Logo der Universität Wien
You are here: > University of Vienna > Faculty of Mathematics > Markus Faulhuber
Journal Articles

  1. M. Faulhuber. Minimal Frame Operator Norms via Minimal Theta Functions. Journal of Fourier Analysis and Applications, pp 1-15, February 2017

  2. DOI: 10.1007/s00041-017-9526-x (external link)
    Open Access (online first)

  3. M. Faulhuber, S. Steinerberger. Optimal Gabor frame bounds for separable lattices and estimates for Jacobi theta functions., Journal of Mathematical Analysis and Applications, Volume 445, Issue 1, pp 407–422, January 2017

  4. co-author: Stefan Steinerberger (external link) (Yale University)

    DOI: 10.1016/j.jmaa.2016.07.074 (external link)
    arXiv preprint: arXiv:1601.02972 (external link)

  5. M. Faulhuber. Gabor frame sets of invariance: a Hamiltonian approach to Gabor frame deformations. Journal of Pseudo-Differential-Operators and Applications, Volume 7, Issue 2, pp 213-235, June 2016

  6. DOI: 10.1007/s11868-016-0146-z (external link)
    Open Access

Proceedings and Conference Papers

  1. M. Dörfler, M. Faulhuber. Multi-Window Weaving Frames. Proceedings of the 12th International Conference on Sampling Theory and Applications, July 2017.

  2. co-author: Monika Dörfler (external link) (NuHAG, University of Vienna)

    DOI: 10.1109/SAMPTA.2017.8024450
    arXiv preprint: arXiv:1705.04166 (external link)
    conference: SampTA 2017 (external link)

  3. L. Wiedemann, T. Haftner, B. Pobatschnig, M. Faulhuber, M. Reichel. Qualitätsbetrachtung der Wavelet- und RMS Analyse in Abhängigkeit der Aufnahmefrequenz von EMG Signalen. In UMIT - Lecture Notes in Biomedical Computer Science and Mechatronic., C. Baumgartner, W. Mayr (eds.), Volume 4, pp 19-20, September 2014.

  4. ISBN: 978-3-9503191-3-2 (external link) (PDF)


  1. M. Faulhuber. A Short Note on the Frame Set of Odd Functions, 2017.

  2. arXiv prepreint: arXiv:1710.00753 (external link)

  3. M. Faulhuber. Properties of Logarithmic Derivatives of Jacobi's Theta Functions on a Logarithmic Scale, 2017.

  4. arXiv prepreint: arXiv:1709.06006 (external link)

  5. M. Faulhuber, M. de Gosson, D. Rottensteiner. Gaussian Distributions and Phase Space Weyl-Heisenberg Frames, 2017.

  6. co-authors: Maurice de Gosson (external link) (NuHAG, University of Vienna)
    David Rottensteiner (NuHAG, University of Vienna)
    arXiv preprint: arXiv:1708.01551 (external link)

Doctoral Thesis

M. Faulhuber. Extremal Bounds of Gaussian Gabor Frames and Properties of Jacobi's Theta Functions, Doctoral Thesis. University of Vienna, December 2016.

PDF: Doctoral Thesis PDF
Markus Faulhuber | Department of Mathematical Sciences | NTNU Tronheim | Norway