = p, (2.19)
vV AB
— g, (2.20)
Ag  p-2Mr _ 1 B 1 2.21)
VAB p o 1-2L -7 '
0 2Mrasin®6
wey = ————
Ag
3 2Marsin®0
B p—2Mr
—Zﬂ/é“rsinzer 7sin20
= 1_2Mar = 1-7 (2.22)
o

The insertion of (2.18)-(2.22) in (2.13) yields

aZsinzed(p 2+ 0
1-Z

dspy=-(1-2)|dt+ dr®+pdf* +

L .2 2
A 1_Zsm 0d¢=. (2.23)



To show that this metric coincides with the standard Kerr metric in
Boyer-Lindquist coordinates, we expand (2.23) and insert (2.16)

A 0 A
sy, = —(l—Z)(dt %mp) +Parr i paot+ —— sin”0dg’
2
7z 0 Zsin%0
- _a-zfar +2&M¢+(&) d¢2) P pde?
1-7 -7 A

A
7 SiIl2 Gd(,bz

(2.24)

aZsin?0 A
= —(1—Z)dt2—za2sin29dtd¢—%a&p +pdr +pdb® + T sin 20d¢p?
Asin?0 - (aZsin?6
= (-1+2)dt*-2aZsin*0dtdp + 1(2 )d¢2+§dr2+pd92
2M 2M Asin20 - (aZsin26)°
- (—1 r)dt 24" sin29dtdg + ( )d¢2
1Y 1Y 1-Z
Party pae?.
A
In the next step we write the ¢¢-component of in the form
Asin26 — (aZsin26)° 5 A—a’Z?sin*0
= sin“0——
1-7 1-7
_ 26020 — 42 72 cin?
_ sinze(p 2Mr + a“sin“0) — a” Z-sin” 0
1-7
_ Sinzgp—ZMr+azsin29(1—Zz)
1-Z7
—-2Mr  a*sin®0(1 - Z*
_ sze(p r @sin o( ))
1-2) 1-Z7
—-2M
= sinze(p—ZMr+azsin20(1+Z))
(-2
= sin?6(p+a’sin*0(1 + 2))
= sin?6(p +a’sin®*6 + a*sin®0 2)
) 2, 2 2. 20 2Mr
= sin“0|(r“+a°)+a“sin“0——|. (2.25)
o

Finally, by the insertion of (2.25) in (2.24), we obtain

2Mr 2Mr
—1+—)dt2—2a
p P

2 _
ds(4) =

2M
sin0dtd¢ +sin® 6 ((r2 +a’)+ azsinZBTr) dp? + %dr2 +pdb?

2M 2M 2M
= —df*+ Trdtz —ZaTr sin®0dtd¢ + azTrsin49d¢2 +sin?0(r? + a®)d¢* + %dr2 +pdb?

2M 2M 2M
= —df*+ Trdt2 —ZaTr sin0dtde + azTrSin49d(p2 +sin?0(r® + a®)d¢® + %dr2 +pdb?

2Mr

= —di?+ = (di-asin®0d¢)’ +sin®0(r2 + a®)dg? +pdr +pd6?,

where the last line represents the standard Kerr metric in Boyer-Lindquist
coordinates. (2.6)-(2.9) with P =0and Q = 0imply A; =0, Ay = 0. Thus in the

4
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> =0, P=0, Q=0 case we obtain from (2.1), together with (2.26), for the
corresponding five-dimensional line element

oM
dsty = —di?+=— (dt-asin20dp)’
)
+sin20(r2 + a®)d? + %drz + pdO% + (dxhy?. 2.27)

2.2 The a =0 case

In the a = 0 case (2.4) reduces to

2 2p?y 2 2Q°%
A = (r—zn@) -, B:(r+2/\/§) I
I-MV3 T+MV3
A = Ng=r*-2Mr+P*+Q*-3*, =0, (2.28)

The Maxwell field is then given by
C
2Apdxt = —dt+ W’ pdp, (2.29)
where now and take the form
C = 2Q(r-x/V3], w’y=2Pcoso. (2.30)

In addition the parameters (M, Z, P, Q) have to fulfil (2.10), i.e.
Q? p? 23

+ =—. 2.31
T+MyV3 X-My3 3 @30
Inserting -(2.30) in yields
4 2
18P+_1+A
2 (z-vam) (vaz-sr)® 2
ds© = -
(H;)z_&
V3 V3M+X
2P’y T 2
e U PR SOV 1 P
A V3M -3 V3
2 o2 )7 2@
4P<cos (9)((r+7§) \/§M+Z) '2 o p2y 5 \2 ,
+ - 5 +sin (9)(—+(r——) ) d¢
2Py +(r—£) V3M -2 V3
V3M-3 V3
)2 Qs b3
r+-=| - 8PQcos(0) |r— =
o = SR [ PO
2p2% +(r—£) 2p2% +(r—£)
V3M-X V3 V3M-X V3
)2 20
af-z) el -s)
Sdtdx* + > dpdx*. (2.32)
2P2y +(r—£) 2P2y +( _;)
V3M-X V3 V3M-X V3

All results of the geometric analysis of the generic case apply directly to the a =0
case. In this special case it holds as well, that the d.o.c. is non-singular if and only if
the zeros of A and B are located below the outer Killing horizon, cf. Lemma It
also follows directly from Lemmal2.6|that is stably causal.



2.3 The metricin the M — +7 limit

In the M- +7 limit the line element (2 i becomes singular. This arises from
M+ = f expressions, appearing in the denominators of terms of the metric

components, in particular in A and B, given by (2.4). We parametrize either P? by
the curve

>
P?=2 (M— —) , (2.33)
V3
or Q? by the curve
>
2= M+—), (2.34)
< 3

where A is the affine parameter. Under those parametrizations the expressions,
leading to a singularity in the M — \/% or M — —% limit respectively, in the second
term of A or B are cancelled out. By inserting F and J, defined by (2.2) and (2.4), in

(2.4), (2.5), (2.7) and (2.9), we obtain the terms

2
z 2

5 \2 2 M-%] —P

A = (r——) —£a2c0s2912aPQcos9 ( ¢§)
V3] Z-MvV3 (M2+22—P2—Q2)((M+—) QZ)
T\ 20% (M+£)2‘Q2

B = (r+—) ~-—=" +a*cos’0 F2aPQcosf Ve 2
V3 T+MV3 (M2+22—P2—Q2)((M—£ -

V3

((M+— —QZ) (p+

>
C = 2Q(r——|F2aPcosb
Q( \/§)

2 2 _ _A _
(M2 +3 (( = )
> >
H = 2PAcosfF2asin’0 r(M——)+M—+22
B MA -

(e- %) -]

(M2 +32 - p2—Q2) ((M+ —) QZ)

Q

[(M+ QZHM— PZ]

F = MZ+352—pP2_ (2 ’
i _M+(M2+22—P2—Q2)(M+%)
TR

which are crucial for the analysis of the metric in the limits outlined above.



M-z

2 _
2.3.1 TheP )L( =)

) T — V/3M case

Under the parametrization P2 = A (M - 75) 2.35) takes the form
A = (r—£)2+%+a cos?0,
v3) V3
2
+2a4/ A M—E)QCOSQ (M_%) —A(M_%)
PR a0 -3~
B = r+%2—zi?:§/§+azcoszﬁ
o o1+ 5] -
F2ay/ A M—E)QCOSQ v3 5
EE beereaf- ) ) (v ) -4 - 5)
= (r+£3)2—zi?:§/§+a200529,
F2aQcosl ((M+‘%)2_Q2)A(M_7§)
(22 -2 - 5] - ) (v 5) -2 (- )
= (r+%)2—zi?:i/§+azcos29
2
F2aQcosb ((M+%) _QZ) )
(e~ 3) - (=3
M Az_QZ M AZ
C = 2Q(r—%)+2a A(M—%)cos@ (( +\/§) ( +\/§2
V e | e )
5y [+ ) - (m+ 5) 2 (m- )
= 2Q(r—ﬁ)+2acose - z ) 2 z
\(M Tz A(M‘ﬁ)‘Q)((M‘%:) _A(M_%))
BRI B 2 e
N T TR [[EA)
H = 2 ;L(M—%)Acosenasmze r(M—%)+M£+22—A(M—%)—Q2 x




(v-3) -2(-2))
?)

(M2+32-2(M-Z)-Q ((M+

[T )

S
——
\S]
|
e
N
~———

F* =
2 v2_ _Z\_p2 ’
M2+% /1( \/g) Q
M?+32-A(M-Z2|-Q%|(M+Z
IO e L2
2\ " _Nn2
(M+ %) -@
In the limit X — v/3M (2.36) gives
lim A = (r—M)2+2/1M+a200529,
>—v3M
4M2 - Q2
im B = (r+M)2—Q2+azcos‘20$2anosH —2—Q2
s—V3M 4M=-Q
= (r+M)*-Q?+a*cos’0F2iaQcosb,
AM?(4M? - Q?
lim C = 2Q(r—M)¢2acosH\/—%
I—v3M AM=-Q
= 2Q(r—M)F4iaMcos0,
Iim H = 0,
>—V3M
lim F> = o0,
>—V3M
, (4M? - Q%) 2M
lim E = —M+ﬁ: (2.37)
2—V3M 4M=-Q
Furthermore, the constraint (2.10) reduces in this limit to
2
Q——A:ZM. (2.38)
2M

Together with (2.1) we conclude that metric is real, apart from the massless Kerr
metric case (Q =0 and M =0), if and only if @ = 0. In this case (2.37) yields

A = (r-M?+2AM, B=(@r+M)?>-0Q?,
= r2—2Mr+Q2—3M2,

A = Ng=r*-2Mr+Q*-3M*, =0, (2.39)
and for the Maxwell field
dxt = Cd Spd
24udxt = Zdi+0gdg, (2.40)
with
C = 2Qr-M), w’4=0. (2.41)



The insertion of the expressions above in (2.1) yields

-3 2_ N2
gt = _IT3MTEQ e 2y nag?

A
2_02 -
W(dxﬁZ_Fde‘ldt. (2.42)

+Asin0dp? +
By calculating corresponding resultants, it follows that the numerators of g;; and
84, representing the norms of the Killing fields 0, and 8, respectively, factorize in
A, necessary to avoid singularities, requires Q = +2M. With this choice for Q (2.42)
reads as

aM
ds? = (—1+ M)dt2+dr2+(r—M)2d92+(r—M)zsin20d¢)2

r—

aM aM
+ (1 + ) (dxhH? + ——dxdr, (2.43)
r-m -M

from which it follows, that the metric is singular at r = M.

2.3.2 The(Q?=1 (M+ %) S — \/3M case

Under the parametrization Q* = A (M + \%) 2.35) takes the form

A = (r—%)z—zip—;[z\/g+a2coszﬂ
2
+2a‘//l(M+£)Pcose (M_%) " >
\/§ (M2+ZZ—P2—/1(M+\% )((M—{—\%) —/I(M-F
= (r—%)z—zip—;i/g+a2cos29
+2aPcosf ((M_%)Z_PZ)A(M-F%)
T sl ) (e 2 a v )
- (r_%)z—zip—;[z\/g+a2cosze
AL z)
+2aPcosf ((M v ZP ' 5 )
(M24z2-p2-a(m+ Z))((M+Z)-2)
B = (r+%)2—2/1732+a200820
F2a /I(M+£)Pcos(9 (M+%)2_A(M+\%) 3 )
V3 (M2 432 p A(M+\/%)(M—\/%) —PZ)



((M+7) A %))( %)2

(MZ +32- (

cC = 2 )L(M+£)(r—£)¢2aPcos9
V3 V3

E

) ) -
H = 2PAcosOF2asin®0|r|M-—|+M—+3>-pP M+—
3 V3
2
_Z\| _p2 Z
((M %) P)A(M+ﬁ)
2
2. v2_ p2 2 DX z
(M +32_p A(M+ \/g)) (M+ \/g) A(M+ ﬁ)
> > >
= 2PAcosfF2asin’0 ( -+ M=+3? PZ—/\(M+—]><
V3 V3 V3
2
_Z | _p2
(( G P)A
2 2_p2_ 2z Z)_
(M +32-p A(M+\/§)(M+\/§) )L)
2 2
Z | - 2 _Z | _p2
I e i
2 2_p2_ =z '
M24+32_p A(M+\/§)
M?+32-P2 A M+ ||| M+X
o Az 3]
b3 >
M+ Z) -a(m+ 5
In the limit £ — —+/3M we obtain
4 M2 — p2
lim A = (r+M)?-P?>+a*cos’0+2aPcosO\|———
I—--V3M 4M? - p?
= (r+M)?-P?+a’cos’0+2iaPcos0,
lim B = (r—M)?+2AM+ a®cos®0,
S——V3M
Iim C = 0,
——V3M
lim H = 2PAcosfF2iasin®0(2Mr - P?),
——V3M
lim F?> = o,
T——v3M
. 4M? - p?
lim E = -M————. (2.45)
S——V3M A
Furthermore, the constraint (2.10) reduces in this limit to
PZ
A——=-2M. (2.46)
2M

Together with (2.1) we conclude that metric is real, apart from the massless Kerr
metric case(P = 0 and M = 0), if and only if @ = 0. In this case we obtain from (2.45])

10



A = r+M?-P*, B=(@-M?>+2AM,
=r>—2Mr+ P?>-3M?,
A = Ng=r*-2Mr+P*-3M*, w%=0, (2.47)

and that the Maxwell field is then given by
2A,dxH = %dt +w’pddp, (2.48)
where
C = 0, w’p=2Pcosf. (2.49)

The insertion of the previous expressions in (2.1) yields

= 4P?Acos? 0
ds* = —dt2+Kdr2+Ed92+ ———— — +Zsin’0|d¢?

A 4PcosOA
+= (dx4)2 +

—_— —_—

dgdx*, (2.50)

where Z := (r + M)? — P2. By calculating a corresponding resultant, it follows that
the numerator A of gy4 factorizes in =, necessary to avoid singularities, if and only
if P = £2 M. With this choice for P (2.50) takes the form

4M
ds® = —di*+ (1 + M) ar?+((r + M)* - 4M?) d6?
(r — M) (16 M? cos?(0) +sin®(0) (r + 3M)?) 16
+
r+3M ¢
8Mcos(@)(r—M
+ (1 - ) (dxty2 ¢ BMCSOU=M) s @.51)
r+3M +3M
from which it follows, that the metric is singular at r = -3 M.
2.3.3 The P=0,X— v/3M case
In the P =0, = — v/3M case the line element reduces to
AM(r—-M Ap=
dsg = (_1+—(r ))dt2+—P_0 dr?
Ap=g (r— M)Z + a?

+Ap—od0® + ((r — M)* + a*) sin® (0) d¢p*
. (1 L AM—M) ) (dxdy? 4 BMr =D
P=0 P=0

dtdx*, (2.52)

where
Apg:= (r— M)+ a® cos®(0), (2.53)

and all previous constraints are satisfied, so that both M and a are unconstrained
parameters. A computation with MATHEMATICA confirms, that (2.52) is a solution
of the five-dimensional vacuum field equations.

11



By rewriting (2.52) in the form

4M(r—M))dt2+ Ap=o 2
Ap=o (r—M)? +a?
N (1 N M) (dxhy? e MU M)
P=0
+Ap=o(dB? + sin®(0)d¢p?)
+((r = M)? + @® — Ap=o) sin® () d¢p*
= (_1+M)dt2+ Ap=o r2
(r—M)?+a?

2
ds(S) = (—1+

P=0

Ap—g
( 4M(r— M)
+{1+—=
Ap—g

8M(r — M)
P=0
+ Ap_odQ? + a®sin*(0)d¢?, (2.54)

smooth if 7 #Z0and Ap=g #0

) dxh* + dtrdx*

we conclude that the metric is smooth at the rotation axes sin@ = 0 away from the
set Ap—¢ = 0. From (2.53)

Ap_g=0<r=M and cosf=0, (2.55)

follows. On the hyperplane cosf = 0 the norm g;; of the Killing vector d; equals

4M(r— M) 4M
gn=-1l+— " =-1+
Ap:() r-mM

)

which blows up as r — M, which implies, by the usual arguments, that the
singularities of the metrics are represented by {r = M,cos@ = 0}.
In the a = 0 case (2.55) reduces to

Ap_g=0=r=M. (2.56)

The asymptotic expansion of (2.52), using the usual asymptotically Minkowskian
space-time coordinates {x°,---, x}, gives

4M
dsky = napdx®dxf+ ——(di+(dx")? +2dx'de)+ 007, (@57)
r

which yields that the metric is asymptotically flat.

2.3.4 TheQ=0,X— —v3M case
In the Q =0, = — —/3M case the line element (2.1) reduces to

Ao-

2 _ 2 Q=0 2 2

dS(S) = —dt +H4)—2+a2dr +AQ:0d0
((r—M)? + a?) (a® cos(40) — a® — 4 (25M? + 6Mr + r*) — 4 cos(20) (M — r) (TM + 1)) 16
8Aq=0 ¢

4M(M — 8Mcos(0) (a® + (M —r)?
+(1+M)(dx4)2i cos®)(a”+ M~ 1) )d¢dx4, (2.58)
Ag=o Ag=o

12



where
Ag=o =: (r = M)(r +3M) + a* cos*(0), (2.59)

and M and a are unconstrained parameters again .

A computation with MATHEMATICA confirms, that is a solution of the
five-dimensional vacuum Einstein equations.

From it follows directly, that the norm of 4y, i.e. the geometric invariant gy
of the metric, is singular in the a # 0 case at the locations of the zeros of Ag-o,
bounded by —3M < r < M. In the a = 0 case the singularities are attained at

r € {—3M, M}. Furthermore, from the asymptotic expansion

dsi = —dit*+dr®+r*d6® +r’sin*(0)d¢
+(dx* - 4Mcos@)d¢)” + O™, (2.60)

of (2.58) we obtain, that the metric is not asymptotically flat.

In the following we give a summary of the results of this subsection:

2 = -z - 2 = Z -z
PP=A(M-F) M—2 Q=AM+ 5] M~ -Z
A#£0 “Complex metric” “Complex metric”
A#0,a=0 Naked singularity at r = M Naked singularity at r = -3M

A=0 Naked singularity at r = M, cos8 =0 | Naked singularities in the bound -3M <r <M

A=0,a=0 Naked singularity at r = M Naked singularities at r € {-3M, M}

2.4 On the existence of regular metrics with no horizons

The location of the Killing horizons of the metric is determined by the zeros of A.
From (2.88) it follows that A attains no real zeros if and only if

a’>M?*+32-p?- Q2. (2.61)

The singularities of the metric are determined by the zeros of A and B. The
conditions (2.124) and (2.125), necessary to avoid singularities, are in this case
given by

|oZ|>2 and %—az(l—ldl) <0

or

7|<2 and FEE- 4 L <o, (2.62)

13



and

1B)>2 and 22 _ 42(1—|98]) <0

Z+MV3
or
Bl<2 and LI+ 2 <o, (2.63)
where «f and 2 are given by and (2.127), i.e.
2FpP 2FP
of = Q 5 , Bi=-— Q 5 . (2.64)
a((M+2/V3)' - @) a((M-x/V3)" - P2

Furthermore, if a # 0, from (2.2) the condition

|(M+21v3)" - Q2| |(M-21v3)" - P?]
M2 4+32_p2 _Q2

=0, (2.65)

as arequirement to obtain a real-valued metric, follows.

2.4.1 P =0case

P =01in (2.64) directly implies o/ = 0 and % = 0. Then (2.61) and (2.63) reduce to
a>M>+3%-Q%, =<MV3. (2.66)
Furthermore, it follows immediately that (2.62) is violated. Thus in this setting a

metric with no horizons possesses naked singularities, determined by the zeros of
A, for any choice of the parameters.

2.4.2 The "large" |a| case

If |a| is chosen large enough, it follows that holds and from that |«/| <2
and |48 < 2 holds. In this case (2.62), (2.63) and (2.65) reduce to
2P’y atst?
T-MV3 4
2Q°s aPR?
+
T+MV3 4
|(M+21v3)* - Q2| |(M-21v3)" - P?]
M24+32_p2_ Q2

<0,

<0,

=20. (2.67)

F > 0 case:
The insertion of the constraint (2.10) in (2.67) yields
3Q*(V3M-3) 22 _
3V3M3 +9M2X +3V3M (22 -2Q?) +33 V3M-X
3Q*(3M?* -2V3Mz +32)
<
(V3M +2) (3V3M3 +9M?E +3v3M (22 - 2Q?) + 23)

(vr+3) - @) (- 2) - (2 vam) (2 - 5525

M2 (2-V3M) (Z - L) -Q2+2?

0,

’

(2.68)

14



From an analysis with MATHEMATICA we obtain, that the inequalities (2.68) are not
fulfilled simultaneously.

F =0 case:
In the F = 0 case (2.67) reduces to
2P’% 20Q%x
— <0, —————<
T-MV3 T+MV3
By the insertion of the constraint (2.10) in (2.69), we obtain

0. (2.69)

432 2Q%z 20Q%z
- < 0’ R E—
3 VBM+X V3M+X
If the second inequality in (2.70) is fulfilled, it follows immediately, that the first

inequality is violated. In conclusion for any choice of the parameters (M, P, Q, X)
the Rasheed metrics have naked singularities if | a| exceeds a certain threshold.

<0. (2.70)

In the |«/| > 2 and/or |98| > 2 case, corresponding to the "small” |a| setting, we have
not been able to analyse the resulting inequalities, determining if (2.61)-(2.63) and
(2.65) can be fulfilled simultaneously, appropriately due to their complexity.

2.4.3 The M? +3? — P? — Q*> — 0 limit

The critical term in this limit is given by (2.2), i.e.

L |(zvE) - @2 | (M-ziv3) - P2
F? = ETT PTG . @2.71)

By defining g := M? + X2 — P2 — Q?, we can rewrite (2.71) as

e (3M? +2V3M2 -3Q*+722) (-22(V3M +X) +3q +3Q?) 272
= % : :

The insertion of the solution of the constraint (2.10) for Q? in (2.72) yields

(3vV3M3 —3M?Z +V3M (522 - 3P?) —3P?2 - 533) (V3BM(P? + q) + Z(P* - q))

FZ
39(2-v3M)”

(2.73)

Thus a regular metric is obtained in the g — 0 limit if and only if the numerator of

fulfils

(3\/§M3 -3M?*Z +V3M (55% -3P?) - 3P - 523) (\/§M(P2 +q)+Z(P* - q)) =fq",
(2.74)

where f is a smooth function and n € N. (2.74) is solved by

_ filM,B3) . 9M*P?2 —9M?P* + 12M?P?3?% - 61/3MP*Y —3P*3? —5p23t

f qn—l qn

’

(2.75)

15



where f1 (M, B X) is a smooth function of the parameters, or

9M?3 —3V3M?2X + 15M32 —5/323
3(3M +V3%) '

P=

(2.76)

It follows that only in the n = 1 case it is potentially possible to obtain a suitable
function if and only if the remainder of the polynomial division

OM*P? —9M?P* + 12M?P?5? —6V3MP*E -3P*5? —5P%5Y) 1 g, (2.77)

is zero, which turns out not to hold. The insertion of (2.76) in (2.71) yields F =0,
which is just a special case of the metric, which has been already covered in the
analysis above. Summarizing, there exist no regular metrics in this limit.
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2.5 Asymptotic form and global charges

With the expansion of the metric coefficients of (2.1)

_ .M 2 +0(r™?)
8rt ; \/§r ,
- 1222 o0y
8rr ; 3 ,
= rz—E+0(1)
8vo 73 ,
2r¥sin?(0)
) 2 2
= r°sin“(@) - ——— +4P“cos“(@)+0(),
oo /3
43
= 1+—+0(r %),
844 V3r ( )
g = O(r?),
2 _
gu = 22+,
gpa = 2Pcos@®)+0(r ™), (2.78)

the line element can be taken into the asymptotic form

2M 2% 2M 2% 2rx
ds* :(—1+—+—)dr2+(1+———)dr2+(r2—L)d92
r o \3r r \V3r V3
2rxsin?(@
+ (r2 sin?(@) = 2S00 |y p2 o2 (0)) dg?
V3
4% 4
+ (1 + —) (dx")*+4Pcos(@)dpdx* + 2Q graxt + o(r2)
V3r r
=—d® +dr®+r’>d6? + r?sin? (H)d(,l)2 + (dx4)2 +4P cos(H)d(,bdx4 +4P%cos? (6)d¢2
2% 2M 2M 4
——(—dt2+dr2+r2d92+rzsin2(0)d(/)2)+—dt2+—dr2+—thdx4+O(r_2)
V31 \~ ~ . r r r
=Napdx®dx?
2 2, 2302, 2.2 2 4 2 22 aq.b
=—dt°+dr°-+r-df°+r-sin“(0)d¢ +(dx +2Pcos(9)d<,b) —\/_—317ubdx dx
r
2M 4
+—dr2+—thdx4+O(r_2)
r r
2% 2M 2M 4
= gudxtdx’ — —=-npdx®dx’ + —d* + ~—dr* + 24Q Jrdxt + o(r 2, (2.79)
V3r r r r

where we have defined
2
g=1—di®+dr?+r2d6? + r*sin?(0)d¢* + (dx4 +2P cos(@)d(p) , (2.80)
as the background metric. From (2.80) it follows, that the metric is not
asymptotically flat for P # 0 and that x* has to be 87 P-periodic(for a detailed
analysis see Section[4). In the following we compute the global charges of the
Rasheed solution. For this sake it is convenient to switch to Cartesian coordinates.

17



In the P = 0 case in a Cartesian-type basis (¢, x, y, z, x*) (2.79) takes the form

2M |, 2% 2Q
1 - o 02 2]\/(1) 0 "
2Mx 2 Xy 2Mxz
0 I+55-- Ty — = 0
_ 2Mxy 2My® 2% 2Myz
g= 0 3 1+ r32M 37 2r3 0
0 ZZW?)XZ 1 + 3}’2 2]\43.2 22 0
2Q r r r 3r s
= 0 0 0 1+ 4%
r 3r

When P # 0 the expansions are considerably more complicated and not very
enlightening, therefore we do not include them here. From (2.79), with the
formulae derived in Section we obtain for the Hamiltonian momentum p,of the
level sets of ¢, and the ADM four-momentum py, ap of the space-metric
gijdx'dx! the following results:

, = =0 —M—i _ | 2naM, P=0, _ [ 27mQ, P=0,
Pi,aApmMm=pPi =V, PoADM = 3’ Po= AnPM, P#0, pa= 81PQ, P #0.
(2.82)
The Komar integrals associated with X = 9, are
1 . 2r(M+=%), P=0,
— lim X¥PdS,p = v3 (2.83)
87 R—oo s Jst b= 8xp(M+ %), P#0,
whereas those associated with X = 0, are given by
1 . . 41Q P=0
1 xX%hP = ’ ’ 2.84
87 koo Js(r) Js! dSap { 167PQ, P #0. 2.84)

2.6 Regularity at the sinf = 0 axis

To show that the metric is regular at the sin = 0 axis, we write (2.3) in the following
form

A vV AB AV AB
2 _ 0 0 2 2 2 2 2
dsg, = —E(dz#w pdd)” + X dr“+VvV ABdO +—A9 sin“0d¢

A
- —\/%(dt+a)0¢d¢)2+fir2+r2(d62+sin29d¢21
6ijdxidxf
+(VAB - 1?)(d6? +sin*0d¢?) + —‘23—1)dr2+\/AB(AA—1)sin29d¢2.
0

~ ~

r72(8;jdx'dxi-dr?)
(2.85)

From the last line in (2.85) it follows, that the metric is regular at the sin8 = 0 axis if
and only if (AAH - 1) factorizes in sin” 0. This is true since

A a?sin%6
( ) (2.86)

= _1]= .
Ag a?cos?(0) —2Mr +P%+ Q> +r? -2

In the P =0 case Ay l) factorizes in sin?0 also, together with lb this yields,
that the five-dimensional metric is also regular at the sinf = 0 axis.
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2.7 Killing horizons

The location of the Killing horizons of the metric (2.3) is determined by the zeros of
the determinant

8t 8ty 8ra
8ot 8pp 8pa | =—Asin®0, (2.87)
8ar  8ap 844

and thus by the roots ;. = r_ of A, which, therefore, give the locations of the outer-
and inner Killing horizon respectively. From (2.4), by denoting the zeros of Ag by
R, = R_, we obtain

ry = MJ_r\/M2+ZZ—P2—Q2—a2,

Mi\/M2+Zz—P2—Q2—a200526. (2.88)

=
+
Il

from which
rr <R,, (2.89)

follows for 8 € [0, 7]. Thus we have to pay special attention to the zero-set of Ay,
since potential singularities arising from this set are not shielded by the outer
Killing horizon. This problem, among others, is addressed in the next subsection,
resulting in that there are no singularities associated with the zeros R, and R_ of
Ay, corresponding to the ergosurfaces of the metric.

2.8 Singularities related with the zeros of A and B

To write some terms in a more compact form, we define s :=sin0.

The metric is a solution to the five-dimensional field equations if (2.10) holds.
Solving this constraint for P yields

~ 23 Q2
P—i\/(Z \/§M)(3 \/§M+z)’ 2.90)
then P € R implies
23 Q?
T-V3IM)|=-—=|>o0, 2.91
( )( 3 \/§M+Z) ( )

which is used throughout this subsection.

LEMMA 2.1 The invariant
B A
O/ 1) = —4A%+\/= 2.92
is real and C*(S), where S = (r4,00) x [0, 7], with r.. given by (2.88), if and only if

|(M+21v3)* - Q| |(M-21v3)* - P?|
M2+22—P2—Q2

>0, if a,PQ,#0, (2.93)
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and

2 2P%y
|ef|>2 and M+\/M2+22—P2—Q2—a2>—+\/——a2(1—|&¢|),

3 Vz-Mv3
or
z 2pP%y 2942
/| =2 and M+\/M2+32 - P2 Q2 —a?> = + Py
3 >-MV3 4
(2.94)
where
2jpP
o = /PQ 5 ) (2.95)
a((M+31v3) - @)
and P = P(M,X,Q), given by (2.90), with (2.91) holds.
PROOF:
The strategy of the proofis to write (2.92) as a quotient of two polynomial
expressions in the variables (r,60), in order to factorize out as many potential
problematic terms as possible. We write the ¢p¢p-component of the
four-dimensional line element in the following form
Ao , o2 AVAB,
= ——|(w +—s
8op VAB ( (P) Ag
_ SPABA- NG (0%9)
VABAg
ABs*A-4J%s*(r + E)?
= . (2.96)
VABAg
The insertion of (2.6) in (2.92) yields
) _ B(w LEL0 )2+,/A (2.97)
N————
=Eppa
The evaluation of gy 4 yields
8ppa = (w5¢> tg@ ¢>)
2
= (((1) ¢) +2 w ¢(1) ¢+ (w0¢)2)
(H2 +4](r + E)S H+ S 47254 (r + E)?
- 2
A
1 [B?H?+4Js*(r + E)CBH +4C?J?s*(r + E)?
= — (2.98)
B2 AZ

20



Finally, (2.96) and (2.98) inserted in (2.97) gives the desired polynomial expression

) ABS*A—-4]%s*(r+E)? 1
+

8¢9 BAy AB

2
AH
ANg(ABS?’A—4J%s*(r + E)?) N 1

B2H? +4]s%(r +E)CBH+4C2]234(r+E)2)

B2H? +4]s%(r + EECBH +4C?J%s*(r + E)?

2 AR 2
ABAG AB AQ

1 [ AAg(ABS’A—4J%s*(r + E)?) + B?H?> + 4CBHJ(r + E)s*> + 4C? J?(r + E)?s*

2
AB Ay

A MATHEMATICA computation shows, that the numerator of 1! factorizes in Aé

and B, but not in A. Therefore, g((/i/)) € C*°(8) if A attains no zeros on S. From

Lemmal[2.2)it follows, that this is the case if and only if (2.94) holds. From and
one observes directly, that J is real if and only if the inequality in (2.93) holds,
then it follows, that (2.99) is also real. From (2.2), (2.4) and (2.7) it follows, that

(2.99) is real.

LEMMA 2.2 The function

2 2P’z 2JpP 0
A = (r—Z/\/§) - = +a*cos’f+ / Qco: ,
2-MV3 (M+32/V3)" - Q2

i) isreal if and only if

|(M+21v3)" - Q| |(M-21v3)° - P?|
M24+32_p2 _QZ

>0, if a,BQ#0,

ii) has real zeros in the variable r, for some0 € [0, ], if and only if

2P’y 2.1 i
sors @ =ldD), if | >2,

2P’y 2 of? .
Z7M\/§+“4 , if <2,

iii) The largest zero of A, in the variable r, for all 0 € [0, 7], is given by

2 2P?y 201 _ .
S a0, if11>2,

max,+ — ’

p) 2Py 20?2 .
LBl <2,

where & is given by [2.95), P = P(M, 2, Q) by {2.90), and holds.
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PROOF:

i): The parameter J is given via and by

J |(M+21v3)* - Q2| [(M-21v3)* - P2
J=+a . (2.104)

M2+z2_P2_Q2

With (2.100) and M, X, a, P, Q € R it follows, that A € R if and only if J € R or
P =0,0r Q=0or a=0,which implies (2.101).

ii): We write the equation A =0 in the form

2 2P%y 2jp
(r—Z/\/?:) = — = _d4’cos’H- / QCOSB
I-MV3 (M+2/V3)" - Q?
2P%y 2jp
= ——az(c0529+ JPQ 5 cosH).

I-MV3 a((M+31v3) - @)

—:h(6)
(2.105)

A will have real zeros in the variable r for some 6 € [0, 7] if and only if the
maximum of the right-hand side of , in the variable 6, is larger than or
equal to zero. The right side is maximal if / is minimal. By using the
definition (2.95), we write

h(0) = cos®0 + <f cos. (2.106)

Since h is a periodic function, the global minimum coincides with a local
minimum. The first and second derivative of h are given by

W@ = -sinf(«f+2cosh),
K@) = 2-ofcosf—4cos’6. (2.107)

For the analysis of the local minima it is sufficient to restrict to the ' = 0 and
K"’ > 0 requirement, since it follows easily from that ' = h" =0is
attained if and only if |«/| = 2 A 0 € {0, }. This special case is covered within
the analysis. From k' = 0 we obtain

o
sin@(d+200s9):0<:>9€{0,n} or cosH:—?. (2.108)

If 6 € {0, 7}, then the condition A" > 0 and (2.107) imply

24+ >0 || >2. (2.109)
In the cosf = —% case, h"" >0 and (2.107) imply
2—of%2>0 = |of| <2. (2.110)
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In the |«/| = 2 case if follows easily, that the minimum of % is located where

4

cosf) = -5 = —1. Therefore, we can finally conclude, by inserting 6 € {0, ﬂ}

(in the |/| > 2 case) and cosO = —% (in the |«/| < 2 case), that the minimum

hpmin of his given by
A-lD, if |A]>2,

hmin =

~Lif o] <2,

(2.111)

From (2.111) it follows, that the right side of (2.105) is non-negative if and

only if

2P?y 207 _ :
M3 a (1-|gf)), if |&f]>2,

2P%y a’ed? -
==t 4= " if <2
Z—M\/g 4 ) |'$2¢| )

iii): From ii) and (2.105) the expression for the largest zero of A

. 2P’ 21 _ i
Ly [ —a(-1a), if 1]>2,
max,+: '

3 2P2% a?d?
= + + , if | =<2,
V3 >-MV3 4 54

follows.

LEMMA 2.3 The function

2 2Q°z 2JPQcosH

+a®cos’0 -

B = (r+2/\/?_>)

i) isreal if and only if

|[(M+3/v3)° - Q2| [(M-21v3)* - P?]
M2+22—P2—Q2

=0, ifa,BQ#0,

ii) has real zeros in the variable r, for some 0 € (0, ], if and only if

202 o .
s~ @ —1BD), if |B1>2,

0= )

2QE_ | @B i <
z+M\/§+ 7 f1%l=2,

iii) The largest zero of B, in the variable r, for all 0 € [0, ], is given by

_ ZQZZ 201 .
ﬁ+\/z+M¢§ ac(1-14D, if 1%81>2,

max,+ — ,

= 2Q%% a’B? . <
7 Z+M\/§+ + o if1Bl=2,
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where P = P(M, 2, Q) is given by {2.90), holds, and 9 is given by

B =- 2JPQ . (2.118)

a((M+321v3)" - P2

PROOF:

i): Analogous to i) of Lemma|2.2

ii): We write the equation B = 0 in the following form

2 20Q%x 2JP 0
(r+2/\/§) = Q——a2c0s29+ J QCO;
+MV3 (M-321V3)" - P2
= ﬂ—az(cosze— 2JPQ cosH).
I+MV3 a((M+321v3)" - P2
::};;(9)
(2.119)

B will have real zeros in the variable r for some 6 € [0, 7] if and only if the
maximum of the right-hand side of , in the variable 6, is larger than or
equal to zero. The right side is maximal if /1p is minimal. By using the
definition (2.118), we write

hg(0) = cos?0 + % cosb. (2.120)

Since (2.106) of Lemmal2.2]is of the exact same form as (2.120), we obtain the
minimum hp i, of hp simply by replacing « by £ in (2.111), i.e.

(1-198D, if |9]>2,

hg,min = ) : (2.121)
-2 if |%B| =<2,
Thus we can write the positivity condition for the maximum of the left side of
(2.119) in the form
2% 2 -
sovrs @ (1-1498)), if |98|>2,
0= . (2.122)
2 | 2B
st a if |%Bl<2,

iii): From ii) and (2.119)

_Z 2Q°% o0 .
\f3+\/2+M\/§ a“(1-|28)), if |98|>2,

B = . (2.123)
s 2Q2x

a2@2 .
% Z+M\/§+ at if |B|<2,

for the largest zero of B, follows. O
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Summarising, a necessary and sufficient condition, so that all A has no zeros in the
d.o.c., is given by

2P%y 2
—a“(1-|«|) <0, or
|.SZ¢| >2 and Z—M\/§ 5 2p2y
M+\/M2+22—P2—Q2—a2>§+\/ —a2(1- ),

I-MV3
or
2P’y | dPof?
+ <0, or
fl<zand { XMVS_ T (2129)
M+\M?+32-P2-Q*—-a?> =+ gt
where
2]P
of = A (2.125)
@ ((M+21v3) - @)
and the same condition for B is given by
2Q°2 9.4
S M3 a“(1-1%]) <0, or
|98| > 2 and 2QP%
M+\/M2+22—P2—Q2—a2>—§+\/Z+M\/§—a2(1—|93|),
or
2Q°c a’B?
Z+M\/§+ 4 0, or
|%| <2 and I — Py (2.126)
M+\/M +2c-P —Q —a >—§+ m"ﬂ'T,
where
2]P
Bem JPQ , (2.127)

a((M-321v3)" - P2

LEMMA 2.4 For M =0 there exist no a, P, Q, X € R, such that
Fe> i, andr. > 1B, and (2.10) holds.

PROOF:
Solving (2.10) for X yields

3
Z:i\/;\/P2+Q2. (2.128)
e a=0case:

(2.103) and (2.123) reduce to

) )
Fiaxs = Vel V21|, 1B .= ~5* V2|Ql. (2.129)
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Inserting the negative case of (2.128) in (2.129) and (2.88) yields for the

Ty > r,’;‘mx’Jr and ry > r,?mx,Jr condition

\/P2+Q2?>|P|, |Q|<0. (2.130)

while insertion of the positive case of (2.128) yields

IPl<0, /P2+Q2>|Q|. (2.131)

Thus those both special cases of (2.128) yield a contradiction.

e a#0case:

By inserting and in the second line of (2.94), we obtain
2FPQ
a((=v3) - @)
for the ry. > ri} ax,+ constraint. The left side(r) of lb decreases with

increasing |al, while the right side (r,’;‘mxy +) remains constant. Next, we write
the first line of (2.94) in the form

s
|| <2 and \/ZZ—PZ—QZ—a2>§+J2P2+ . (2.132)

z
|/1>2 and /32— P2-Q2—a?> = + fpz a2 (| -1).  (2.133)
3 ——
>1
The left side(r.) of (2.133) decreases with increasing |al, while the right

side(r4 «.+) increases. Together with analogous considerations for the
ry> r,lfmxy + condition and the analysis for the a = 0 case, Lemma|2.4{follows.

O
LEMMA 2.5 The norm of the Killing fields 0; and 0y, i.e.
W _B (2.134)
g[[_ABr g44_Ar .

where W := —GA+ C?, is non-singular in the closure of the d.o.c, i.e. {r = 1.}, ifand
only if A and B have no zeros in the d.o.c., except perhaps in a special setting, where
B attains an isolated double zero in the d.o.c., ifa# 0 and P # 0.

PROOQF:
We write A and B in the following form
A=(r-rPr-rd, B=@-rHr-rb, (2.135)
where
z 2aFP 0 2pP2y
rd = ﬁi —a?cos?(0) - a chos()+\/§M 5
Z 1 _0n2 -
(M+ 3] @
2z 2aFP 0 2Q%x
rBo= _Ei — a2 cos2(0) + — QCOS()+ Q . (2.136)

(M-Z) -p2 V3MEE
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¢ a#0case:
i) rrl;lmx,+ # \/Ag' rgmx,+ # _\% case:

A and B have zeros in the d.o.c. if and only if 1/ ax,+ > T+ and

r,lfmx,Jr > r4, where r,‘;‘mx,Jr and r,lfmx'Jr are given by (2.103) and (2.117)
respectively. In those cases the continuity of (2.136) in the variable 0
implies that 314 < [0,7), VO € I, 1y < r2(0) < r,’;‘lax_+, and
Agc(0,m),VO€elp, o <rPO) <1}, ..
Therefore, in the case of the occurrence of zeros of A and/or B in the

w

d.o.c., itis necessary to obtain a non-singular term -7 in this domain,

which requires the remainder of the polynomial divisions

W:(r—rd), and/or W:(r-rb, (2.137)

to vanish V0 € 14 and V0 € Ip respectively. A computation of the
corresponding remainder polynomials with MATHEMATICA yields the

conditions
(21|22 —zad + 2P*x +py(2)=0
P1 s _V3M p2 )
2023
(21| —722—zaPB+ ———+ py(2) =0, (2.138)
ps \/ NGRS

where we have applied the replacement acosf — z, and p; and ps are
first order and p» and p4 are second order polynomials in the variable
z. From it follows, that the solution-set of those equations is
discrete. Thus W will potentially only factorize for discrete elements of
1, and Iz and not on the full intervals.

P =0 case: In this case (2.138) reduces to

-4Q%z* =0, (2.139)
4Q%x2 . 6Q*z 20Q%x3 4v/3MQ*x? 8MQ?*x?
(V3aM+3)® V3M+X 3(V3M+X) VBM+I  V3(V3M+3)
8M>3 2M>Z? 8zt 83272
- 1 2VAMEZ? + T2 4P _aQre 2o 252
3v3 V3 9 3
4v3Q%3%? 4MQ*r  16M3x? 2Q%x
v3Q L AMQ -4V3Q%x 2 Ly,
V3M+X V3M+X 3 3M+X
(2.140)

The first equation corresponds to a double zero case discussed below,
the second one cannot be fulfilled for the whole range of values of Ig,
by the same arguments as in the P # 0 case.
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o A _ X B __= .
i) o+ = 75 Tmax+ =~ 05 case(double zero case):

From (2.124) and (2.126) it follows that A and/or B attain a double zero,

_ =z _ > . .
located at r = 7 and r = 7 respectively, if

2P%% 2 :
== _g°(1-|«]) =0, if |&/|>2 or
I-MV3 . (2.141)
2P ad 0, if |of] <2
Z—M\/§ 4 ) »
and/or
2Q°2 2 _ .
—=—a“(1-|98|)=0, if |98|>2 or
mMs (2.142)
2 L@ B if |98 <2.
S+MV3 4 ’
We rewrite (2.136) in the form
> >
rd=—+\ps@), rB=—"C"1x\/psa), (2.143)
3 V3
where
ps5(2) 22 —azd + 2P’z
5 = —zZ°- —_—,
V3M-Z
20Q%x
ps(z) = —zz—az%’+ﬁ, (2.144)

and ¢ and 28 are given by (2.94) and (2.118) respectively. The leading
monomial of p5 and pg is negative, thus those polynomials only attain
positive real values between their zeros. Thus a necessary criterion for

; A _ = .B __
Aor B to have an isolated double zero rp, .. . = 75 Tmax+ =~ 518
asd

that ps or pg have a double zero z, = - % € [~a, a] or
zg = —% € [—a, a]. In this case of a double zero of A or B the
remainder polynomial of the polynomial division

T2 T )2
W:(r—%) , or W:(r+%) ) (2.145)

has to vanish. An analysis with MATHEMATICA yields the conditions

rpz7(z) + ps(z) =0,
rpg(z) + p1o(2) =0, (2.146)

where p7, ps, pg and pj are polynomials in the variable z. This finally
yields the following conditions to obtain a non-singular function A—Mg in
the case of a double zero of A or B in the d.o.c.

p7(z}) = ps(z,) =0, z,€l[-a,a], or (2.147)
pa(zp) = p1o(zp) =0, zpe[-a,al. (2.148)
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* Double zeros of A in the d.o.c.
From p7(z},) = 0 we obtain the equation

#JPQ(3P* (3M +33) - (3M - VBx) (3M* - %)) =0.  (2.149)
By taking the constraint for P into account, reads as

27V3M* +54M33 — 27v/3M?Q? - 18M =3 +9v/3Q%2? -3V3z* = 0.
(2.150)

The set of allowed solutions of this equation for X is given by
{ —V3(M+ Q), V3(-M + Q)}. Both solutions inserted in 1l yield F =0
and thus implies « = 0 and z; = 0. With those values (2.103)

yields
A R >
max,+ \/g Z _ M\/§ 4

and therefore the condition P = 0 for a double zero. Thus in the generic
case a double zero of A is forbidden in the d.o.c.

r (2.151)

P =0 case: In this case (2.95) and (2.118) yield «f =0, 28 =0and z, = 0.
Thus from (2.103) we obtain

A = (2.152)
r = . .
max,+ \/g
Inserting those values and the solution of (2.10) for Q in (2.117) yields
b =z (2.153)
T = . .
max,+ \/§

As aresult a double zero of B is excluded and a curve y, parametrized
by 0 of zeros of B is located in the d.o.c., which is forbidden.

e Double zeros of B in the d.o.c.

In the generic case pg(zé) =0and plo(zg) = 0 yield complicated
non-polynomial equations, which are hard to analyse.

In the P = 0 case the conditions pqg (zg) =0 and plo(zg) =0 reduce to
V3M+3=0 and M+V3Z=0, (2.154)

with only the trivial solution M = X = 0 allowed, which is not of interest.
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e The a =0 case:

In this case (2.138) reduces to

8P2Q°% o
>-v3M
2y
36M*z|z-2v6 o
V3M+ZX

_ 3 2 Q*x 2 Q*x
36 M (3\/§P,/\/§M+Z+2\/§z‘/\/§M+Z ,/\/_ s

+3M? (6P2

+6M=(3 (P2+Q2)—222)( 2V23 | ——=— \/§M +\/—}_,32+\/-Qz)

+(32(P?+ Q%) -25%)* =o0.

The first equation corresponds to a double zero case, discussed above, the
second one is fulfilled under the constraint (2.10). From (2.134) the
requirement follows additionally, that B has to factorize in the larger zero of
A, i.e.

B: (r—r ) (2.156)

has to vanish. This condition yields in the a = 0 case P = J_r\/g V22— V3Mz.

By the insertion of this expression in (2.134) we obtain r},, , =15 = —\/%
and thus the double zero case, which has been discussed above.

Summarising, we can exclude the possibility of zeros in the d.o.c., except
perhapsif P #0,a # 0 and (2.142) holds.

a
2.9 Regularity at the outer Killing horizon ./,
The outer Killing horizon ./, of the Killing field
k=0, +Qp0p+Q20,, (2.157)

is given by the larger root r, 8) of A. The condition that ./ is a Killing horizon
for k is that the pullback of

guvk”, (2.158)
to #, vanishes. This, together with

Al =0, Agly =-a’sin®©), (2.159)
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yields

Q 1
b = T 0.
w ¢ 7,
= “—z(r +E)!
- 2] + )
2(A0° — Agp)
0 = Aoz de)
w ¢ 7,
_ Q(-3Mry —V3Mx +3P?+3Q*+V3rz-3%?) 2.160)
- (E+1y) (3M2 +2v3MZ —3Q2 +32) ' '
Under the coordinate transformation
d=¢p-Qpdt, x=x'-Qdt, (2.161)
the metric takes the following form
dr? 9
g=gs+T+AUdt ) (2.162)

where gs is a smooth (0, 2)-tensor and U = %. Introducing a new time coordinate
by

T=t-oln(r-ry) = dr=dt- dar, (2.163)
r—ry
where o is a constant to be chosen, in (2.162) yields
2 2
dr
= +AU |dt + ar| + —
& &s ( r—ry ) A
2AU 1 AUo?
= gs+AUdT*+ Udrdr+(—+—0)dr2
—ry A (r—ry)?
2AU r—ry)?+A%Ug?
= g5+AUdTZ+—Oder+( +) g dr?. (2.164)
—Ty A(r—ry)?
v

In order to obtain a smooth metric in the d.o.c., o has to be chosen in a way that
the numerator of V attains a triple-zero at r = r... A computation, using
MATHEMATICA, gives a lengthy algebraic expression(therefore, not given in explicit
form her) for o, fulfilling this requirement.

2.9.1 Kerrcase:Z=0,Q=0and P=0
In the Kerr case (2.160) reduces to

a
Q, =
¢ Mr,
~ a
- r2ya?’
Q4 = 0. (2.165)
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The coordinate transformation

r’ +a® a
V= t+f dr, uzg[H—f—dr, (2.166)
A A

resolves the A = 0 coordinate singularity in the Kerr case and thus provides an
analytic extension of the metric.

2.10 Stable causality

LEMMA 2.6 If (2.124) and (2.126) hold,

i) g% has no zeros in the d.o.c. if

ry=%, ry.>-E, (2.167)
or a =0 holds, where € := % and q = P>+ Q* - 2% + a°.
ii) The metric is stably causal for small values of | P| if M > \/%

PROOF:

i): With 1l and the insertion of the expression 1| for w°¢ we obtain

00 ( B+(w0¢)2A0 1 )

§ Ag AN sin20

( B 4]2[r+E]2s,in29)

Ag AANg
1 4J2(r + E)?sin%6
= —|-B+ . (2.168)
Ag AA
::w?r,@)

We list the following properties of important functions involved in the proof:

A, B(if (2.124) and (2.126) hold) and A are strictly monotonically
increasing(s.m.i.) for r € [r;,00) for all values of 0,

Ag>0ifr>R,, Ag <0forr, <r <R, forall values of 6,

e g%~ —lasr—oo,

w(r = Ry (0),0) =0 (MATHEMATICA result: The numerator of w
factorizes in Ag),

32



where r, and R, are given by (2.88).

Since w factorizes in Ay, gO0 has no poles in the doc and R; is a zero of w.
From the properties above it follows, if w is strictly monotonically decreasing
for r € [ry,00), for all values of #, we have Ag >0, w < 0= g <0ifr >R,
and Ag <0, w>0= gOO <0for ry <r <Ry, for all values of 6, and thus by the
continuity of the functions involved no zeros of g% in the d.o.c. In order to
derive the conditions, so that w is strictly monotonically decreasing , we

write (2.168) in the form

4]%sin*© (r + E)?
w(r,0) = -B + : .(2.169)
N~ A
strictly monotonically decreasing — —
monotonically decreasing  :=u(r)

Thus it remains to derive the restrictions on the parameters, so that u(r) is a
monotonically decreasing function. We define ¢ := P? + Q> — X2 + @ and
write u(r) in the form

ur = r+E?  (r+E? (r + E)?
A r2-2Mr+q (r+E?-2Mr-2rE-E*+q
B (r+E)?
 (r+BE?-2r(E+M)-E2+gq
B (r+E)?
 (r+BE?-20r+E)E+M)+2E(E+M)-E2+q
1
= L E Fa (2.170)
(r+E) (r+EB)?
We define the denominator function of by
2(E+ 2E(E+M) - E*+
D(r):=1- (E+ M) | 2EE+M) q (2.171)
(r+E) (r+E)?
Ifr>-E, is monotonically decreasing, if
2(E+M) _2E(E+M)-E*+
D = 2 e ) 9>
(r + E)? (r +E)3
=> (E+M)(r+E=2E(E+M)-E*+q
2E(E+M)-E?>+q
> r>-E+ , (2.172)
M+E
Thus if
2E(E+M)-E*+q EM+q
ry=—E+ = , (2.173)
M+E M+E
—_——
=€

and r; > —E it follows, that u is monotonically decreasing and thus w is
strictly monotonically decreasini on r € [ry,o0) for all values of 8, where

ri = M++/M? - g, given by (2.88).
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From (2.173) we can derive the following inequality

M+/ M2 - EM+q
q =
M+E

v

(M+E) (M+\/M2-q) = EM+gq
MM++\/M?2-q)+E\/M?2-q = gq

(E+ M)/ M?2-q = q—M2=—( Mz—q)
E+M = —\/M2-q. (2.174)

In the E+ M =0 case (2.174) is fulfilled trivially, for the E + M < 0 case we
obtain

E*+2ME+M?* < M*-gq
—-E(E+2M) = q. (2.175)
Thus finally
ry=2€ < E+M=0V (E+M<0A-E([E+2M)=q). (2.176)

a = 0: In this case (2.168) yields g*° = —%. Since B and A are positive
functions in the d.o.c. if (2.126) holds, g% < 0 in the d.o.c. holds as well.

Remarks:

33 8 23 1. /2(4105960v/3+2770943)
‘FOI'M=8,61=E,Q=§,Z=—€,P=—§ 12813 ~ —7.86

(see Fig. 1 in Section[4) for example one obtains 7, = 11.16 > € = 5.67
and ry > E = —3.70 and thus a stably causal d.o.c.

e The if and only if statement:

(2.169) can alternatively be written in the form

. —ABA+4J%(E +r)*sin®6

2.177
m ( )
We define the numerator function of (2.177) by

Ny := —ABA+4J2(E+r)?sin0. (2.178)

Since w factorizes in Ay, it follows from (2.168) that the exclusion of
zeros of g% in the d.o.c. leads to the following question:

Are all real zeros of Ny, : G located inside the outer Killing

horizon(r = r,), for all values of 6, if the constraintand a, M, Q, 2, Pe R
hold?
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ii):

The question leads to the general localisation of the zeros of the
fourth-order polynomial N, : G in relation to the location outer Killing
horizon r; in the variable r. We have neither been able to pursue a
reasonable strategy, nor to construct a counter example. For small
values of | P| the problem has been solved in the section on the
equivalent Larsen metrics, see Lemma|3.3} where the relevant terms
take an easier form due to the more favourable parametrization.

P =0case:

With (2.88), we can write r, < % in the form

(3M?+2V3MZ -3Q* +2%) (a® — M?* + Q* - 32)
(3M +V3%) (M?% - Q% +32)

\/—a2+M2—Q2+22<

(2.179)
Solving (2.10) for Q and insertion in (2.179) yields
M+ z )2 2 < z + a’
-—| —at<— .
_Zz
V3 Vi M-%
(2.180)
Simplifying (2.180) yields
2
M-—=2| —g2
l<— ( ‘/52 , (2.181)
(M- %)
and thus a contradiction.
Small | P| case:
From iii) of Lemma ‘ requiring m > 0, together with m = M — \% from
(3.20), the statement follows.
O
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3 The Larsen solutions

The line element of the Larsen solutions [14] is given by

2

dr A
ds? :F(dx +A )2——(dt+BL)2+H1(A—+d62 =L sin20d¢? 3.1)
3
where
-2 -2
H = r2+a%c0328+r(p—2m)+ p_lp=2mig-2m)
p+tq 2
Y 2)(p2 2
2m(p+q)\/(q —4m=)(p=—4m*-) aj cos0, (3.2)
-2 -2
H, = r2+aLcos 0+r(g—-2m)+ q_(p-2mlg=2m
p+tq 2
4 2 2
2m(p+q)\/(q —4m?)(p? —4m?) ag cosO , (3.3)
Hy = r*+a’cos®0-2mr, (3.4)
Ap = r*+at-2mr, (3.5)
the 1-forms in (3.1) are given by
Ap=Aidt+Apdp, Br=Bpdd, (3.6)
where
p-2m\ [q*(p*—4m?) -1
A = -2 H.
t Qr|r+ > ) I+ q) apcost | H,
2 _4Am?
Ap = - 2PL(H2+a§sin29)cos9+,/%
x [(p+aq)(pr —m(p—-2m)) + q(p* —4m*)] arsin®0 | H;",
am?)r - -2 -2
B¢, = _m(pcﬁ— mr - mip —2m)(q - 2m) aLsinZB. 3.7)

2m(p+q)Hs

The parameters (m, a, g, p) are related to the physical mass M, angular momentum
], electric charge Q, and magnetic charge P by

G4 M
G4J1
Q?

2
PL

Ptq

7’ (3.8)
VPa(pq+4m?) 3.9)
am(p+q) '
alq” —4m?) (3.10)
4(p+q) )
p(p* —4m?)
T 3.11)
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where G; is the gravitational constant of four-dimensional gravity. Furthermore,
the requirement
q,p=2m,

is imposed. Note that the equality case corresponds to the absence of electric or
magnetic charge, respectively.

Here we have corrected a typographic error in [14], where the overall sign of By, was
opposite to the one in (3.7). I am grateful to Maciej Maliborski for pointing this out.
We have not been able to check by a direct MATHEMATICA calculation that the
metric satisfies the Einstein equation for all parameters, but have checked
that it does so for a sample of random values of parameters. We note that the
opposite sign in does not lead to a vacuum metric

In order to make explicit the correspondence between the parameters of the
Larsen and the Rasheed solutions, we will calculate the global charges of the
Larsen metric, compare them to the corresponding parameters of the Rasheed
solutions, and use this correspondence to derive an isometric transformation
between the metrics.

3.1 Asymptotic expansion and global charges

With the expansion of the metric coefficients

g = _1+§+o(r—2),

g = 1+$+O(r_2),

g0 = ri+r(p-2m+0(),

8pp = r’sin®0+rsin®0(p-2m)+4P7cos’0+0(1),

gu = 1+ 00,

g = O(™),

8t = —¥+O(r_2),

gps = —2Ppcosf@+0(r™), 3.12)

we can take the line element (3.1) of the Larsen solutions in the asymptotic form

p
r
+ (r2 sin?6 + rsin?6(p —2m) + 4P% cos? 6) d¢p?
- 4
+ (1 + u) (dx4)2 —4P; cos@d(/)dx4 — &
r r
=—dt* +dr* +r’do? + r’sin® 0d¢? + (dx*)? — 4P, cosOdpd x* + 4P§ cos? 0 d¢p?
4Qg

r

ds® :(—1+%)dt2+(1+ )dr2+(r2+r(p—2m))d02

drdx* + O(r_z)
+ﬂdt2+Bdr2+r(p—2m)d02— dtdx4+0(r_2)
r r

2
=—dt* +dr® +r*d6? + r’sin®0d¢* + (dx4 -2P; cost(b)
4Q

+ gdtz +Par s r(p-2m)de? - —=dtdx* + O(r_z)
r r r
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= (gL),de“de+ﬂdt2+2dr2+r(p—2m)d02 QL
r r

where the decay order of the error terms is indicated with respect to the obvious

asymptotically Cartesian coordinates (, x, y, z, x*). Here we have defined

2
gr:= —dt® +dr® +r?do® + r? sinzedcpz + (dx4 - 2PLcost9d¢) , (3.14)

as the (asymptotic) background metric of the Larsen solutions. By comparing
(3.14) with the background metric (2.80) of the Rasheed solutions, we obtain that
the magnetic charge parameter of the Rasheed- and Larsen solutions are related by
P = —P; and that x* has to be 87 P-periodic (for details see Section. Inthe P =0
case in a Cartesian-type basis (, x, y, z, x*) takes the form

-1+2 9 0 0 -
0 1+2mE  2my 2mi 0
g= 0 2”:3” 1+ 2';?’ z’fsyz 0 +0(r'?) (.15
0 ampz Iz 2mZ 0
~% 0 0 0 1-2m4d

When Py, # 0 the expansions are considerably more complicated and not very
enlightening, therefore we do not include them here.

From (3.15) and for the analogous expansion for P # 0, with the formulae derived
in Sectlonl 4} we obtain for the Hamiltonian momentum Pu of the level sets of ¢, the
ADM four-momentum py app of the space-metric g; jdx’ dxl:

+4 —
piapm = pi =0 pOADM={ m, P=0, (2 z), P=0, p4={
v . 5 P#0, 7 anp(2+4) P#o,
(3.16)
The Komar integrals associated with X =, are
2nd P=0
— i X%PdS,p 2’ ’ 3.17
871'Rl—1:rolo S(R) JS! { SHP%, P#0, ( )
wheras those associated with X = d, are given by
1 . . —47‘[QL P=0
— 1 X%Fds :{ ’ ’ 3.18
87{R1—r»rolo S(R) J St ap —167TPQL» P#O ( )

Furthermore, we note that the inequality (6.9) of Section resulting from a
Witten-type positive energy argument, in terms of the parameters of the Larsen
solutions reads as

(p+q)*=4q(q* —4m®). (3.19)

3.1.1 A comparison with the global charges of the Rasheed metrics

By comparing the ADM mass and the Komar integrals (3.16)- (3.18) with those of
the Rasheed solutions (2.82)-(2.84), we obtain

s s
M- =P M+—:g

N V3
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—=dtdx*+0(r™?), (3.13)

—ZJTQL, P= 0,
—-8nPQ, P#0.



Solving for M, P, Q, X yields

M=¥' Z=W, Q=-Qu, P=-Pr. 3.21)

By insertion of (3.21) in (2.10) it verifies, that the Rasheed constraint holds. The
insertion of (3.21) in (2.2) and (2.4) yields

2
g VPq(pg+4m )_

] (3.22)
4m(p + q)
A comparison of (3.21) and (3.22) with (3.8), (3.9), setting G4 = 1 in those
expressions, finally yields the following relations
M=M, Q=-Qr, P=-Pr, =l lal=latl, (3.23)

between the physical parameters of the Rasheed and Larsen solutions.

3.1.2 Anisometric transformation

LEMMA 3.1

i) The Rasheed and Larsen metrics are isometric.

ii) The isometric transformation is given by the parameter transformation

M=

P+07, 5

_V3(g-p)
4 B 4

, Q=-Qr, P=-P;, a=-a;, (3.24

and the coordinate transformation

r=f+M,—m. (3.25)
PROOF:

We rewrite the Rasheed metrics (2.1) in the form

B 2 A 2 d 2 A
dsty == (dx' +2Audx" ) - =2 (dr+ 0 pde) + A(—r +d6%+ — sin29d¢2) :
A ) 7B o A Ag
=A :=B
(3.26)

A comparison of (3.26) with the Larsen metrics (3.1), given by

H, Hs d? Ar .
ds?=—=(dx*+A)* - =(dt+B))? H(— do? + == sin’60d 2), 3.27
S5 Hl( X +Ajp) HZ( +Bp)“+ H; AL + +H3 s (,b ( )

where we have applied the replacement r — 7 to distinguish the radial coordinate
from that of the Rasheed solutions, yields that both metrics are isometric if

A=H,, B=H,, A=A, Ag=H;, A=A, B=Bp, (3.28)
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provided that the coordinates r and 7 differ by an additive constant. A
computation with MATHEMATICA yields, that if the reparametrizations
p+q V3(q-p)

M= R ZzT, Q=-Q., P=-P;, a=-ay, (3.29)

and the coordinate transformation

r=f+M—m, (3.30)
where M;, Q and Py, are given by (3.8)-(3.11), are applied to (2.4)-(2.8), then (3.28)
holds. H

3.2 Killing horizons, the ergosurface and the zeros of H; and H,

From (3.1), by the same arguments as in the case of the equivalent Rasheed
metrics, it follows, that the Killing horizons of the Larsen solutions are given by the

zeros of (3.5), i.e.
re=m=\/m?-aj, (3.31)

and the ergosurface is given by the lager zero of (3.4), i.e.

Ry =m+/m?—a?cos?0. (3.32)

In the following, for completeness we analyse directly the zeros of H; (3.2) and H,
(3.3), which determine the singularities in the Larsen solutions.

LEMMA 3.2

i) Hy has no zeros in the d.o.c., ifand only if

p 4 o) —ai(l-|e;)) <0, or
>2 _
Izl >2 an m+\/m2—ai>—p22m+\/a¢f—ai(l—|&¢L|)y
or
<2 and oA + dL<0
<
Az and ) S G
where
o (p—2m)? p (p-2m)(g—2m) PV (g% —4m?)(p? — 4m?)
A = - , A= :
4 p+q 2 2mar(p+q)

ii) H has no zeros in the d.o.c., if and only if

B —a?(1-|%;.)) <0, or
|91 >2 and Lk > 2 g-2m 0 2

m+.\/m?—a; >-" +\/@L—aL(1—I=@LI),

or
a’ B?
0+ L <0, or

|98L|52 and 2%2

m+./m?—a? aL
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where

_(g-2m?® q (p-2m)(q-2m)

2_4 2 2_4 2
7 = %L:_qVW m?)(p? —4m*)

4 p+q 2 2mar(p+q)

iii) i) and ii) are equivalent to the corresponding conditions (2.124) and (2.126
for A and B of the Rasheed metrics.

PROOF:
We rewrite and in the form

-2m)? —2m)(q -2 —2m)>
Hy = (r+p m) +a? cos? 0 + fq(p m)z(‘/ m) (p 4m)
P 2 2y(n2 2
- -4 -4 0, 3.33
2m(p+q)\/(q m?)(p m?) acos (3.33)
-2m)\? —2m)(q -2 ~2m)?
H, (r+q m) +a%c0529+ q_(p=2miq m)_(q m)
2 p+q 2 4
q
+————1\/(g? —4m?)(p? —4m?) a cosB. (3.34)
2,71(}74_61)\/17 p L

i): From (3.33) the set of zeros of H is given by

(r+ p—2m)2 _ (p-2m)? _p (p-2m)(q-2m)
4 p+q 2
2 _ 4 2 2 _ 4 2
—a*| cos®0 + A0 m)(p m )cos9 .
2mar(p+q)
(3.35)
We define
ha0):= cos’6 + off cosf, (3.36)
where
2 _4m?2 2 _4m?
=P VIg® —4m?)(p? - dm?) (3.37)
2mar(p+q)
and
—2m)? -2 -2
o0 = (p-2m)~  p (p-2m)(q-2m) . (3.38)
4 p+q 2
With these notations (3.35) reads as
—2m)\2
r+ 2 - m) = A~ dha0). (3.39)
By a comparison of the analogous function in the case of the Rasheed
solutions it follows, that the minimum of (3.36) is given by
I 1—|e/l), if |e/]>2, (3.40)
in = 2 .
AT S eyl <2
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ii):

iii):

From (3.40) it follows, that maximum of the right side of (3.39) is given by
st —ap(L=|sil), if 411> 2,
o &¢ . (3.41)
d L if lofr] <2

together with (3.31) ylelds, that H; has no zeros in the d.o.c., if and
only if

. 4 of) —as(1—|<2;)) <0, or
2 _
l/1]>2 an m+ mz—a%>—w+\/.sz¢£—ai(l—laﬁl),
or
2
ot <2 d do dl <0 or (3.42)
Ll <2< an .
m+\/m2—aL L
From the set of zeros of Hj is given by
(Hq—Zm)Z _ @-2m?®_ _q (p-2m)(g—2m)
2 4 p+q 2
Z 42 2
cos® 6 — V4 M) (p = 4m )COSB .
2mar(p+q)
(3.43)
We define
hg(@) := cos?0 + 9By cosb, (3.44)
where
2_4 2 2_4 2
%Lz_CI\/(q me)(p m ), (3.45)
2mar(p+q)
and
2m)? -2 -2
0 (q—2m) q (p-2m)(q m)_ (3.46)
4 p+q 2
With these notations reads as
—2m)\?
(r+q - m) = B°—a2hp0). (3.47)

Then it follows from a completely analogous analysis as in the case for H,
that H» has no zeros in the d.o.c., if and only if

BY —as(1-1%.)) <0, or

Br|>2 and -

or
B0+ 92 <,
|B1| <2 and LA
m+./m?—as >
By applying the isometric transformation, given in Lemma we obtain
A=A, A=H;, B=H,. (3.49)
From (3.49) iii) follows immediately. O

or
P (3.48)
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3.3 Stable causality

In this section we revisit the issue of stable causality of the Rasheed-Larsen metrics
using the Larsen coordinates. Recall that well behaved black holes should be
globally hyperbolic, and stable causality is a necessary condition for global
hyperbolicity.

The analysis here allows us to find new regions of parameters where stable
causality holds, namely small values of | Py |. This was not apparent in an analysis in
Rasheed coordinates.

LEMMA 3.3
Ifi) and ii) of Lemmal3.2 hold, the Larsen solutions are stably causal

i) if (but not if and only if)

éam+a%
r+2?, and r+>—6", (3.50)
m

_m(p-2m)(q-2m)
(pg+4m?) °

ii) ifPL=00rQr =0,

where & :=

iii) for small values of |Pr| if m > 0.

iv) i) is equivalent to Lemmal2.6,

PROOF:

i): We write go0 in the form

H;  sin?0A; H,;
sin?0A; Hy |-

gOO

(3.51)

By rewriting

(pq+4m?)r—m(p-2m)(q—2m) .
2m(p+ q)H;
(pq+4m?) (r_ m(p—-2m)(q—2m)
2m(p+ q)Hs (pq+4m?)
(pq +4m?) m(p—-2m)(q—2m)
- _WZm(p+q)H3(r_ (pq +4m?2)
_ _%(r_m(p—Zm)(q—Zm)
Hj (pq +4m?)

sin6

By = —-vpq

= ~VPa

) asin®0

) asin®0

) sin’@, (3.52)
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where we have used (3.9), and the insertion of this expression in (3.51), we
obtain

2
Hs sin?6ApH,
1 4]§(r+é")zsin29
= —|-Hy+ ) (3.53)
Hj ApH;
:er,G)

_ m(p—-2m)(q—2m)

where we have defined & := pgrand

We list the following properties of important functions involved, where we
have defined r; and R, as the largest zero of A and Hj3 respectively:

* H,, Hy(if they have no zeros in the d.o.c.(see Lemma) and A are
strictly increasing for r € [r,00), for all values of 9,

e H3<O0ifr, <r<R,, H3>0if r > R,, for all values of 8,
¢« g%~ lasr— oo,

e w(r=~R,;(0),0) =0 ( MATHEMATICA result: The numerator of w
factorizes in H3),

where .. and R, are given by (3.31) and (3.32) respectively.
Since the numerator of w factorizes in Hs, g% has no poles in the d.o.c. and

R, is a zero of w. From the properties above it follows, that if w is strictly
monotonically decreasing for r € [r,,00), for all values of 8, we obtain
H3>0,w<0=g%<0ifr>R, and H3<0, w>0= g% <0ifr, <r <Ry,
for all values of 8, and it follows, together with the properties of the functions
involved, g% has no zeros the d.o.c. To derive the corresponding condition,
we write w in the form

4]%sin20 (r +&)?
w(r,0) = -H, . . (3.54)
~—— H,
strictly monotonically decreasing — —
monotonically decreasing ~ :=u(r)

Thus it remains to derive the restrictions on the parameters so that u(r) isa
monotonically decreasing function. Assuming r > —&, we write u(r) in the
form

(r+&)? (r+&)>? (r+&)>?
u(r) = = 5 = 5
A r2-2mr+a; (r+8&)?%-2mr-2r6-&%*+a;
(r+&)>?

(r+&)?2-2r+m)-&*+a;
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(r+&)*
r+&2-2r+&)(E+m)+28E+m)—E*+ a2

1
- 1 _ 2&+m) 28+m)-&2+ad’ (3.55)
) (r+&)?
and define the denominator function of by
D=1 26+m) 28E+m)—-&*+at (356
=1- + .
g (r+é&) (r+&)2
If r > —-&, (3.56) is monotonically decreasing if
, 26+m) _28E+m)-&E*+at
D(r) = -2 >
(r+&)2 (r+&)3
=> E+m+E)228E+m)-E*+as
26 +m)-&*+a3
= r=z-6+ . (3.57)
R m+&
I:TgL
Thus if
26 +m)—-&*+ai Em+as
ry = —-&+ = , (358)
m+é& m+é&
—_——
6L

and ry > —&, then u is monotonically decreasing and therefore w is strictly
monotonically decreasing on r € [r,,00) for all values of 6. Then from (3.54)
we finally obtain, that g°° has no zeros in the d.o.c.

An if and only if statement would require to derive conditions, so that the
polynomial i := N(w) : H3, where N(w) denotes the numerator of w, has no
zeros in the d.o.c. In the Py = 0(p = 2m) case the polynomial is given by

ho =(4m*Cm+q@?)rt+(4m*(g-2mCm+ ¢)*) r®

+(2a3 m*(cos(20) +3)2m + q)*) r?

+(—4aim*2m+ q)*(mcos(20) + m—q)) r

+4a*m® cos®(0)2m + q)*. (3.59)
Even for this reduced problem it seems hard to derive a compact system of
inequalities, imposed on the parameters, guaranteeing that all real zeros of h
are smaller than r; for all values of 8. At least in this setting the question can
be answered in the following.

ii): Inthe P =0(p =2m) and/or Q; = 0(g = 2m) case reduces to
2

a
m+\/m2—a%2EL<:>|m|2|aL|, (3.60)

which is imposed anyway from (3.31) to avoid naked singularities.
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iii): We write the criterion for stable causality (3.58) in the form

ry—€1=0. (3.61)
——
=W

With the expansion of €1 at P =0 <= p=2m

<€L:a—%+ (m*-a2)2m-q)
m  (2m?)2m+q)

(p—-2m)+0((p-2m)?) (3.62)

#; can be written near P;, = 0 in the non-extremal case(|m| > |ay|) in the
form

2

az  (m*-a?)2m-q)
Y, — 2_ 2 L _ L -2 —2m)?
L m+/m?—a? m @) emrg (p-2m)+0((p-2m)?)

S O D R T o s R R

v~

:=e>0
(m?-a3)2m-q) )
=€— -2 O -2 , 3.63
€ @) 2m+ ) (p-2m)+0((p-2m)?) (3.63)

together with (3.63) yields stable causality for small values of | Py | if
m >0 holds.

iv): By applying the transformation, given by Lemma|3.1} to the expressions in i)
of Lemma|2.6} a computation with MATHEMATICA yields i).
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We derive expressions for the total Hamiltonian energy of gravitating systems in higher-dimensional
theories in terms of the Riemann tensor, allowing a cosmological constant A € R. Our analysis covers
asymptotically anti-de Sitter spacetimes, asymptotically flat spacetimes, as well as Kaluza-Klein
asymptotically flat spacetimes. We show that the Komar mass equals the Arnowitt-Deser-Misner
(ADM) mass in stationary asymptotically flat spacetimes in all dimensions, generalizing the four-
dimensional result of Beig, and that this is no longer true with Kaluza-Klein asymptotics. We show that the
Hamiltonian mass does not necessarily coincide with the ADM mass in Kaluza-Klein asymptotically flat
spacetimes, and that the Witten positivity argument provides a lower bound for the Hamiltonian mass—and
not for the ADM mass—in terms of the electric charge. We illustrate our results on the five-dimensional
Rasheed metrics, which we study in some detail, pointing out restrictions that arise from the requirement of

regularity, which have gone seemingly unnoticed so far in the literature.

DOI: 10.1103/PhysRevD.96.124002

I. INTRODUCTION

A key notion in any physical theory is that of total energy,
momentum, and similar global charges. The corresponding
definitions, and their properties, depend very much upon the
asymptotic conditions satisfied by the fields. There are
various possibilities here, dictated by the physical problem
at hand. For instance, the vanishing and the sign of the
cosmological constant play a crucial role. Next, one may find
it convenient to use direct coordinate methods [1-3] or
conformal methods [4,5], or else [6], to define the asymptotic
conditions and the objects at hand. Finally, one may want to
use definitions arising from Hamiltonian techniques [7,8], or
appeal to the Noether theorem [9], or use ad hoc conserved
currents [ 10-14]. See also Ref. [ 15] for an excellent review of
early work on the subject.

A natural class of asymptotic conditions arises when
considering isolated systems in Kaluza-Klein-type theories;
see Sec. IT below. Much to our surprise, no systematic study of
the notion of energy in this context appears to exist in the
literature, and one of the aims of this work is to fill this gap. For
this, we derive new expressions for the total Hamiltonian
energy in higher dimensions in terms of the Riemann tensor, in
asymptotically flat, asymptotically Kaluza-Klein (KK), or
asymptotically anti—de Sitter (AdS) spacetimes. Our defini-
tions arise from a Hamiltonian analysis of the fields and invoke
direct coordinate- or tetrad-based asymptotic conditions. We
relate these integrals to Komar-type integrals. We use Witten’s
argument to derive global inequalities between the
Hamiltonian energy-momentum and the Kaluza-Klein
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charges. We test our energy expressions on the Rasheed family
of five-dimensional vacuum metrics, clarifying furthermore
some aspects of the global structure of these solutions.

This paper is organized as follows. In Sec. II we make
precise our notion of Kaluza-Klein asymptotic flatness. At
the beginning of Sec. III we review the definition of energy
within the Hamiltonian framework of Refs. [16,17]. In
Sec. III A we apply the framework to spacetimes which are
asymptotically flat in a Kaluza-Klein sense. In Sec. III B we
derive general formulas which apply for a large class of
asymptotic conditions. In Sec. IV we show how to rewrite
the formulas derived so far in terms of the curvature tensor.
This is done in Sec. IVA for KK-asymptotically flat
solutions, and in Sec. IV B for general backgrounds. The
formulas are then specialized in Sec. IV B 1 to asymptoti-
cally anti—de Sitter solutions, and in Sec. IV B 2 to a class
of Kaluza-Klein solutions with vanishing cosmolo-
gical constant which are not KK-asymptotically flat. In
Sec. IV C we rewrite some of our Riemann-integral energy
expressions in terms of a space-and-time decomposition of
the metric. In Sec. V we show how to establish Komar-type
expressions for energy in spacetimes with Killing vectors.
In Sec. VI we show how a Witten-type positivity argument
applies to obtaining global inequalities for KK-asymptoti-
cally flat metrics. Appendix A is devoted to a study of the
geometry of Rasheed’s Kaluza-Klein black holes, which
provide a nontrivial family of examples for which our
energy expressions can be explicitly calculated.

II. KALUZA-KLEIN ASYMPTOTICS
The starting point for our notion of Kaluza-Klein
asymptotics is initial data surfaces in an (n+ K + 1)-
dimensional spacetime containing asymptotic ends of the
form

© 2017 American Physical Society
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Sext = (R"\B(0,R)) x §! x ---x §' = (R"\B(0,R)) x TX,

K factors
(2.1)
where S! is the unit circle. We will say that the metric is
KK-asymptotically flat if g has the following asymptotic
form along S, = {x° = 0}:

g = Napdxdx® + 8,5dx*dxB + o(r™%),

=17, dxt dx¥

Oty = o(r). (22)
where Greek indices run from 0 to n + K, uppercase Latin
indices from the beginning of the alphabet run from n + 1
to n + K, lowercase Latin indices from the beginning of
alphabet run from 0 to n, and lowercase Latin indices from
the middle of alphabet run from 1 to n. Finally, uppercase
latin indices from the middle of the alphabet run from 1 to
n + K. Summarizing:

(x*) = (2% x\, x) = (x4, x4) = (X0, x1).  (2.3)

Last but not least,

7= \/(Jcl)2 +o 4 ()2,

The exponent a will be chosen to be the optimal one for the
purpose of a well-posed definition of the total energy,
namely,

(2.4)

where, as in Eq. (2.1), n is the space dimension without
counting the Kaluza-Klein directions.

In Kaluza-Klein theories it is often assumed that the
vector fields 0,4 are Killing vectors, but we will not make
this assumption unless explicitly indicated otherwise.

III. HAMILTONIAN CHARGES

In this section we adapt the Hamiltonian analysis of
Ref. [17] (based on Ref. [16], cf. Ref. [18]) to the asymp-
totically KK setting, which also provides convenient alter-
native expressions for the formulas for the Hamiltonians
derived there. We use a background metric g,,, which is
assumed to be asymptotically KK as defined in Sec. II, to
determine the asymptotic conditions. The metric g, should
be thought of as being the metric 7, of Sec. II at large
distances, but it might be convenient in some situations to use
coordinate systems where g,, does not take an explicitly
flat form.

Every such metric g, determines a family of metrics g,
which asymptote to it in the sense of Eq. (2.2). We will

PHYSICAL REVIEW D 96, 124002 (2017)

denote by 1:‘",;7 the Christoffel symbols of the Levi-Civita
connection of g, .

Given a vector field X, the calculations in Ref. [17]
showed that the flow of X in the spacetime obtained by
evolving the initial data on S is Hamiltonian with respect to
a suitable symplectic structure, with a Hamiltonian H(X, S)
which, in vacuum, is given by the formula

H(X,S) = / (P!, Lxa™ = X*L)dT,,  (3.1)
S
where
L:= gﬂy |:(1—*a0_” - f*a{)_ﬂ)(raay - faau)
o o o o D 2
- (F 7 r /w)(r ac =T aa) + Ryy —H—K/\g,w
1 _ 2
——/—detgg*| R,, ——Ag,, |, 3.2
16z VY ( wTINK 9;w> (3.2)

with R/w being the Ricci tensor of the background metric
9u» A the cosmological constant, d the dimension of the
physical spacetime, K the number of Kaluza-Klein dimen-
sions (possibly zero), and

1
¢ ——/—detgg"”,
167
oL
og" ;

— (T = 8,15, = (T = 8,175,

(u (u (3.3)

A
P =

Finally, the volume forms dX, and d%,; are defined as

ATy =0, (dx° A+ A dx"TK),  dE,5=04]dE,, (3.4)
where | denotes the contraction: for any vector field X and
skew-form a we have X|a(-,...) = a(X, ...).

We note that the last two, g-independent “renormaliza-
tion” terms in Eq. (3.2) have been added for convergence of
the integrals at hand.

We will write det g = det(g,,) for the determinant of the
full metric tensor, and explicitly write det(g;;) for the
determinant of the metric g;;dx/dx’ induced on the level
sets of x7, etc., when the need arises.

We emphasize that the formal -considerations in
Ref. [17] were quite general, and they apply regardless
of the asymptotic conditions and of dimensions. However,
the question of the convergence and well posedness of the
resulting formulas appears to require a case-by-case analy-
sis, once a set of asymptotic conditions has been imposed.

If X is a Killing vector field of g,, and if the Einstein
equations with sources and with a cosmological constant A
are satisfied,

124002-2
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1
R, — ERg’“' + Ag,, = 82T,

(3.5)

the integrand (3.1) can be rewritten as the divergence of a
“Freud-type superpotential,” up to source and renormali-
zation terms:

H* = phyLxg? — XML

1
= U — /= det g, X" + /= det "
T
2
R —A XH, .
< ap ™ d+K gaﬂ) (3 6)
with
U = U, xP —8— [det glg¥5,V,XP,  (3.7)
2| detg|
vy = T g. V. (e2gtgr), 3.8

where V denotes the covariant derivative of the background
metric g, and

(3.9)
In vacuum this leads to the formula
1
H(X,S) = Hy(X,S) == / (U —U|,_)ds,,, (3.10)
2 Jos 9=7

where the subscript “b” on H,, stands for “boundary.” For
vector fields X which are not necessarily Killing vector fields
of the background, the Hamiltonian might have some
supplementary volume terms, cf. Refs. [18,19]. In non-
vacuum Lagrangian diffeomorphism-invariant field theories,
this formula for the total Hamiltonian of the coupled system
of fields remains true after adding to H* a contribution from
the matter fields; cf., e.g., Refs. [16,19,20].

A vA YP
U = UM, X

=~ (140 ) (g (™

1
— ﬁKXb
1671[(
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A. Kaluza-Klein asymptotics

For Kaluza-Klein asymptotically flat field configurations
we have

o(ro7h),
o(ro71).

aag/w =
aag/w =

9w = Nw =+ 0(,,.—0:),

g/w :’I,w+0(”_a)’ (311)

In particular, this implies

Faﬂy = O(T’_a_l).

First, let us assume that X is g-covariantly constant (and
hence also a Killing vector of the background metric g,, ).
One then checks that in the coordinates of Eq. (3.11) the
vector field X has to be of the form

Xt = X + o(r™), 0,X5% = 0. (3.12)
As A =0 in the current case, the convergence of the

boundary integrals in vacuum will be guaranteed if one
assumes, e.g.,

/ 10, 9ap*d" K x < 0. (3.13)
SN{r=R}

This follows immediately from Stokes’ theorem together
with Egs. (3.1)—(3.3) and (3.6), keeping in mind that A =
0 =R,, in the current context.

We note that Eq. (3.13) will hold if Eq. (2.4) is replaced
by a > (n—2)/2, which provides a sufficient but not a
necessary condition.

While we are mostly interested in vacuum solutions, the
analysis below applies to nonvacuum ones, provided that
one also has

T, =o(r") and Z/
aff S

Equations (3.13)—(3.14) will be assumed in the calculations
that follow.
Since the last term in Eq. (3.7) drops out when

vﬁXa = 0, we obtain

uap

|T ypld" K x < o0.
N{r=R}

(3.14)

NXP[( 0Ny = 1100 ) 8 s+ G 1 = G P+ g™ = g+ 0o (r7227 )]

yKXi)’]pogpaVK + ’/kanﬂ}/gﬂ,KXﬁ - an”ﬂygyb,KXﬁ + .QM<,I<}(AL - QAK,KXD] + O(r—2a—l)

1
= ——— 170, g7 (X (510400 — 515507 + 81645, — 510v 0] + 8L048, — 5:64)) + o(r2)

167
(r—Za—l)'

3
— 8_’7&(’7/} gyr Xf 5155

(3.15)
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Plugging the result into Eq. (3.7) and renaming indices, in
the limit r — oo, we obtain the following form of
Eq. (3.10), which will be seen to be convenient in our
further considerations:

T R—>

3
Hy(X.8) = lim /S - S Xpi, 0, dS .
(3.16)

where S(R) denotes a sphere of radius R in the R” factor of
Sexi» and

5P = 5 5557

Ji (3.17)

We see from Eq. (3.12) that H,(X,S) can be written as

H,(X,S) = p,Xb. (3.18)
When K = 0, the coefficients p, are called the Arnowitt-
Deser-Misner (ADM) four-momentum of S [1].

If X = 0,, we find a formula somewhat resembling the

usual one:

Po = H},(@,,S)
n+K xi
=0 = n+K-1
B 16]‘[R—>oo/ / Zl(algzl 9igir) Rd 7
= |1T |P0,ADM
n+K N
+ER11—13310/ /T Y (Oagia~— agAA) d K=y,

A=n+1

(3.19)

Here d"+X=1 is the measure induced on S(R) x TX by the
flat metric, | TX| denotes the volume of TX, and py apy is
the usual (total) ADM energy of the physical-space metric
gijdx'dx/. Perhaps not unexpectedly, the ADM energy
Po.apm does not coincide with the Hamiltonian generating
time translations in general.

Next, when X9 = 0, after using Stokes’ theorem in the
integral

L(R) - (:)J(gl()(s% - 9L05{)8LJ (dxl A A de+n) -0,
(3.20)

we obtain the formula

= - n+K— 1
pr = Hb(al, _87[R1%1—I>Iolo/ A—KP .X'd

(3.21)

PHYSICAL REVIEW D 96, 124002 (2017)
Here, P;; is the usual canonical ADM momentum
Py = g"Mkpgr — ki,
kpy =

0(,.—2(1—1)’
(3.22)

1 1
EETQIJ =5 (Oog1s = 01905 — Os901) +

while £ denotes the Lie derivative in the direction of the
unit-timelike future-directed field 7" of normals to the level
sets of x0.

As an example, we compute the above integrals for the
Rasheed metrics, described in Appendix A, with P = 0:

po = 27M, ps = 270.

pi =0, (3.23)
Equation (3.23) includes a 2z factor arising from a
normalization in which the Kaluza-Klein coordinate x*
in the Rasheed solutions runs over a circle of length 27.

This should be compared with the ADM four-momen-
tum p, apm Of the n-dimensional space metric g;;dx’dx/,

which reads

>
Poapm = M — 7§ piaom =0.  (3.24)

B. General backgrounds

As discussed in detail in Appendix A 3, the Rasheed
solutions with P # 0 are not KK-asymptotically flat in the
sense set forth above. To cover this case we need to
generalize the calculations so far to the case where the
background metric is not flat, with an asymptotic region
Sext C S diffeomorphic to
S ¥ E(Ry), where E(R) == (R"\B(R)) x XN, (3.25)
with some K-dimensional compact manifold XA/, for some
Ry > 0. We therefore have an associated global coordinate
system x' on R™\B(R,), as well as the dilation vector
field Z = x'0; = rd, which will play a key role in some
calculations below.

Somewhat more generally, in order to be able to
include  general  “Birmingham-Kottler-Schwarzschild
anti-de Sitter” metrics, we will consider ends E(R)
equipped with a radial function r so that
S, ext N E (RO) ’

with E(R):={r >R} =[R, ) x K,

(3.26)

where K is a compact manifold. Here r is a coordinate
running along the [Ry, o) factor of S, and the dilation
vector Z is defined as Z := r0,.

For the wusual (n 4+ 1)-dimensional Schwarzschild—
anti de Sitter metric the manifold K will be an (n — 1)-
dimensional sphere, but it can be an arbitrary compact
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manifold admitting Einstein metrics in the case of metrics
(B1)—(B3) below.

Along S, we are given two Lorentzian metrics g and g,
with g asymptotic to the background g in a sense which we
make precise now. Denoting by V the Levi-Civita con-
nection associated with g, we assume the existence of a g-
orthonormal frame {é;} defined along S such that
(decorating frame indices with hats)

): i +O(I”_a>7

i , €;
’). (3.27)

= g(e;
Vg =0

(r”

It seems that the specific values of a and f as needed for our
mass formulas can only be chosen after a case-by-case study
of the background metric g; cf. Egs. (3.31)—(3.32) below.
In what follows we will use the following convention:
given two tensor fields u# and v, we will write
u=v+o(r (3.28)

if the frame components of u — v, within the class of g-ON
frames chosen, decay as o(r~). If g; is orthogonal to Sy

(which will often be assumed) then, if we denote by
|

PHYSICAL REVIEW D 96, 124002 (2017)

Js = g;ydx"dx’ the Riemannian metric induced by § on
Sext» and by | - | 5 the associated norm, we have, e.g.,

Uy :O(r_a) g |M60| + |u61dx1|gs + |ude1de|- _0( a)‘

Assuming again that X is g-covariantly constant, the
second term of Eq. (3.7) vanishes and for the first term we
have the same expression as in the KK-asymptotically flat
case, with the difference that instead of 77, we have g, and
instead of partial derivatives we have covariant derivatives
of the background metric, i.e.,

lUu/l — [Uvﬁéxf
3 _ _ e
= <8 5:§gg&<gﬂyX§VKgyf + 0(\X|r ﬁ)> A /| detg|,
(3.29)
where
XP = 7 (02, (3.30)

u

In order to control the error terms appearing in Eq. (3.29)
we will assume that

a and f are such that the subleading terms o(|X|r~*7) in Eq. (IIL.29) give

a vanishing contribution to the boundary integrals after passing to the limit.

This will be the case, e.g., for all Rasheed metrics when
a=(n-2)/2 asin Eq. (24), f = a+ 1, with X asymp-
totic to 0, in coordinates as in Eq. (A33).

Similarly, Eq. (3.31) will be satisfied for asymptotically
anti—de Sitter metrics with

a=pf=n/2, (3.32)
where r is the area coordinate for the anti—de Sitter metric.

Note that in this case we have |X| = O(r).
Instead of Eq. (3.16) we now obtain

H,(X,S)

3 -
= i 8 X 75,5V g dS .
167 Roveo /(C}E(R) X7 BroV p o™ Ay

(3.33)

where the two-forms dS,s in d + K =n+ 1+ K space-
time dimensions take the form

1
dS(l/} - meaﬁfl'"fwk—ldxf] ZASRRIRAN dx&”“'
= 03]0,] /| det gldx® A - - A dx"TK, (3.34)

=: dﬂy

(3.31)

We can now compute the Hamiltonian charges for this
general case. We have

Pryvadpr NI O
—63[”3)( gﬂpgyo'vpg ﬂdSaﬁ

1 Q, QY 2, v=Ip= N7 O
== (83080 + 887 + 810 81) XV 5,V ,g7dS o

— (X3"3,,V,g°"dS,, + X'V ,g°"dS,,

Vpg"deM).

" 16x
+ X570 (3.35)
To continue, it is best to use a g-orthonormal frame é;
with é; orthogonal to S and ¢, tangent to JE(R). Then
only the forms dSj; give a nonvanishing contribution to the
boundary integral. In the calculations that follow we will
write “n.c.” for the sum of those terms which do not
contribute to the integral either because of the integration
domain, or by Stokes’ theorem, or by passage to the limit.
If X = 0,, and assuming that

(3.36)

one finds, using frame indices throughout the calculation,
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3 _
Py 6“ﬂ7xugipg}/gvpga,u dSaﬂ

167 4w
3 00kT=01p= — A
= 05%({)940 15V, dSs;
I ot L
= T XV @519'0) = Vg doy +nc.. (3.37)
where
= ¢;lep] (/| detgldx® A - A dx"TK)
(VI detguld! A A ) bne. (33)

Hence, we obtain the following generalization of the ADM
energy:

Po = Hh(at’s

167[ R—>oo /3E

The existence of the limit in Eq. (3.39) will be guaranteed
if, instead of Egs. (3.13)—(3.14), one now assumes, e.g.,

X V.q.
/Sﬂ{rZR} | | <Z|

pap ap

Vi(g5xg’%) = V,¢'do;. (3.39)

mﬂmw%r%w

X dpig < o0, (3.40)

where dug, is the (n + K)-dimensional Riemannian mea-
sure induced on S by g. A condition on the metric and the

energy-momentum tensor of matter fields naturally asso-
ciated with Eq. (3.40) is

N =

2
3

= —5351}:Xygi/)gyﬁv/)gﬂﬂdsaﬂ -

16

Ay
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lim [X|[9E(R)|T;; = 0

1im [X|IOE(R)| Al (9,0 ~ 5,)] = 0. (3.41)
where |0E(R)| denotes the area of OE(R); cf. Eq. (3.14).
This will be assumed whenever relevant.

As an example, we consider the Rasheed metrics of
Appendix A with P # 0, which are vacuum. The g-Killing
vector X = 0, is g-covariantly constant so that Eq. (3.39)
applies. The asymptotic behavior of the metric coefficients
in the frame (A39) coincides with the asymptotic behavior
of the metric coefficients in manifestly asymptotically
Minkowskian coordinates we have seen in the case
P =0, and is given by Eq. (A33). One obtains

po = 4nPM, (3.42)

where the extra factor 4P, as compared to Eq. (3.23), is due
to the 8P periodicity of the coordinate x* [cf. Eq. (A37)],
as enforced by the requirement of the smoothness of the
metric. Note that the formulas (3.24) for the ADM four-
momentum remain unchanged.

We emphasize that the calculations above are done at
fixed P, since every P defines its own class of asymptotic
backgrounds. As a result, the phase space of all configu-
rations considered above splits into sectors parametrized by
P. It would be interesting to investigate the question of the
existence of a Hamiltonian in a phase space where P is
allowed to vary. We leave this question to future work.

If X is not g-covariantly constant, the second term of
Eq. (3.7) does not vanish. Thus, disregarding those terms
which do not involve the forms d%;, we obtain (keeping in
mind that X is a Killing vector field of g)

o Q 1 Q 1 asPIT yv Q
(U —UP|,_j)dZ 5 == ([U NG —§\/|detg|g"[ 5ﬁvﬂx -U ﬂ|gg>dzaﬁ

1 _
T (\/ [detg|g#e — /[ detg| gﬂ[a) V, XPdS 5+ n.c.

= g (360”/ Xl/gipgyo'vpggﬂ - (gﬂ[o - e_lf)”[o)vﬂXi])NdG,- +n.c.

Here we have used dSy,; = Ndo;, where N is the
lapse function of the foliation by the level sets of 7,
defined by writing the metric as g=—N2df* +
g1y (dx! + N'drt)(dx’ + N’ dt). We conclude that

1 , -
H(8) = tim [ G8x715,,9,07

T R—>

— (¢ — e~ 'g*)V X1 )Ndo;. (3.43)
We can apply the last formula to the background Killing
vectors 0; and 0, for Rasheed metrics with P # 0.

A calculation gives

[

pi =0, ps = 47PQ. (3.44)

Here one can note that 0, is g-covariantly constant so that
the last term in Eq. (3.43) certainly does not contribute,
while p, = p, = 0 follows from the axisymmetry of the

Rasheed metrics. [In fact, VX = O(r~2) or better for these
Killing vectors so that the last term never contributes in the
current case.]

Equation (3.43) applies for completely general background
metrics g, assuming that Egs. (3.40) and (3.31) hold, for alarge
class of field equations. In particular, it applies to asymptoti-
cally Kottler (“anti—de Sitter””) metrics, cf. Refs. [19,21-23].
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IV. ENERGY-MOMENTUM AND THE
CURVATURE TENSOR

For our further purposes it is convenient to rewrite
Eq. (3.10) in terms of the Christoffel symbols. As a first
step towards this we note the following consequence of
Eq. (3.34):

1 1
f _
Zﬂl}:dS(l/’) - § ’ (Vl + K — 2)| 6)441’51”'5%1(72

AdxStA -

dx’

A dxbrk, (4.1)

A. KK-asymptotic flatness

We assume again that X is g-covariantly constant; of
course, it would suffice to assume that VX falls off fast
enough to provide a vanishing contribution to the integral
defining the Hamiltonian in the limit.

In the KK-asymptotically flat case, Eq. (3.16) can be
rewritten as

(_1)n+K—1
167(n + K — 2)!R1—I>Iolo /S(R)xw Cone) Epik
% ngﬁﬂrﬂypdxél N

PuXe =

A dxbmk2 A dxt. (4.2)

In the standard asymptotically flat case, without Kaluza-
Klein directions, Eq. (4.2) can be used to obtain an
expression for the ADM energy-momentum in terms of
the Riemann tensor, generalizing a similar formula derived
by Ashtekar and Hansen in spacetime dimension four [5]
(cf. Refs. [4,24]), as follows. We can write

e, e, , X GPTH,dxST A - A dxEnm2 A dx?
= d(eye.ec XX GPTH dx A - A dxée2 A dxY)
— (=) e e, X GPX A2 A -

A (0,Typpdx® A dx’) +n.c.

A dxér-
(4.3)

PHYSICAL REVIEW D 96, 124002 (2017)

Inserting this into Eq. (4.2) and applying Stokes’ theorem,
one obtains

1
— )
PuXeo = oa(n = 2) A / €ugy &, X X RY s,

X dxs2 A oo Adxs2 A dx® A dx?
—%S‘:Z"-én—Z'sVﬂl/ S
1 li X“x'R,,,,dS"° (4.4)
=~ lm X , )
16(n — 2)m R—co S(R) Hvpo

which is the desired new formula.

Let us now pass to a derivation of a version of Eq. (4.4)
relevant for Kaluza-Klein asymptotically flat spacetimes. In
this case we will be integrating the integrand of Eq. (4.2)
over

Sl x TK = §9-2 x TXK,
So only those forms in the sum which contain a dx? A
- A dx¥TK=1 factor will survive integration. We will use
the following symbols:
(1) R%,s denotes the Riemann tensor of the (d + K)-
dimensional metric g, dx*dx".

(2) R%,.; denotes the Riemann tensor of the d-
dimensional metric g,,dx“dx".

(3) Rk, denotes the Riemann tensor of the (n + K)-
dimensional metric g;;dx!dx’.

4) R"jkf denotes the Riemann tensor of the n-
dimensional metric g;;dx'dx’.

No distinction between g,,dx*dx" and g, dx"dx"
will be made when K = 0. Keeping in mind that n.c.
denotes the sum of those terms which do not contribute
to the integral either because of the integration domain,
or by Stokes’ theorem, or by passage to the limit,

—LRM poydx® ndx! we find
|
€y Eg k. ;X”g‘/’F" ,,dx'fl A - A dxCer=s A dx?
= %ebcm] g Ay A XTGP odx™ A - A dx A dx
+% Cvar agsh, . Agy XEGPTH A, XA oo A dxer A dx?
Y ot XX A e A
+%d(eﬂﬂml._anmmh]X”n’lpF”Apxaldx“Z Ao A dxAer A dx?)
(d(d%(%)' Cruar.ap oA, A XNPXDNATH 4y A - A dxet A dx® + e,
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(d+ K -3)! o
— m€bcfa1...ad_3AlmAKxfx R®

(d+ K -3)! Y B B
+(d_z)!(lv_)l)!e'w”almad—zAlmAK—IX X lRlﬂad_lAdx 1A dx®? A A dxAK-' VAN dxA -+ n.c. (45)

dx-1 A dx® A -+ A dx3& A dx%i-2

Ad-1a4-2

Using

- Ax_ A_ d+K—1 sAab
Ehpway..ag oA, . A, XN AXD2N - N dxRt A dx =3(N = 1)!(=1) G €abay...aq

A dx®-2 A dx@tU A oA dx@HK

dx®-1 N dx® A -

after some reordering of indices one obtains

_])n
H —(7 i a _ a be
p”XOO - 327r(n - 1)!131—{20 /S(R) %rkx 1 [(n 1>€“1“2"'an72abCX R ay_1a,

— €ayaya,ap(AXRPA, 4 +2XARD, O]dx®2 A - Adx A dx®TH A A dx®TK (4.6)

(%)
Using
1
dx®@ A - Adx A dxTUA A dx K = —56“2'"“"46154 (4.7)

and

R, =R, — R, ,,

one obtains for the first term of the Hamiltonian integral [where in the fourth line below we use Eq. (C3)]

€arara, rabe X X R, dx® Ao A dx A dxT A A dxTE
1
_ —a, b
o _Eeulay-an_zubceaz el x XR can_lundSef
1

=5 (=1)"!(n = 3)1150n ine e xaRbe,  dS,;
=2(=1)""(n = 3) e X(R o + 65R . — 467 RI )dS,s

=2(=1)""(n = 3) e XR + 65/a(RE — R 1) = (8¢ RI, = 6% R )], (4.8)

|
Now, recall that finiteness of the total energy of matter ~ will vanish in the limit R — oco. Nevertheless, we will keep
fields together with the dominant energy condition  the Ricci tensor terms for future reference.
requires, essentially, that Using

T, =o(r; 4.9 1 aef ’

g ( ) ( ) —§€ala2...a”_lab€a2 anedeef = 3(_1))1(” - 2)'52’:2{7dsﬁf’
cf. Eq. (3.14). This, together with the Einstein equations,
implies that the Ricci-tensor contribution to the integrals  the terms involving (x) in Eq. (4.6) can be manipulated as

6(=1)"(n = 2)150¢ x1 QX R, 4 + XARD, \)dS,
2(=1)"(n = 2)\x (8are8) + 85Laber + 8455) (2X“RP, 4 + XAR, 1)dS,;
2(=1)"(n—

n—=2)12(xmXIRA,  + xleX/IR®A, | + x X@IRA, )
+ XA (x[anRe]fanA + x[eRf]ananA + x[fRa”]eanA)]dSef‘
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Renaming the indices, rearranging terms, and plugging the results into the integral, one obtains our final expression

p”X” —

_2n—2

n—

16(n — 2)m R—co

32” M / A { —2xP X R4S , + 5 (R, — R ) —4(5{;1{.7"1(4 _5%ZR.f]Aa]A)]

. 2(2xPXIRIA,, + x XTRP,,) + 3XAx“RI 41} dS, ¢

1
=—— lim / / (X“x”Ra,,ef + 4xlex9RS, — x*X/R€,
‘H’K

1

n—

Some special cases are of interest:
(1) Suppose that X* = &j; thus, X has only a time
component. At x’ = 0 we have

;
8(n

xlglm/ / [x/ROJO’—F x'(R/; —R%)

1
1(2 R0 =R ﬂdso“
n_

(4.11)

Po =

—x’R’

where the terms involving the Ricci tensor give a
vanishing contribution in view of Eq. (4.9) [and
similarly for Eq. (4.12) below].

(2) Suppose that XA = 0; thus, X has only spacetime
components. Then

1
Xo =
Pate =T6(n-2)n
x lim / / (X“x”Rahef + 4xlex9R/,
R—o00 S(R) TK
1
- x*X'R¢, - p— [(n—3)x*X/R,,

4 4xlexal RanA]> A (4.12)

We will see below that the first term on the right-
hand side is related to the Komar integral. It is not
clear whether or not the remaining terms vanish in
general. However, when X% =0, at r = 0 the third
term in the integrand gives a vanishing contribution,
so that the generators of space translations read

piXl, = hm/ / [X’ kR0
77,'R—>oo TK

4 2xli X7 (

n—

(4.13)

[(n—3)x*X/R",, + 4xleXIRM™ , +3(n - 2)XAxebebA]> dsS,;.

(4.10)

We also note that when K = 1 the contribution of the

fourth term in the integrand in Eq. (4.12) always

vanishes because then, denoting by x* the Kaluza-

Klein coordinate,
R, = RM,, =R b = =RY =o(r™),
which gives a zero contribution in the limit.

(iii) Suppose instead that X“ = 0; thus, X has only
components tangential to the Kaluza-Klein fibers.
Then, again at x° = 0,

A _ AveR ., Jb
PaXe 16 n—ln’R—»oo/ AKX xRy, 7dS,

— XAxR, "84
16 n—ln’R—»oo/ AK AB SO!’

(4.14)

where the decay o(r™") of the Ricci tensor of the
(n + K + 1)-dimensional metric has been used.

B. General case

For general background metrics, still assuming a
covariantly-constant g-Killing vector, we start by rewriting
Eq. (3.33) as

( 1 n+K—1
Hy(X.5) = 167r(n+K 2) 'R%o LE SAky-Lnea
X X”gipﬂwyﬂ dxt A - A dx5"+K-2 A dx?,
(4.15)
where
6%, =T, =T, = o(r™), (4.16)

with the last equality following from Eq. (3.27).

In order to obtain a version of Eq. (4.3) suitable to the
current setting. we will assume that there exists a vector
field Z with Z4 = 0 and a real number y > O such that
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V,zb =68+ 0(r7) mod (8.8,). (4.17)

Here we write “mod (6}, ;)" for a tensor which has the

form 6[,&__. + 6,4 for some tensor fields a and p. That is
to say, if X is a vector field tangent to the submanifolds
of constant #, r, and if “u, =0 mod (5,,5,), then
Xtu, =0.

We show in Appendix B that the vector field defined in
appropriate coordinates as

PHYSICAL REVIEW D 96, 124002 (2017)

satisfies Eq. (4.17) for a) asymptotically anti—de Sitter
metrics and b) general Rasheed metrics, in both cases
without the error term O(r77); equivalently, the exponent y
can be taken as large as desired. We have introduced the
O(r77) term for possible future generalizations.
We further assume that
V, X" = O(|X|r™?) mod (5},8,). (4.19)
which will certainly be the case if X is g-covariantly
constant. Last but not least, we replace Eq. (3.31) by the
requirement that

terms o(|X|r=27"), o(|Z||X|r=?/),and o (|X|r~#=7) give a vanishing contribution

to boundary integrals at fixed rand ¢, after passing to the limitr — oo.

(4.20)

Now, the identity that we are about to derive will be integrated on submanifolds of fixed » and #, so that any forms
containing a factor dr or dt will give zero integral. Assuming that there are no Kaluza-Klein directions (K = 0), we find

d(€1e,.c X ZOgPSTF,,dx= A -+ A dxb=2 A dx)
=V, (\/|detgl€yue, e, X ZE g STH, ) dx" A dx A -+ A dxb A dx

= 2 €, .9 Ty

n.c.

V,XYdx® A dx& A -+ A dxfer A dx?
N —

+ €ue, e X GPOTH, N, Z8dXT N dx A - A dx A dx!
————

dx*1+n.c.

+ (1), X gL dXE A -

A dxS A (V8Thdx A dx?) +n.c.

=8RG oy +0(r~))dx” ndx"

= e, e, X GPOTV dxt A - A dxEm2 A dx!

1
+ (=) =€, e XGPSR 0, Z50dx A -+ A dXE=2 A dx® A dx? + D

2

This identity replaces Eq. (4.3) in the current setting. One
can now repeat the remaining calculations of Sec. IV A by
replacing every occurrence of the Christoffel symbols by
the difference of those of g and g, every occurrence of the
Riemann tensor by the difference of the Riemann tensors of
g and g, and every occurrence of an undifferentiated x* by
Z*. Some care must be taken when generalizing Eq. (4.10)
when passing from the background Riemann tensor to the
background Ricci tensor, because in Eq. (C1) all indices
are lowered and raised with g. Thus, Eq. (Cl) is now
replaced by

3!5:11:? (Rﬂ/w? - Rﬂpar)gl g

= (Raﬂ.fy - R[apfvgﬂ]p) + (R - Rplgml)ggf

[ @ R sla f
—455RA ) + 26;; ¢"R,, - 2RI o0,

: (4.22)

(4.21)

|
The simplest situation is obtained when K = 0 so that
KN is reduced to a point, and Eq. (3.43) becomes

1 S .
H,(X,8)=——1i XvZE(RY ., — RO _gile
»(X.S) 8(71—2)7[131—{1010£(R){ (RY ¢ oed™)

+X0Z(R-R,,9") +2X"ZR,
—27"XOR1, + (z2x0gr — Xx*ZI0g")R
_ X[lxzi]ROp/{ygpi 4 X[uzO]Riphgp/l
—(n=2)(¢"0 — e~ 'g*)V, X1)}Ndo,.

vp

(4.23)

1. A#0

We wish to analyze Eq. (4.23) for metrics g which
asymptote a maximally symmetric background g with
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A # 0. This case requires separate attention as then the
background curvature tensor does not approach zero as we
recede to infinity. We note that the calculations in this
section are formally correct independently of the sign of A,

PHYSICAL REVIEW D 96, 124002 (2017)

but to the best of our knowledge they are only relevant in
the case A < 0.

It is useful to decompose the Riemann tensor into its
irreducible components,

1 R
Roprs = Wapys + ) (Ray9ps — Ras9py + RpsGay — RpyGas) — @-1d-2) (9p59ay = 9py9as)

1
= Wa/iyt‘i +— (Payg/)’(‘i - Parig[)’y + Pﬂr‘igay - P/)’ygaﬁ) +

d—2 d(d— 1) g/)’ﬁgay g/}ygaé )

where W 4,5 is the Weyl tensor and P, is the trace-free part of the Ricci tensor,

R
P/w = R/w _Eg;w'

This leads to the following rewriting of Eq. (4.23):

1 - . 2R ; 2R .
Hy(X,8) = ——— i XUZE( WO = WO gl — == 5060 - = 505, 4l
o(X.5) 8(n— 2)77,’R1—r>lolo 8E(R){ ( v gt nn+1) % nn+1) w9409

+ XO0Z1(R - R,,¢°*) + 2X*ZPR1, — 22*X R, + (2 X10¢P — X*ZP¢")R,,

2R 50 = v0lsi = 1240\ yi
CES) (X[UZI](S&QU]/) - X 20]5[,19y}p)9”i —(n=2)(¢"0 — 7 'g"*)V, X"} Ndo;.
Assuming that the background Weyl tensor falls off sufficiently fast so that it does not contribute to the integrals (e.g.,
vanishes, when the background is a space-form such as the anti—de Sitter metric), that both the energy-momentum tensor of
matter and e — 1 decay fast enough [cf. Eq. (3.41)], and setting

(4.24)

AHY = g;w _ g;w’
we obtain

1 : , 2R o . . . -

H,(X,8)=——1 X ZE WY, — 75[ g Alr ) — x071R  APA 7vxOAde — xvZIOAlPVR
oXeS) = R A aE(m{ ( %+ 1) W% A+ ( )R,,
2R

a— (4.25)

(X[yzi]é([)ﬂgv]ﬂ - X[DZO]éfigu]/))Am —(n- 2)Aﬂ[0vyxi] }Ndah

where we have also used the hypothesis (3.31) that terms such as |X||Z|A*A ,; and |X||Z|g,, A" fall off fast enough so that
they give no contribution to the integral in the limit. With some further work, one gets

1 . R . . -
H (X,8)=— i XvZEWOi DA — —(x, 7l -7 X1) =V X| Y Ndo,. 4.26
0.8) = gt tim [ Lozt - 900 | 0,0 - 2,00 9,0 I, (426)

To continue, we assume the Birmingham-Kottler form
(B1)—(B3) of the background metric g. If X is the g-Killing
vector field J, then, writing momentarily X, for g,, X",
V,X,dx° @ dx* = v[aX,,]dx" ® dx’ = J,X,)dx* ® dx*

1
= 8[G§D]0dx” ® dx¥ = Eargoodxr VAN dXO

1 - -
= 58,@00@1 A @0.

[

Using this, one checks that all terms linear in A in
Eq. (4.26) cancel out, leading to the elegant formulas

1 .
H,(X,8)=—1i XZ*WY% .Ndo,;
1
lim [ XYZEWY,dS,,. (4.27)

N 16(n—2)wR—~c0 OE(R)

which, at this stage, hold for all X belonging to the (n + 1)-
dimensional family of Killing vectors of the anti—de Sitter
background which are normal to {¢# = 0}.
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IfX=0

P then we have

PHYSICAL REVIEW D 96, 124002 (2017)

- - 1 1 1
VX, dx* @ dx* =V, X, 1dx* @ dx* = Ea(,gwdx” A dx? = Eargwdr Ade + Eaggwde A d

=VVsin0B@! A O3 + cos90? A @3,

where we used the coframe of the background metric (B1) with the following cobasis:

~ 1
O =—dr,

Q° =V Vvdt,
VV

Hence, in this coframe one obtains

V.X; = v/Vsind = —V,X;,

@ =rdo, O = rsinfdy. (4.28)

?ng =cosf = —vgxi.

Therefore, the second term of the integrand in Eq. (4.26) vanishes for r — co, since (keeping in mind that dSy; for i # 1

gives zero contribution to the integrals)

AO(x, 21 = 2, %) - A0 x1) = A anixzt L anog xi = A3y, ZiZladigx,
n(n+1) “ " " 2 a 2 : 2 NG 2 S
=(G33+433)X°
A 2 1 A0 r—o0
E (_2'\;V+2ﬁ> sin 0A30 7250,
|
Hence, Eq. (4.27) also holds for X = 0,,. Since all Killing 2. A=0

vectors of AdS spacetime can be obtained as linear
combinations of images of these two vectors by isometries
preserving {r = 0}, we conclude that Eq. (4.27) holds for
all Killing vectors of the AdS metric.

Once this work was completed, we were informed that
Eq. (4.27) had already been observed in Ref. [25], follow-
ing up on the pioneering definitions in Refs. [26,27]. We
note that our conditions for the equality in Eq. (4.27) are
quite weaker than those in Ref. [25].

|

ew,gl,,.ngK_}X”g’l/’(SF”W,dxé' A oo A dxFek=s A dx?

We pass to the case A = 0. We will impose conditions
which guarantee that all terms which are quadratic or higher
in g,, — g,, give zero contribution to the integrals in the
limit R — oco. Without these assumptions the final formulas
become unreasonably long. Hence, we assume Eqgs. (4.16),
(4.17), (4.19), and (4.20).

In the current context,
replaced by

the calculation (4.5) is

dx® A oo A dxA A dx®

(d+K —3)! o
= mebcfal...a(,_3A1...AKngb )
thal dxh +n.c.:r§21 dxne.
d+K-3)!
(d(_z)'(jv_)l)'ell/walmadzAlmAKleglpél—wAdeal VANPUVAN dxAK—' A dxA
d+K-3)! -
= ﬁ [vh(é'hcfu]__ud_sA]__AKnghe(sl—‘canal)dxh ANdx™ AL A dxAK A dx?

— €ty VX! gPOTF (o Z0dx" A dx® A L. A dXA%A dx®

~—

n.c.

- e,,cfa]__.a‘HAI“_AKngbeZ“lvhél—‘caedxh ANdx2 AN dxAK A dx*® + n.C.]

d+K-3)
AN =1

[vh(ei;wal...ad_zAl...AK_1XD¢ﬂ5FﬂApZaI)dxh ANdx® A LA dxAK-' VAN dxA

- elﬂl/al.“ad_zAl‘..AK_lthUgAparuApzaldxh ANdx™ A LA dxAK-l AN dXA

~—~

n.c.

— Eiva...aphy. A XOGPZON ST XM A dx® A LA dXRT A dXP 4 ne]
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_(d+K-3)!
~ (d-=3)!N!

L ([d+K-3)
(d—2)/(N -1
(d+ K —3)!

~ (d=3)IN!
(d+ K —3)!
~ 2(d-3)IN!

€hcfa|

agq-3

As before, in the last equality we have used the fact that the
first V,, terms in the first expression in each of the square
brackets can be replaced by V#, because each form
appearing in the first line above must already contain K
factors of the KK differentials dx*; otherwise, it will give
zero contribution to the integral.
In addition to all of the hypotheses so far, we will also
assume that the Riemann tensor decays at a rate o(r7#):
R%,; = o(r7x),

Raﬁy(g = O(I’_ﬂk), (429)

with fx chosen so that

terms|X||Z|o(r~%P#) give no contribution to the integral

in the limit R — oo. (4.30)

d(ebcfalmaHAl,”AKngbeéFCana'dx“Q VAN

A, .A.A,(Xfxa] gheéRc

Vyar AP SRH
€/1ﬂyu]...ad_2A|...AK_lxx g)L oR Pag_ya
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A dx A dx?)

)'d(el/wal...ad_zA]...AK_IXD¢[)5F”ApZaIdxh Adx® N LA dxAK-' VAN dxA)

dx-1 A dx® A - A dxA A dxfe-2

€dq—1a4-—2

dx®-1 A dx® A ... A dx%1 A dxd 4 n.c.

All of these conditions are satisfied by the five-
dimensional Rasheed metrics, with a > 0 as close to one
as one wishes, f =1+ a, fr = 3, and with y as large as
desired.

In line with our previous notation, we will write
R%,; — R%; 5 for the difference of Riemann tensors of
the (d + K)-dimensional metrics g, dx*dx" and g, dx*dx",
R%.;— R%,., for that of the d-dimensional metrics
Gapdx?dx? and g,,dx?dx?, R!;x; — Rk, for that of the
(n + K)-dimensional metrics g;;dx'dx’ and g;;dx'dx’, and
Riys —R'y, for that of the n-dimensional metrics
gijdx'dx’ and g;;dx'dx’.

With the above hypotheses, the derivation of the key
formula (4.10) follows closely the remaining calculations in
Sec. IVA, and leads to

H, (X, 8)=—1i Xe7ZP(R ,¢f — R ,¢f 4z[eXa] R/ — RS
b( ) 16(n—2)f[R1—1;1;>10{\/0E( )( ( ab ab >+ ( a (l)
_ 1 B )
— Zé‘Xf(RCc — RCC) _ p— [(}’l _ 3)ZeXf(RbAhA _ RhAhA) + 4Z[exa](RfAuA _ RanA)

+3(n=2)X"Z° (R — bebA)])dSef -

For Rasheed solutions, or more generally for solutions
which asymptote to the Rasheed backgrounds g given by

Eq. (A34) with the usual decay o(r~("2/2), with

T,w o(r=3), one has [cf. Eqs. (A43)-(A44)] R®,,, =0,
R, =0(r"), and R, = O(r™*). Thus, for X =9,

and after passing to the limit R — oo, we obtain an
integrand which is formally identical to that for metrics
which are KK-asymptotically flat:

(n=2) [) E(R)(gﬂ[a — ! g"[“)vﬂXb]dSab}. (4.31)

H,(X.8)= XYZ'RY,,dS .,

16(n 6(n—2)rh / st

(2% » JU .
= z)ﬂ_Rl_I){.lo/ xSlXXR ,Ndo;. (4.32)

Some special cases, without necessarily assuming that g
asymptotes to the Rasheed background, are of interest:
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(1) Suppose that X* = §; thus, X has only a time component. Keeping in mind that Z° = 0 and OE(R) C {x° = 0}, we
have

1 : j i v, i 1 i j RJ R j i R

Hy,(9p, S) —mlgg&{/&m (Zf(RojO —Ry") +5Z/(R/; = R% + R/; - R%) - Z/(R; - R'))
1

2(n—-1)

=) [ (- e‘lgﬂm)vﬂx”dsm}
OE(R)
= ; lim / lzi(RJZ —RJ ) - Z«f(R I _R Au)
8(n - 2)77.' R—o0 OE(R) 2 J J 1j 1j

1
2(n—1)

~(n-2) [) . (¢ - e-'gﬂ[")%xﬂdso,}. (4.33)

[ZI(R™p, —R™,,) — 2Zj(RiAjA - RiAjA>]>dSOi

[ZI(R™, = R™,) — ZZj(RiAjA - RiAjA>]>dSOi

(2) Suppose that X = 0; thus, X has only spacetime components. Then

1 _ _
H,(X,S8)=————1i XZP (R, = Rypel) 4 4z x4 (RS, — RS
08) = e i { [ (X2 R Ry )+ sz R, - R
_ 1 _ _
- Z°X/(R¢, —R¢,) — — [(n—3)Z¢X/ (RP,, — RY, ) + 4ZIE XU (RIA 4 — RanA)]> dS.s
-2(n=2) / (g0 — ¢! gﬂ[o)?ﬂxﬂdso,}. (4.34)
OE(R)

We will see below that the first term on the right-hand side is related to the Komar integral. It is not clear whether or
not the remaining terms vanish in general. However, when X° = 0, at t = 0 the third and fourth terms in the integrand
in Eq. (4.34) give a vanishing contribution so that the generators of space translations read

I | N ) )
H,(X =———11 XiZkK(R ., — R0 7lixi) ROA., — ROA. RO — RO -
»(X,S) S(n_z)ﬂgg{ém( (Rix iw’) + [n_1< i i) + RO, ,Ddsoj
—(n-2) / (gﬂ[o - e_]é”[o)vﬂXi]dSOi}. (4.35)
OE(R)

(3) Suppose instead that X¢ = 0; thus, X has only components tangential to the Kaluza-Klein fibers. Then, again at
X0 =0,

3 _ 1 =
H,(X,S) = lim 7/ XAZ¢(R,p"" — Ry, /)dS, ——/ 0 — =150V X11dS } 4.36
8 = gim (s [ oz~ R as - [ 00T, | @36)

R—o00

C. (n+K) + 1-decomposition metric and of the extrinsic curvature tensor. For this

. . i _ 0_0 ;i -
In a Cauchy-data context it is convenient to express W€ consider X/ = & and x”=0, ie, we consider
the global charges explicitly in terms of Cauchy data. Eq. (4.33). . ) o
Here one can use the Gauss-Codazzi-Mainardi embedding We start with the case of KK-asymptotically flat 11}1tlal
equations to reexpress our spacetime-Riemann-tensor inte- daita :ets. Keeping in nzmd our convention that (x ) =
grals in terms of the Riemann tensor of the initial-data  (*'»x"),wecanreplace R';x; withthe (n + K)-dimensional
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Riemann tensor, which we denote by R’ ¢, , by means of the
Gauss-Codazzi relation

RI_"(L = RIJKL + 0(7'_2{1_2). (437)
Hence, from Eq. (4.11) we obtain

1 ) . 1 .
=——1i I R, Rk 5.
Po 8(n —2)]1’1?1—1;120 /S(R) ANX ( / +2(n— 1) k%

1 .
+ anlAjA)NdO'i.

(4.38)

We note that in the usual asymptotically flat case, K = 0, the
last integral is not present. Further, R¥; then becomes the
Ricci scalar of the initial data metric, with RF, = o(r2%72)
because of the scalar constraint equation, and hence does not
contribute to the integral. Thus, the above reproduces the
well-known-by-now formula for the ADM mass in terms of
the Ricci tensor of the initial data metric [28-31] when the

PHYSICAL REVIEW D 96, 124002 (2017)

Egs. (B1)—-(B3). Let k;; be the extrinsic curvature tensor of
the slices {x" = const}. If we assume that k;; satisfies

|kl = \/ " g"M ki kgps = o(r=/?),

from Eq. (4.27) we obtain a formula first observed in
Ref. [30]:

(4.39)

1 /. R._
H,(X,S)=————1i Xz Ri, ——6t
+(%.5) 16(n — 2)z &> Jos) ( ' on ")

X Nd(fl', (440)

where in Eq. (4.40) we have assumed that X is a Killing
vector of the anti—de Sitter background which is normal to
the hypersurface {r = 0}.

Finally, consider general configurations as in Sec. IV B 2.
Under the hypothesis that

Ricci scalar decays fast enough, as we assumed here. |k[>|Z||OE(R)| = r-oo O, (4.41)
We pass now to the case covered in Sec. IV B 1, namely,
K =0 but A <0, with the background metric g as in  from Eq. (4.33) we find
|
Hy(00,8) = ——— 1im / LRI i) - (R R
8(1’! - 2)7‘[ R—o0 OE(R) 2 J J J J
1 . _ - o , _
T2n=1) [Z'(R*y = R*y) = (R4 = R*y)) —2Z/((R; = R';) — (R*, — R’kjk))]>Nd0'i
—(n—2) lim (g0 — ¢! gﬂ[o)vﬂxiwdai}. (4.42)
R—o0 OE(R)

V. KOMAR INTEGRALS

If X* is a Killing vector field of both g and g, we have
X”Rﬂbcd = vvaXd, and X”Rﬂbcd = vbchd. (51)

This allows us to express some of the integrals above as
Komar-type integrals.

lim XZP (R, — Rabef)dSef = lim
R=00 JOE(R) R=c0 JOE(R)
= lim
R—o0 OE(R)

f

We start with the setup of Sec. IV B 2; the KK-asymp-
totically flat case can be obtained directly from the
calculations here by setting Raﬂﬁ = 0. To make things
clear, we assume Eqs. (4.16)—(4.17) and (4.19)—(4.20),
together with Eqs. (4.29)—(4.30), and recall that all these
hypotheses are satisfied under the corresponding hypoth-
eses made in the KK-asymptotically flat case.

The contribution from the first integrand in Eq. (4.31)
can be manipulated as [32]

[(XUely, — XUl )70 — XAZP (R 4p* = R )]dS s

>

{(n = 1)(xle] — xlelfly — 3(xlesr Z81) 4 3(X[e||fzb])”b

+2(R,,PVZel = R, PV ZeN X1dS, p — XAZP (RS — R 7)) }dS,

= lim {(n - 1)/ (xlesh) — X["‘”ﬂ])dSa/, _|_/ 2x*7¢(R/?,, — R/,
OE(R) OE(R)

R—00

XAZD(R e — RAbffﬂdsef},

(5.2)
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where the semicolon (;) denotes the covariant derivative of the metric g and the double bar (||) denotes the covariant
derivative of the background metric g. Moreover, we used Gauss’ theorem, e.g.,

lim (XN ZP), /| det g|d=, ; = I;EEO /6E<R) (Xl Z), /| detgldZ,; = 0

53
R— OE(R) ( )

Hence, under the hypotheses used in the derivation of Eq. (4.31), we can rewrite Eq. (4.31) as

1
H,(X,S)=——1i — 1)(X=A = xlelfgs
WX 8) = 1 2)m‘l‘30{ /aE(m(” A )dSap

+ / <2X”Ze(bebﬂ —R7,,) = XAZP (R, = Rypel) + 4ZXI (RS, - R/ ,)
JE(R)

1

n—

~ 2 (R~ RE,) -

+3(n=2)X"Z¢(R/?,, — bebAﬂ) dSer — (n -

[(n =3)Z°X/ (R",

—RM,,) +4ZEXU(RA = RIA )

2) lim
R— o0 OE(R)

(gt — 7! gﬂ[“)vﬂxb]dsab}. (5.4)

The first integrand is the difference of the Komar integrands of ¢ and g.
Specializing to the KK-asymptotically flat case for background-covariantly constant Killing vectors, this reads

1
X 1
Pu 16(n - )JZ'RI—EIOIO{

+ 3(l’l - 2)XAxethbA]> dSef}

Thus, it appears that in general Komar-type integrals do
not coincide with the Hamiltonian generators. This is really
the case, as can be seen for the Rasheed solutions. Using
Eq. (A33), one readily finds for X = 0, (keeping in mind
that n = 3)

2n(M + %), P =0,
— lim / / X /’dS,l/; V3
87r R—co 5! 8xP(M + %), P #0,
(5.6)

which does neither coincide with pq [cf. Eq. (3.23)] nor
with the ADM mass of the space metric g;;dx’dx’. Note that
the Komar integral of the spacetime metric g,,dx“dx" will
equal M + % regardless of the value of P.

Next, for X = 0, we obtain

4rQ, P =0,
— lim / / X"ﬁdSa/; =
87 R—oo st 16zPQ, P #0,

which is twice the Hamiltonian charge py.
As a simple application of Eq. (5.6), suppose that there
exists a Rasheed metric without a black-hole region. Since

(5.7)

P
o[ [ s,
. 1
+ / / <2X”)C8beb” - XAxbRAbef —
S(R) JTV n—1

[(n = 3)x¢X/RP,, + dxlexIR/A,,

(5.5)

|
the divergence of the Komar integrand is zero, we obtain
M = —X/+/3. But this is precisely one of the parameter
values excluded in the Rasheed metrics, cf. Eq. (A4) below.
We conclude that the regular metrics in the Rasheed family
must be black-hole solutions.

For the case of metrics which asymptote to a maximally
symmetric background g with A # 0, as in Sec. [V B 1, the
Komar integral resulting from Eq. (4.27) reads

1
Hy,(X,8)=——1i
b( ) 16(11—2)71’1?1—{1010 OE(R)

n—1
= lim{——— Xl ds
R—»oo{l6(n 2w /() K
A

— ayzp
4(n-2)(n—- l)nﬂLE(R)X g dsaﬂ}' 5-8)

VI. WITTEN’S POSITIVITY ARGUMENT

The Witten positive-energy  argument [33,34]
(cf. Ref. [35]) generalizes in an obvious manner to KK-
asymptotically flat metrics. Assuming that the initial data
hypersurface S is spin, we consider the Witten boundary
integral WV defined as

XYZEWS .dS,,
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W(s) = lim Uldo;, (6.1)
R—co [g(R)xTK
U = (. D'+ /DY), (62)

where ¢ is a spinor field which asymptotes to a constant
spinor ¢, at an appropriate rate as one recedes to infinity in
the asymptotic end, and P :=y’/D; is the Dirac operator
on S. (Note that the asymptotic spinors ¢, might be
incompatible with the spin structure of S, in which case
the argument below of course does not apply; cf. Refs. [36—
38].) It is standard to show that in the natural spin frame
we have

1 n+K

U = ZZ(aLgIL —0191L)pol* + 0(r2*7).
=

(6.3)

Assuming a positive and suitably decaying energy density
on a maximal (i.e., ¢’/ K;, = 0) initial data hypersurface,
such that

Sis metrically complete and either is boundaryless

or has a trapped compact boundary, (6.4)
the proof of the existence of the desired solutions of the
Witten equation D¢ =0 can be carried out along lines
identical to the usual asymptotically flat case, cf., e.g.,
Refs. [39,40]. Comparing with Eq. (3.19), we conclude that
the positivity of W is equivalent to positivity of the
Hamiltonian mass:

po=>0.

It should be emphasized that p, does not necessarily
coincide with the ADM mass of g;,;dx'dx’.

The above argument required the positivity of the scalar
curvature of g;;dx'dx’. This is not needed if one replaces
the usual spinor covariant derivative in Eq. (6.2) by

1
Dy — D;+ EKljyl}’O‘ (6.5)
The Witten quadratic form W instead becomes
lim uido-i = 4]1'[7” <¢oo’ yﬂy0¢oo>7 (66)

R— S(R)xTK

and is non-negative for all ¢, when the dominant energy
condition is assumed on initial data hypersurfaces as in
Eq. (6.4). The positivity of W is equivalent to the time-
likeness of the (n + K + 1)-vector p,. Equivalently,

n n+K
pi=Y piz Y pi20. (6.7)
i=1 A=n+1
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The first inequality is saturated if and only if the initial data
set can be isometrically embedded in R x R" x TX
equipped with the flat Lorentzian metric (cf. Ref. [41]).
As an example, consider the Rasheed metrics with
P = 0. The corresponding domains of outer communica-
tions have the topology R x S' x (R*\B(R)), where the R
factor corresponds to the time variable, S ' is the Kaluza-
Klein factor, and the R*\ B(R) factor describes the space
topology of the black hole. It thus has the obvious spin
structure inherited from a flat R x S' x R3, together with
the obvious associated parallel spinors. Therefore the
Witten-type argument just described applies, leading to
M?* > 0, (6.8)
where the inequality is strict for black-hole solutions. If we
denote by M spy the ADM mass of the three-dimensional-
space part of the Rasheed metric, this can be equivalently
rewritten as

T\ 2
<MADM + —> > Q% (6.9)

V3
cf. Ref. [42].

Note that Eq. (6.9) does not exclude the possibility of a
negative or vanishing M py (cf. Refs. [36,43,44]). We
have not attempted a systematic analysis of this issue, and
only checked that all Rasheed solutions with ¢ = 0 and
M = 0 have naked singularities outside of the horizon.

VII. SUMMARY

In this work we have considered families of metrics
asymptotic to various background metrics, and studied the
Hamiltonians associated with the flow of Killing vectors of
the background. We have derived several new formulas for
these Hamiltonians, generalizing previous work by
allowing a cosmological constant, or nonstandard back-
grounds, and allowing higher dimensions. In particular:

We have derived an ADM-type formula for Hamilto-
nians generating time translations for a wide class of
background metrics, cf. Eq. (3.39).

We have provided a formula for Hamiltonians generating
translations for KK-asymptotically flat metrics in terms of
the spacetime curvature tensor [Eq. (4.10)].

We have derived a formula for Hamiltonians associated
with generators of all background Killing fields for
asymptotically anti—de Sitter spacetimes in terms of the
spacetime curvature tensor [Eq. (4.27)].

Equation (4.31) provides a similar formula for a wide
class of backgrounds with A = 0.

Equations (4.40) and (4.42) provide space-and-time
decomposed versions of the last two Hamiltonians.

In Sec. V we have derived several Komar-type formulas
for the Hamiltonians above for vector fields X which are
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Killing vectors for both the background and the physical
metric.

In Sec. VI we have pointed out the consequences of a
Witten-type positivity argument for K K-asymptotically flat
spacetimes: instead of proving the positivity of the ADM
energy, the argument provides an inequality involving the
Kaluza-Klein charges and the energy. An explicit version of
the inequality has been established for KK-asymptotically
flat Rasheed metrics.

In addition to the above, we have carried out a careful
study of Rasheed metrics (see Appendix A) to obtain a
nontrivial family of metrics with singularity-free domains
of outer communications to which our formulas apply. We
have pointed out the restrictions (A20) and (A22) on the
parameters needed to guarantee the absence of naked
singularities in the metric. We have shown that all metrics
satisfying these conditions together with P =0 have a
stably causal domain of outer communications, and we
have given sufficient conditions for stable causality when
P # 0in Eq. (A24). In Appendix A 3 we point out that the
Rasheed metrics with P # 0 are not KK-asymptotically
flat, and describe their asymptotics. We have determined
their global charges, which are significantly different
according to whether or not P vanishes.

Last but perhaps not least, Eq. (C3) provides a useful
identity—which we have not seen in the literature—that is
satisfied by the Riemann tensor in any dimensions and
generalizing the usual double-dual identity valid in four
dimensions.

ACKNOWLEDGMENTS

Useful discussions with Abhay Ashtekar and comments
from Eric Woolgar are acknowledged. This work was
supported in part by the Austrian Science Fund (FWF)
under Projects No. P23719-N16 and No. P29517-N27 and
by the Polish National Center of Science (NCN) under
grant 2016/21/B/ST1/00940. We are also grateful to the
Erwin Schrodinger Institute for Mathematics and Physics,
University of Vienna, for hospitality and support during
part of work on this paper.

APPENDIX A: AN EXAMPLE:
RASHEED’S SOLUTIONS

Rasheed [45] has constructed a family of stationary
axisymmetric solutions of the five-dimensional vacuum
Einstein equations which take the form

B A
ds%s) =2 (dx* +2A,dx")? + \/;dsa), (A1)

where a, M, P, Q, and X are real numbers satisfying

Q2 + P2 _22
S+MV3 T-MV3 3

(A2)
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M>+32—P2-Q*#0,  (M+Z/V3)’ -0 #0,

(M —%/V3)? = P2 #0, (A3)
z
M+ —#0,
\/g#
o L3V - (M =2/ VAP =P
MZ + 22 _ P2 _ Q2 ’
(A4)
and where
G VvAB
dS%4> === (dt + & ydep)* + A dr?
AVAB
+ VABdO* + G sin?(0)dd¢?, (AS)
with
2P’T
A=(r—-3/V3)* - S-MV3 + a*cos?(0)
2JPQ cos(6)
(M +2/V3)? -0
20°%
B=(r+3/V3)"——==_ 1 a’cos*(0
(4 2/VE) - 8 deost(0)
2JPQ cos(0)
(M ~%/V3)? - P>
G =1’ —=2Mr + P> + Q% — 3% + a*cos?(6),
A=r’—2Mr+P*+ Q*-3* + d%,
2Jsin?(6
ty = 2010 Oy g
J? =a’F?, (A6)
whereas E is given by
M?> 4+ 32— P2 - Q%) (M+X2/V3
Ee oy M Q*)(M +%/V3) (A7)

(M +3/V3)* - 0

The physical-space Maxwell potential is given by

C C
2A,dx! = Edt + (ws(/, + Ewod’) de, (A)

where
B 3 _2PJcos(9)(M+Z/\@)
C=20(r-3%/V3) VBN (A9)
oy = g (A10)
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and
H:=2PAcos(0)

_2QJsin*(0)[r(M —2//3) + MZ/V3+32 - P2 - Q7]
[(M+2/V3)* -0 '

(A11)

The Rasheed metrics (Al) have been obtained by
applying a  solution-generating  technique  [45]
(cf. Ref. [46]) to the Kerr metrics. This guarantees that
these metrics solve the five-dimensional vacuum Einstein
equations when the constraint (A3) is satisfied. As the
procedure is somewhat involved, it appears useful to cross-
check the vanishing of the Ricci tensor using computer
algebra. We have been able to verify this in the P = 0 case
with SAGE (which required a week-long computation on a
personal computer), as well as for a set of samples for the
parameters (M, a,P,Q,%) in the P #0 case with
MATHEMATICA. We have, however, not been able to do
it for the full set of parameters.

Let us address the question of the global structure of the
metrics above. We have

detg = —AZsin?(9),

which shows that the metrics are smooth and Lorentzian
except possibly at the zeros of A, B, G, A, and sin(@).

After a suitable periodicity of ¢ (as in Sec. A 3 below)
has been imposed, regularity at the axes of rotation away
from the zeros of denominators follows from the factor-
izations

(A _ 1) o a*sin’(0)
G ) dcos*(0) —2Mr+ P>+ Q>+ 12— X
(A12)
A ~ sin?(0) 2JC
2A¢—2Pacos(9)_ e (7—[_1_?[,,_’_1;])’ (A13)
where
H = _2QJ[V(M—2/\/§) +M2/\/34+32 - P2~ 0]

(M +2/v3)* - Q7]
(A14)

It will be seen below that, after restricting the parameter
ranges as in Eqs. (A20) and (A22), the location of Killing
horizons is determined by the zeros of

9w Gy G4
g¢, g¢¢ g¢4 = —Asin2 (9), (AIS)
94r  Y9ap  YGas
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and thus by the real roots r_ > r_ of A, if any:

re=ME\VM*+32-P*—Q>—d>. (Al6)

1. Zeros of the denominators

The norms

9 = and gy =

|

w
AB
of the Killing vectors 9, and J, are geometric invariants,
where W = —GA + C2. So zeros of A and AB correspond
to singularities in the five-dimensional geometry except if

(1) a zero of A is a joint zero of A, B, and W, or if
(2) a zero of B which is not a zero of A is also a zero

of W.
Setting
2JP
A= — ¢ @
a*((M+2/V3)" - %)
one checks that if
2P25 2

—=—=-—qa*(1—|A|) =0, when |4 >2 or
A (a18)
sows T4 =0, when |Al <2,

then A vanishes exactly at one point. Otherwise the set of
zeros of A forms a curve in the (r, §) plane. Let 6 — r} ()
denote the curve (say, y) corresponding to the set of largest
zeros of A.

Note that W and A are polynomials in 7, with A of second
order. If W/A is smooth, the remainder of the polynomial
division of W by r — r} must vanish on the part of y that
lies outside the horizon. One can calculate this remainder
with MATHEMATICA, obtaining a function of 6 which
vanishes at most at isolated points, if at all. It follows that
the division of W by A is singular on the closure of the
domain of outer communications (d.o.c.), i.e., the region
{r>r.}, if A has zeros there, except perhaps when
Eq. (A18) holds.

One can likewise exclude a joint zero of W and B in the
closure of the d.o.c. without a zero of A, except possibly for
the case where this zero is isolated for B as well, which
happens if

FCE—a(1-|B) =0, if [B[>2 or
203 B _ ; (A19)
s T =0, if [B]<2.

See Ref. [47] for a more detailed analysis of the border-
line cases.
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To summarize, a necessary condition for a black hole without obvious singularities in the closure of the domain of outer
communications is that all zeros of A lie under the outermost Killing horizon r = r_ . One finds that this will be the case if

and only if

2P’y (

e s @ 1-|A]) <0, or
| |> an M+\/M2+22 Q2 2>z + 2Py _a2(1_ )
=-MV3 ’
or
2P’% ZA?
|A] <2 and A B (A20)
-0 M+/M+32 P - Q> —a? > L4 [2BE | o
=-Mv/3 4>

except perhaps when Eq. (A18) holds.

An identical argument applies to the zeros of B, with the zeros of B lying on a curve unless Eq. (A19) holds. Ignoring this
last case, the zeros of B need to be similarly hidden behind the outermost Killing horizon. Setting

2JP
= — Q 5 , (A21)
A(M—2/v3) - P?)
one finds that this will be the case if and only if
202 _ 2(1-B|) <0
b M\/§ a ( | |) < or
|B| >2 and B o
M+ M+ -P - QP —a > L+ \/Zﬁwﬂ—az(l —|B)).
or
2Q > aZBZ
+ <0, or
I+MV3
B<2 and { o (A22)
232 _ p2 2_ 2 p) a
M+ /M*+32-P -0 -a®> -1+ o+
except perhaps when Eq. (A19) holds. . EM +4q (A24)
While the above guarantees the lack of obvious singu- +2 M+E’
larities in the d.o.c. {r > r,}, there could still be causality
violations there. Ideally, the d.o.c. should be globally = which is sufficient but not necessary, where ¢ :=
hyperbolic, a question which we have not attempted to P> + Q% — X? + a®>. We hope to return to the question of

address. Barring global hyperbolicity, a decent d.o.c.
should at least admit a time function, and the function ¢
provides an obvious candidate. In order to study the issue
we note the identity

4J2[r + E)*sin*(0)

— ABA
AAG )

9" = (A23)

A MATHEMATICA calculation shows that the numerator
factorizes through G, so that g® extends smoothly through
the ergosphere. When P = 0, one can verify that g%
negative on the d.o.c. For P # 0 one can find open sets of
parameters which guarantee that ¢” is strictly negative for
r > r, when A and B have no zeros there. An example is
given by the condition

causality violations in the future.

In Fig. 1 we show the locations of the zeros of A and B
for some specific sets of parameters satisfying, or violating,
the conditions above.

Another potential source of singularities of the metric
(A1) could be the zeros of G. It turns out that they are
irrelevant, which can be seen as follows. The relevant
metric coefficient is g4, which reads

B 5 C 0 2
9o = 7\ D0 T 5P

A G

A Z 0.2

2
Taking into account a G~ factor in @, it follows that g,
can be written as a fraction (...)/ABG?. A MATHEMATICA

—i—A\/«sm (0 )>. (A25)
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—— inner Killing horizon
— outer Killing horizon
—— ergosurface

—— zero set of A
—— zero setof B

FIG. 1.

zeros of A, B. Left plot: M = 8,a = 33

_8 y__2 p_
0 9=5.x=-5.P=

1
5

Two sample plots for the location of the ergosurface (zeros of G), the outer and inner Killing horizons (zeros of A), and the

W ~ —7.86, with zeros of A and B under both

horizons, consistently with Eq. (A20) and (A22). Rightplot: M = 1,a = 1,Q = 0,% = /6, P = /4 — 2/2 = 1.08; here, Eq. (A20) is

violated, while the zeros of B occur at negative r.

calculation shows that the denominator (...) factorizes
through AG?, which shows indeed that the zeros of G are
innocuous for the problem at hand.

Let us write ds%4) as Yg,,dx?dx". The factorization just
described works for g, but does not work for (4)g¢¢. From
what has been said we see that the quotient metric
#)g,pdxdx” is always singular in the d.o.c., a fact which
seems to have been ignored, and unnoticed, in the literature
so far.

2. Regularity at the outer Killing horizon H ,

The location of the outer Killing horizon H, of the
Killing field

k = 8, + Q(/,a(/) + Q48x4 (A26)

is given by the larger root r, of A, cf. Eq. (A16). The
condition that H, is a Killing horizon for k is that the
pullback of g, k” to H, vanishes. This, together with

A|H+ =0, G|H+ = —azsinz(e), (A27)
yields
1 a?
Q)= —— = — E)~!,
¢ a)()[/) 'H+ 2] (r+ + )

2(A,0°, — A

Q= - (Aw g d))
w @ H,

Q(=3Mr, —\/3MX +3P% + 30Q% +/3rX — 3%?)
(E+ r,)(3M? +2/3MX — 3Q% + X?)
(A28)

After the coordinate transformation

b=¢—Qudt, T =x'-Qud1, (A29)
the metric (A1) becomes
dr? )
g=gS+T+AUdt, (A30)

where ¢y is a smooth (0, 2) tensor, with U := g,/A
extending smoothly across A = 0. Introducing a new time
coordinate by

t=t—ocln(r—ry) = dr=dt— dr, (A31)

Iy

where o is a constant to be determined, Eq. (A30) takes the
form

2 42
g—gs—i—AU(dT—i— 2 dr) +_r
r—ry A
2AU 1 AUG?
= gy + AUd7*> + % dvdr + e 5 |dr?
r—ry A (r—ry)
2AU. —r )2+ AU
o+ AUdR + 2BV gy U Z=ar,
r—rg Alr—ry)
v
(A32)

In order to obtain a smooth metric in the domain of
outer communications the constant o has to be chosen
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so that the numerator of V has a triple zero at r = r.
A MATHEMATICA computation gives an explicit formula
for the desired constant ¢, which is too lengthy to be
explicitly presented here. This establishes the smooth
extendibility of the metric in suitable coordinates across
r=r,.

It turns out that when P # 0, the Rasheed metrics do not
satisfy the KK-asymptotic flatness requirements anymore;
indeed, the phase space decomposes into sectors, labeled
by P € R, in which the metrics g asymptote to the back-
ground metric

G = (dx* +2Pcos(0)dp)* — dt* + dr* + r*d6?

+ r2sin2(0)dg?. (A34)

The metrics (A1) and (A34) are singular at sin(8) = 0.
This can be resolved by replacing x* by ¥* (respectively, by
x*) on the following coordinate patches:

0 €0,x),

0 e (0, 1. (A35)

3= x* = 2Pg,

{ = x* + 2Pg,
Indeed, the one-form
dx* + 2P cos(0)dgp = dx* + 2P(cos(8) — 1)dep

=dx* —

r(r+z) (xdy = ydx)

is smooth for » > 0 on {0 € [0, z) }. Similarly the one-form
dx* + 2P cos(0)dgp = dx* + 2P(cos(0) + 1)dg

=dx* +

=2 (xdy — ydx)

is smooth on {8 € (0, z], r > 0}. The smoothness of both ¢
and g in the d.o.c., under the constraints discussed above,
readily follows.

We note the relation

X = 4 4Py, (A36)

2M 2%
=+ 7 0 0
M2 2% 2Mxy
0 =t p
0 2Mxy 2My? 2y
rS r3 \/gr
2M. 2Myz
0 sz T;
£ 0 0
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3. Asymptotic behavior

When P =0 the Rasheed metrics satisfy the KK-
asymptotic flatness conditions. This can be seen by
introducing manifestly asymptotically-flat coordinates
(t,x,y,z) in the usual way. With some work one finds
that the metric takes the form

20
+1 e 0 | +0(r). (A33)
WE_Z 410
0 F+1

which implies a smooth geometry with periodic coordi-
nates x* and x* if and only if

both ¥* and x* are periodic with period 8Pz.  (A37)

From this perspective x* is not a coordinate anymore;

instead, the basic coordinates are X* for 6 € [0, z) and x*
for @ € (0, z], with dx* (but not x*) well defined away from
the axes of rotation {sin(@) = 0} as

dx4—{

a. Curvature of the asymptotic background

dx* — 2Pdg,
dx* + 2Pdg,

0e€l0,x),

0 e (0, 1. (A38)

We continue with a calculation of the curvature tensor of
the asymptotic background. It is convenient to work in the
coframe

el = dx, e = dy,
0% = dx* + 2P cos(0)dg.

@0 = 4,

0 = dz, (A39)

which is manifestly smooth after replacing dx* as in
Eq. (A38). Using

d®* = —2Psin(0)d0 A dp = —2P=0;] (dx A dy A d2)
r

PO . A 2
SO k
€;54X dx) A dx*,

3

(A40)

where 2;}. ; €{0,£1} denotes the usual epsilon symbol,

one finds the following nonvanishing connection

coefficients:
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A P A= _7 P o =1
a)4§ = 36 A»i(xj@ s a)’} = 76‘?}-;()6"@4, (A41)
where x' = x'. This leads to the curvature forms
Ol — Po k2 51} o’ A &
} = ﬁ ik —2X x4+ > A
2P2 o A =7 - %
m i@k 4
_Fe?rh(icejmfx X" A OF,
o, — P i £ & \&F A OF
i3 ijk 2x X+ 7 A
PZO o N 2-/\. _a
+_6 ,;,hje,;;g,xmx ®/ A O, (A42)
r

and hence the following nonvanishing curvature tensor
components:

—& on o A 2

R 1547 6 ChmiChiaN X

— 2P2 o o o o }’;l ﬁ

Rijee =~ 6 (€506 + € pp€rya)x"x".  (A43)

The nonvanishing components of the Ricci tensor
read

_ 2P, o .
A — A i AxylyI
R;s = /6 Crmi€haX X
- P20 o }’h 2
Rz =——getnicrisx"x". (A44)

Subsequently, the Ricci scalar is R = —2P2/r*,

4. Global charges: A summary
For ease of future reference, we summarize the global
charges of the Rasheed metrics. Let p,, be the Hamiltonian
momentum of the level sets of 7, and let p, spm be the
ADM four-momentum of the space metric g;;dx'dx’.
Then,

>
i = i = O7 = M -,
Piabm = P Po.ADM \/§
{2JTM, P=0, {ZnQ, P=0,
Po = P4 =
4zPM, P #0, 8zPQ, P #0.
(A45)
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The Komar integrals associated with X = 9, are

2rM+%), P=0

1 9 9

— lim / / XTS5 = { v

87 R— S(R) J ! Sﬂ'P(M + \/7?)’ P ?é 0,
(A46)

The Komar integrals associated with X = 9, are

P =0,

1 4 9
~ lim / / XS, = { 70 (A47)
8m R—oo Jg(Rr) Js! 16zPQ, P #0.

APPENDIX B: THE VECTOR FIELD Z
Let

Z =r0,.

We wish to calculate vMZ,, for the Kottler metrics and the
Rasheed metrics.

First, let g be the (n + 1)-dimensional anti—de Sitter
(Kottler) metric,

g=-Vdi* + V='dr’ + r’h, (B1)
with
V =r? +k, (B2)
where k € {0, +1} is a constant,
a4 (B3)

nn-1)"

and where & is an (r-independent) Einstein metric on an
(n — 1)-dimensional compact manifold &, with scalar
curvature (n — 1)(n — 2)«. It holds that (cf., e.g., Ref. [48])

R=—n(n+1) (B4)

Further,
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—
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_ 1
Vi Zydd @ dt = 5 L25 = 5 (20, + 0,Z"Gas + 0,2y ) ddx*

[\

1
= 3 (HO, (V)P + 0,(V))dr? + 0,()d@) + 2V~ dr)

ro, vV

[\

V. Zydx" @ dx* = 0, Z,dx" @ dx* =0.  (B6)
Adding, we find
V,Z,dx* ® dx* =g mod (8, 5,). (B7)

which gives Eq. (4.17).
Next, for the Rasheed background metrics (A34) one
finds

L9 = 2(dr?* + r*dQ?),

d(GupZdx’) = d(rdr) =0, (B8)

and Eq. (4.17) without the o(r7") term readily follows.
|

1
= | L= (=vd*) + 2 =rV710,V)V-ldr* +2r2dQ? |,
%

APPENDIX C: AN IDENTITY FOR THE
RIEMANN TENSOR

We write 6% for 5/'6) = 1(528) — 8/6%), etc.

For completeness, we prove the following identity
satisfied by the Riemann tensor, which is valid in any
dimension, is clear in dimensions two and three, implies the
double-dual identity for the Weyl tensor in dimension four,
and is probably well known in higher dimensions as well:

MELIOR 5 = 2[57(30838% — 5,8185 + 55518)) — 8%(5udhd) — 8,81:85 + 555,:8))
+ 8U(SH5L — SL8LS% + L) — 82N, — BLLSE + ShSL) R s
= 2(2600656% — 4y he + AT + 265505, R 5
= 4(6;:513}/6)/6 - 25%R/}”y0 + 25%R(myv + Raﬂ;w)

= 4(RP,, + LRI 5 — 45 RV ).

If the sums are over all indices we obtain Eq. (C1). The
reader is warned, however, that in some of our calculations
the sums will be only over a subset of all possible indices,

1
S ppe a af a
SithaR' 5 = 57 (R, + IR = 45,RP,)). (C1)
The above holds for any tensor field satisfying
Ra/iﬁ = _R/3(1y5 = Rﬂm‘)‘y‘ (CZ)
To prove Eq. (C1) one can calculate as follows:
(C3)

I
in which case the last equation remains valid but the last
two terms in Eq. (C3) cannot be replaced by the Ricci
scalar and the Ricci tensor.
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5 The Brill and Pfister solution

Another family of interesting solutions with Kaluza-Klein asymptotics has been
constructed by Brill and Pfister. More precisely, in |3] the authors provide
time-symmetric initial data(with vanishing extrinsic curvature of the initial data
surface) in Kaluza-Klein theory with a negative lower limit for the ADM- as well for
the Hamiltonian mass, as defined in Section[4] It should be emphasised, that they
do not provide the full spacetime metric, but only the initial data, which satisfy the
general relativistic vacuum constraint equations(with vanishing cosmological
constant). But this is good enough to obtain an associated maximal globally
hyperbolic solution, by evolving the data using the vacuum Einstein equations.

The presentation in [3] does not provide convincing justification that the metrics
there are singularity-free. In particular it is not completely clear whether or not the
Riemann tensor has distributional components which could be responsible for the
negativity of mass. The aim of what follows is to fill this gap.

The four-dimensional initial data, which we refer to as the Brill-Pfister solution in
the following, are given by

ds®> =y*do® + V(dxh?, (5.1)
where do? = dr? + r?dQ?, with v, V being C2-functions of r, and x* is the fifth
coordinate of Kaluza-Klein theory, being 27 R-periodic, where R denotes the
compactification radius.

Asymptotic flatness is guaranteed if  and V take asymptotically the form
7

-1+ -2 -1+
1//_1+2r+0(r ), Vv 1+

+0(r ?), (5.2)

with the obvious associated decay conditions on the derivatives. The
corresponding ADM- and Hamiltonian mass are discussed in section[5.2] The
inner boundary of a space with topology R? x §? is called a bubble. The location of
the bubble is determined by the zeros of the Killing vector % and thus from
by the zeros of V. We denote this location by r = B > 0. The five-dimensional
Einstein equations SGMV =0, imply R = 0 on the Hamiltonian constraint, where
denotes R the four-dimensional scalar curvature. The momentum-constraint is
fulfilled automatically, due to time-symmetry. By introducing

wW=Vy, (5.3)
the four-dimensional scalar curvature of in terms of W and v is given by
R= —2w‘4(W‘1AW + 31//_1A1//) : (5.4)

where A denotes the flat-space Laplacian. The explicit solution, constructed by
Brill and Pfister, is given by

W= {%sin(k(r—B)), B=r=a,

1+%, r>A,

E k
v = {—cosh(—(r—C)), B<sr=<A, (5.5)

1+ 5+ r>A,
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where k,C, D, E, m € R are real constants, constrained by (13)-(15) of [3], i.e.

2b = ﬁcoth(é) , (5.6)
tan(a) = @coth(%) , (5.7)

mo_ 1(tan(a) - a) -1 (5.8)

2B b ’ '

where a = k(A—-B), b= kB and c = k(B — C), obtained by the boundary conditions
at r = B and continuity conditions, imposed on V, W and . By inserting (5.5) in
(5.3), we obtain

D sin(k(r—B))
b2 . Bsr<A,

vV = E cosh(%(r—C)) (5.9)
1, r>A.

We point out a misprint in the original paper [3], i.e. in (5.5) the function cos is
printed instead of cosh. By computing the flat-space Laplacian for (5.5), we obtain

-k*, B=r=A
wlAw = ’ ’
{0, r>A,
Sy - 15 Bsr=a 5.10)
voay = 0, r>A. ’

After this correction, we see that the scalar constraint equation (5.4) is indeed
solved by the Brill-Pfister solution.
5.1 Smoothness atr =B

In the following we show that the metric is not differentiable at r = B. The
expansions of and at r = B take the form

vt Yo+y1(r—B)+0((r-B)%,
v? (r=B)*(a+B(r—B))+0((r-B", (5.11)

where v, 1, @, € R. The insertion of (5.11) in (5.1) yields

ds? = (wO + 1 (r—B)+O((r — 3)2)) dr?+r2do?) + (r — B)Z(a +B(r—B)+O((r - B)z))(dx4)2

(u/O + 1 (r—B)+O((r — B)Z))drz +(r— B)z(a +B(r—B)+O0((r - B)z))(dx4)2
+r2(1//0 +1//1(r—B)+O((r—B)2))dQZ. (5.12)

Differentiability at r = B would require the expansions of even functions to appear
in the variable r — B in the parentheses of (5.12), thus it follows immediately, that
the metric is not differentiable at r = B, unless perhaps a better coordinate system
can be found. To better investigate the behaviour of the curvature tensor as r tends
to B, we introduce the orthonormal co-frame

Ol =y2dr, 2=y?rdd, © =y rsin@)do, ©*=vdx* (5.13)
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adapted to the metric, leading to the following non-vanishing connection
one-forms

. 2 X 2ry’
wlﬁ — _Mde, (1)1:3; — _M Sin@d(l)’
v
~ / PN
w14 = —?dx‘l, wzg =—cosfd¢. (5.14)

The corresponding non-vanishing curvature-forms read as

i 2(y (ry" +y') - ry”)

Ql~ = - @1/\62;
p ryb
; 2 ry’ + ') - ry'?
al, - - (v(ry v;) [ASINYpeY
ry
i 2Viy' —yv"
QG = ——=—6 10",
Vy
; ay' (ry' +
ng = _Mgz/\gi*}’
ry
5 V'(2ry'+
@2, = LV g o
rvy®
5 V' (2ry' +
o = _%@M@‘*. (5.15)

From these curvature forms we can read off the relevant components of the
Riemann tensor, with potential critical behaviour where V vanishes, which are
given by

R B zvlw/ _ wvﬂ
4141 = 2V 5
2y o
_ v V-V
2Vt
V' (2ry' +y)
Rigip = ——5 05
V' (2ry’ +y)
Ryzay = - VYR (5.16)
From (5.16) we obtain the boundary conditions
V/
V'+— = 0 at r=B,
r
2y’ 1
l = —— at r=B8B, (5.17)
W r
necessary to avoid singularities, at r = B. By implementing those boundary
conditions in the coefficients of the series expansions for ¢ and V, we obtain
B)|1- 2~ B)+ —(r— B | + O((r — BY®)
= ——(r— —(r — r— ,
v v B 2B2
1
vV = V(B [(r—B)—ﬁ(r—B)z +0((r-B)%, (5.18)
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and in conclusion for their powers, appearing in the metric (5.1),

4 _ aly_2 o 3 e Lo s _
v = y(B) [1 B(r B)+232(T B) ZB(r B)”| +O((r-B)"),

1
V: = V(B [(r—B)Z—E(r—B)?’ +0((r-B)Y. (5.19)
By introducing the coordinates p =r— B, ¢ = x%, where A € R\ {0}, chosen to a fixed
value later, we rewrite the metric in the form
ds* = y'dp*+(p+B)>ytdQ? + V2A%dy?
= ytdp® + (V222 —y*p®)d¢? + (p + B)*y*dQ? + wp?d¢?.  (5.20)

By ignoring and simplifying already smooth terms in (5.20) respectively, we obtain
the metric

ds* = ytdp*+ (VA2 —y*p?)de® + (p + B)*yide?, (5.21)

conserving the potential critical behaviour of (5.20) at p = 0. By introducing polar
coordinates

x=pcos(p), y=psin(¢), (5.22)

we write (5.21) in the from

ds® =y* (dx? + dy?) + © (xdy - ydx)* +v* (o + B)* de?, (5.23)
where
2V 4
o= APz—w (5.24)
== )
We require
V2
})i_r% ()LZF - 1;/4) =0, (5.25)

2
i.e. that the numerator of @ is vanishing in this limit. (5.25) is solved by 1 = %.

We compute for this choice for A the first-order expansions of the non-vanishing
components of the Riemann tensor of (5.23) at p = 0 with MATHEMATICA, which
are given by

5sin(¢p) cos(¢) 2
Rxxxy = —TP+O(P ),
5  —6B?+5c0s(2¢) +27 )
Ry = gt TE p+ 07,
3 3(B*+1)(cos(2¢) +3)
R* = —+ +0(p?),
AxA 2 3B p+0(p*)
3(B%+1)sin(2¢)
R ayn = ( 81)9 e p+0(p?),
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Ry = _%Jr p(632+5g§§(2¢)—27)p+0(p2)’
Ry = %wmz),

RV pxa = 3(Bz+;1);in(2¢) +0(p?%),

R ppn = g_ 3((B2+1) ;c;s@(p) _3))p+ 000,
R, - _%_ 3p((B2_1£§§S(2¢)+3))p+0(p2),
R, = 3(8 _811)33sin(2¢)p+ 0D,

R = 3(8 _81; ;in(2¢)p+ 02,

RY)ya ‘% L 1);;(2@ 00,

(5.26)

Now, with the expressions above, some care has to be taken because of second
derivatives of v and W which could give a distributional contribution at r = B. In
order to address this problem, we introduce local Cartesian coordinates centred at

r=B:

(x') = (x,y):=(pcos¢, psing) = ((r — B)cos ¢, (r — B)sin¢).

For r close to B we have

= E h K (p+B-0C)
v = B+pCOS 7 4 ,
E(\/gk(B+p) sinh(%) —3cosh(k(B_—\/§+p))) %l
oy = =0, (527
3(B +p)2 P
. k(B-C+p)| _ k(B—C+p) 280 iof
Sou E(\/§k(B+p)smh(—\/§ ) ?)cosh(—\/§ ))p oL —x'x
i0j¥ 3(B +p)? o
E(k*(B+p)*+6) cosh(k(B_—\/ngp))—Z\/gEk(B+p) sinh(k(B_—\/?m) iy
- 3(B+ p)3 g
= 0(p™h. (5.28)

From the definition of the distributional derivative, given a smooth compactly

supported function f we have

Oy,

—lim

e=0Jr2\D

—lim

f~0 0D(e)

—f Wo;
RZ

fd?u=-lim Yo, fd’u

€—~0JR2\D(e)

()(ai(Wf)—faiU/)dzu

wfniedp+ f fordu,
| RZ\D(E)

=0
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and we see that the first distributional derivatives of ¢ do not give any contribution
at the origin. One similarly finds

0joiw, fy = —0iy,0;f)
= —f 0;y0; fd*p=—lim 0;y0; fd*u
R2 e~0Jr2\D(e)
= -lim ©0:0y )~ fo;0;y)d*
e—0Jr2\D(e)
= —lim a,-u/fn"ed¢+[ f0:0;wd*w,
€=0JoD(e) IR

v~

=0

and there is no distributional contribution from second derivatives either.

5.2 The Hamiltonian and the ADM mass

Evaluating our formulae in Section [4|for the Hamiltonian mass m1y and the ADM
mass mapy for the Brill-Pfister initial data, under the decay assumptions (5.2),
gives

my=2n(m+ W), MmMappy=m. (5.29)

From (5.2) and it follows that u = 0. Therefore, we obtain

my=21m, Mapy=Mm. (5.30)

By combining (5.6) and (5.8) we obtain

m 2(tan(a) — a) (ﬁcoth(\%) —tan(a)) . 5.31)

2B ﬁcoth(\%) tan(a) —3

which attains a negative maximum -0.2092 at a = . Together with B > 0 it follows
that m, and thus my and mapyy, are negative.
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6 Conclusions

In the framework of this thesis we have investigated the Rasheed-Larsen black hole
solutions, i.e. we have proved their regularity at the outer Killing horizon, have
analysed and identified the singularities of the metrics and have derived
conditions, under which they are shielded by the outer Killing horizon.
Furthermore, we have excluded the existence of regular metrics without horizons
and have derived a criterion for stable causality in the domain of outer
communications. In our analysis of global quantities we have covered
asymptotically anti—de Sitter spacetimes, asymptotically flat spacetimes, as well as
Kaluza-Klein asymptotically flat spacetimes. We have shown that the Komar mass
equals the Arnowitt-Deser-Misner (ADM) mass in stationary asymptotically flat
spacetimes in all dimensions. It has been shown that the Hamiltonian mass does
not necessarily coincide with the ADM mass in Kaluza-Klein asymptotically flat
spacetimes. Furthermore, we have applied a Witten-type argument to derive
global inequalities between the Hamiltonian energy-momentum and the
Kaluza-Klein charges. We have applied our formulae to the five-dimensional
Rasheed metrics, from which we have computed the corresponding global charges.
Finally, by a comparison of them to those of the Larsen metrics, we have shown,
that those classes of metrics are isometric.

In our analysis of the four-dimensional initial data in Kaluza-Klein theory,
constructed by Brill and Pfister, we have pointed out and analysed, although the
corresponding initial data metric is not differentiable at the bubble, it is at least
twice weakly differentiable at this location, leading to a Riemann tensor without
distributional components which could be responsible for the negativity of the
ADM mass.
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