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Abstract. A dynamics for frequency dependent sclection is proposed and applied to several
biclogical examples. The relation with game dynamics and evolutionary stability is analyzed.

Game theory has been used successfully to model the evolution of biological traits whose
advantage depends on their frequency in the population (see Maynard Smith [7]). The basic
notion of evolutionary stability singles out solutions which, while safe from future change,
need not be likely outcomes of past adaptations. The first to point this out was Eshel ([3],
see also [4]). Recently, Taylor [11] and Nowak [8] stressed the independence of (a) being
able to resist any invasion and (b) being able to invade everything. In this note, we propose
a dynamics to model the effect of adaptation, relate it with the stability of equilibria, and
discuss some examples concerning, in particular, iterated interactions and gamete sizes.

The phenotypic traits we consider are determined by continuous variables (like size, sex
ratio or the probability of some behaviour). We assume that the population is essentially
monomorphic (all in some state x except for an occasional mutant in a near-by state
y = x + h.) The fitness of such an individual is denoted by A(y,x), its relative ad-
vantage A(y,x) — A(x,x) by W(h,x). The state % is said to be evolutionarily stable, if
A(y,®) < A(%,%) for all y, with A(%,y) > Aly,y) if A(y,%) = A(%, %) for some y # X.
This implies that a population % cannot be invaded by a small population y. But it offers
no argument for the establishment of X. It can happen that an evolutionarily stable state
% is a ‘garden of Eden’ configuration, i.e., without a supplanted predecessor: near-by states
evolve away from it. Since a slight perturbation of the environment can make % lose its
evolutionary stability, subsequent adaptations will lead it further astray.

The proposed adaptive dynamics (first version) is

2= %A[}r.x} i=1,..,n (1)

y=x

The rationale is that a few mutants y close to x test out alternatives, and that the whole
population evolves in the direction of the most promising one. This is supposed to mimick
an evolution favouring individual fitness. It can also be used for learning models, under the
assumption that trials are myopic, i.e., explore only the vicinity of the current state. If A
is frequency independent, i.e., depends only on y, we get the usual hill-climbing dynamics
leading to local optimization.

In the one-dimensional case, (1) is

. oW
&= —2m(0,2). (2)

Following Taylor [11] , a state Z will be said to be h-stable if W(h,z) < 0 for all small
h # 0, and x-stable if W(h,z) has the sign of h(Z — z) for small h. Thus h-stability means
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that # is a strict (local) Nash equilibrium, and hence locally evolutionarily stable, while
x-stability means that if the population is in a state z close to Z, then any mutations in the
right direction (towards ) will succeed. In each case, Z is an equilibrium of (2). Generically,
e s 4 I : I
an equilibrium is x-stable iff f=pr < 0 and h-stable iff S < 0.
For example, if z is the sex-ratio, then A(y,z) = £ + i—:} and hence (2) yields

b= 1-2z
T z(l-z)

The equilibrium # = % is both x-stable and evolutionarily stable, but only ‘weakly h-
stable’ since W (h,2) = 0 for all h. Eshel [3] gave some ingenious examples of equilibria
which are - but not x-stable. Taylor [11] states that he has yet to see biologically plausible
equilibria which are x- but not h-stable (or not evolutionarily stable). We believe that they
can be found for iterated interactions.

The Iterated Prisoner’s Dilemma is a paradigm for the evolution of cooperation [2]. In

each round of the interaction, the choice is between E; (cooperation) and Ej (defection)
and the payoff is given by the 2 x 2 matrix a;; satisfying

dg; > dj] > G1 > 412 and 2ay; > a2 + ajs. (3)

Tit For Tat (start with E;, then do whatever the other did last) proved amazingly success-
ful in computer tournaments. But in biological applications, there is always the probability
of an error which turns a mistaken defection into the starting point of an expensive feud.
In this context, it is interesting to study stochastic reactive strategies defined by the condi-
tional probability z; to play Ey, given that the other’s last move was E;. For simplicity, we
consider the infinitely repeated case. The initial meve, then, does not matter (but see [9]
for the general situation). A simple computation y'clds

|
Aly,x) = ) aijad;
ij=1
with
PR + (1 — ya)x2 . + (21— z2)12
1— (v — ya)(z1 — 22) 1— (y1 — ya)(z1 — z2)
and ¢c; = 1 — ¢, da = 1 — dy. Hence (1) yields

I3
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F':xhr?] 2=
with
F(z1,z3) = aza(l +r) + ((a12 — ag2) + (@21 — a22)r) (1 - r)

where a = ay; — ag1 + az2 — ajp and r = z; — z2. Now suppose there is no variation in
zq: it is fixed at some small value £ (the probability of a mistake). If a < 0, there is a
unique #; with F(#;,¢) = 0. This #; is h- but not x-stable (see Fig. 1). On the other
hand, if ; = 1 — ¢ is fixed at some value close to 1, there exists for a > 0 an Z3 such that
F(1 — &,#3) = 0, which is x- but not h-stable (see Fig. 2). Is this biologically plausible?
The fixation of z; = 1 — £ can be viewed as a consensus to cooperate as long as the other
does. The evolutionary interesting variable is then the probability 1 — z; to retaliate after
a defection. It should offer no incentive for exploitation, but avoid needless recrimination
after a mistake,

A similar example holds for the repeated game of Chicken (or Hawk-Dove): E; means
now escalation of the fight, E; avoidance of it. Instead of (3) one has as > ayy > a1z > az.
If z; = ¢ is fixed at some small value (if the adversary chickened out last time, one gets
bold), the question is to find the right probability to escalate following an escalation of the
adversary. It is given by the value #; of F(g,2;) = 0. Again, 3 is x-stable (the adaptive
dynamics leads towards it), but not h-stable (see Fig. 3).
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Let us consider now a sexually reproducing species with two mating types 1 and 2. A
phenotype x corresponds to the choice of gamete weights z; and z; when of type 1 or 2.
The number of gametes is inversely proportional to their weight. The survival probability
V(m) of a zygote of mass m is increasing in m. Then, assuming sex ratio % and mass action,

we get the payoff
1 (Vl':!h. + z4) & V(v +-'=l:l)

Alri) = 2 nxa I

so that (1) becomes

;}izL(V‘{z1+::}—M) $=1d
EIE Ly

Since
4V(zy + =1)

(z122)?

we see that the flow points away from the (invariant) diagonal. The equilibria are on the
diagonal (satisfying V(2#,) = #,V'(2%,)). They are evolutionarily stable (uninvadable if
one of the gamete sizes is fixed), if V"(2;) < 0: but it is highly unlikely that evolution
will be trapped at such a point. The adaptive dynamics leads to a dimorphism of gamete
sizes (one mating type follows the male strategy of producing many small gametes, the other
mating type the female one).

21 = iz = {1‘1 o 2-'2},

So far, we assumed that x varies in an open subset of R" equipped with the Euclidean
metric: fluctuations in every directions are equally likely. It may happen that another metric
is more appropriate, e.g., if the genetic or developmental constraints render variations in one
direction more likely than in another. It may also happen that x is restricted to some subset
of R®, for example to the simplex Sy, if the z; are probabilities of some strategies, summing
up to 1. -

Again, in an adaptive dynamics, the prevalent state x of the population will tend in the
direction of the maximal local increase of the fitness A(y,x), i.e., the y-gradient of A(y,x)
at y = x: x will be proportional to the unit vector £ maximizing A(x + £, x) — A(x,x),
in the limit ¢ — 0. Obviously, this notion of gradient, and therefore the adaptive dynamics
associated with the fitness function A(y,x), depends on a Riemannian metric to be chosen
on the state space.

Let G be a general Riemannian metric which associates (in a smooth way) to each x a
symmetric positive definite matrix G(x) = (gi;(x)), such that the inner product at x is given
by

(€ = ETG0xIN = 3 _ g1 (Weim- (4)
ij
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If the state space is (an open subset of) R", then it is well-known that the G-gradient of
a function V(x) is given by G(x)~! grad V(x), where grad V'(x) is the Euclidean gradient.
From (4) and the definition of adaptive dynamics, we have

(%), =0T Gx)% =) gis(x)m; = Dy Ay, x)|,_(n) (5)

for all n.
Let us now consider the most important special case where x € S, and A is linear in y,
i.e.,

Aly,x) =yTE(x) = Y _ wifi(x)- (6)
Then (5) must hold for all 5 in the tangent space Rg, and we obtain

3 aits = filx) + ®(x) O]
i

for some function & which is determined by the constraint §, #; = 0. If the matrix G is
invertible, which can always be achieved by extending it in a positive definite way from Rg
to R™, we can transform (7), i.e., Gk = f + ®1, into

x = G'(x) + g®(x), (8)
with g = G~'1, 1 denoting the n-vector of 1's. Then 1% = }_#; = 0 implies 1TG-1f +

1Tg=0ord = {;é, where 17g = 17G~'1 > 0. Hence, (7) is equivalent to the explicit
form

3= ey(x)fi(x) 9)
j
with
g B8 10
C=G""- Eﬁ' (10)

It is not hard to see that C restricted to R} is positive definite. Conversely, if C is a
symmetric n x n matrix, with C1 = 0 and £TC¢ > 0 for £ € Rj \ {0}, then we can define G
as a generalized inverse of C' and thus obtain a Riemannian metric on Sy, such that (9) is
the corresponding adaptive dynamics.

We illustrate this with two examples: a) Euclidean metric on Sy,. Here gij(x) = §;;, hence
g=G "M =1land C=1- 1117, ie, ¢;j = &;j — &, so that the adaptive dynamics reads

2= fi(x) = = Y filx).
k=1

b) The Shahshahani metric [1] on Sy is defined by gi; = 6;_,;".- Here g = G™'1 = x, so by
(10), ei; = ¢85 — zizj and the adaptive dynamics reads

fi=an(filx) = f(x),  flx)=D_ zefalx).
k

This is the replicator equation [6]. It is interesting to note that while the metric is defined
only in int S,, the dynamics extends continuously to the boundary, and leaves the boundary
faces invariant. Hence this kind of adaptation does not lead to new strategies.
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Let now % € int S, be an ESS for the fitness function A(y,x) = y”"f(x), then by Pohley
and Thomas [10]

#Tf(x) > x"f(x) for x near %, x # &. (11)

We claim that % is locally asymptotically stable for each adaptive dynamics (9). Let V(x) =
(x — %,x — %); = (x — %)TG(%)(x — %), an approximation for the geodesic distance of x to
%. Then by (7)

V(x) = 2(x - )T G(R)x =~ 2(x — %)TG(x)x
= 2(x — &)T(£(x) + ®1) = 2(x — %)Tf(x) < 0.

Hence, V is a local Ljapunov function, and % is asymptotically stable. Therefore, near
an ESS, the geodesic distance between orbits decreases monotonically for each adaptive
dynamics. In particular, for the replicator equation, the distance induced by the Shahshahani
metric, i.e., the arccos distance [1, p. 39), tends monotonically to 0, near an ESS. Actually,
at least for linear payoff functions f(x) = Ax, this gives a remarkable relation between the
notion of ESS and the Shahshahani metric: % is an ESS, if and only if the geodesic distance
decreases near % in the replicator equation. A related result of Hines [5] shows some other
sort of converse: If % is stable for each adaptive dynamics (7), i.e., for each choice of C or
G, then % must (essentially) be an ESS.
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