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A game dynamical analysis of a simple asymmetric game (two roles with two 
alternatives each) shows that an interesting class of “semi-stable” heteroclinic cycles 
leading to a highly unpredictable behaviour can occur in a robust way. Biological 
examples related to conflicts over ownership and parental investment are analysed. 
0 1991 Academic Press, Inc. 

1. 1NT~oDucT10N 

Even in the artificial world of “fair” parlour games and sporting encoun- 
ters, asymmetries between the contestant’s roles are frequent. Some rules 
are meant to reduce this asymmetry (toss up a coin to decide who moves 
first; play a return match) but others emphasise it (a draw favours the 
incumbent champion; the nation organizing the world soccer cup 
automatically qualities). In nature, the role of asymmetries is much more 
pronounced still, and soon after the introduction of game theory in the 
study of biological contests, a series of papers underlined the special “logic 
of asymmetric contests” and drew attention to conflicts with in-built asym- 
metries like those between owner and intruder, weaker and stronger 
contestant, male and female, parent and offspring, queen and worker, prey 
and predator, etc. In Maynard Smith’s book on “Evolution and the Theory 
of Games” (1982), three chapters are devoted to asymmetric games, and a 
rough census of its list of references seems to show that the majority of 
conflicts studied by sociobiologists exhibits asymmetries. 

In contrast to this, the study of the dynamics of asymmetric games has 
lagged considerably behind that of the symmetric case. Of the few papers, 
most have investigated the case of separate populations (Taylor, 1979; 
Schuster et al., 1981). This is appropriate for coevolutionary games 
between predator and prey or host and parasite, but hardly so for games 
between owner and intruder or parent and offspring, where one individual 
will find itself sometimes in one role and sometimes in the other. It is also 
plausible that for male-female or worker-queen conflicts, the genetic 
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programs for the two roles are linked. In any case, most of the static game 
theoretical models assume conditional strategies (for example: if male, be 
a philanderer; if female, be coy). In the present paper we discuss the corre- 
sponding dynamical features for the simplest case (two roles with two 
strategies each). 

In Section 2 we describe these dynamics; in Section 3 we apply this to 
some examples of asymmetric games in biology (battling spiders, bluffing 
shrimps, and coy birds); and in Section 4 we add a recombination term 
which reduces the dynamic degeneracy. Of special interest are games with 
cyclic structure, which exhibit a novel type of “semi-stable” heteroclinic 
cycle and a “zip”-like bifurcation from stability to instability along a line 
of equilibria. Proofs are deferred to the Appendix. 

2. THE MODEL 

In the simplest possible case, there are two roles I and II with two 
strategies each: e, and e2 for I and f, and f, for II. Any individual will find 
itself with probability p in role I and 1 -p in role II. (This role can change 
during its life history, e.g., child and parent or owner and intruder, or it 
can stick for life, like male and female in most cases.) Following Maynard 
Smith (1982), we assume that an individual’s role is independent of its 
strategy. Within the game considered, individuals in one role interact only 
with those in the other role; interactions occur in random pairs. 

The payoff for role I (resp. II) is given by a 2 x 2 matrix E = (E,), j= ,, 2 
(resp. F): E,,, for example, is the expected payoff for an e,-strategist 
meeting an f,-player, etc. Thus we are dealing with bimatrix games. 

The population will consist of four “behavioural” types: G, = e, f, (i.e., 
play e, if in role I and f, if in role II), G2=e2fl, G3=e1f,, and Gq=eZf2, 
with frequencies xi to x4, respectively. The state of the population is given 
by a point in the simplex 

&=(x=(x ,,..., x,):xi>o,x,+ ... +x,=1). 

Let r be the sequence of four edges connecting the corners G, to G, to 
G, to G, and back to G, again. Each edge connects two types using the 
same option in one role and different ones in the other. Generally, one of 
the two alternatives is the better one, and we orient the edge accordingly. 
This leads essentially to the following possible orientations of r (see 
Fig. 1). 

According to a basic result (Selten, 1980), an asymmetric game has no 
mixed ESS (evolutionarily stable strategy). It is easy to see that type Gi is 
an ESS if and only if both adjacent edges point towards it. Thus (a) and 
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a b C d 

FIG. 1. The four possible orientations of f. 

(b) have one ESS and (c) a pair of opposite ESSs while the cyclic structure 
of (d) allows no ESS at all. We shall see how the dynamics agrees with this 
static classification. 

The payoff-matrix is 

/A+a A+b B+a B+b\ 

M= 
C+a C+b D+a D+b 
A+c A+d B+c 
C+c C-fd D+c 

where 

and 

For example, a G,-individual is with probability p in role I; its strategy, 
then, is e *; it interacts only with individuals in role II of which xi are of 
type G,. Thus its expected payoff is 

(payoff for G2 ) role I) = x1 E,, + x,E,, + x3 Ez2 + x4Ez2. 

With probability 1 -p, the G,-individual is in role II, plays strategy f,, 
and obtains 

(payoff for G, 1 role II) = xlF,, + xzFlz + x,F,, + .x4F12. 

The expected payoff for G, is therefore 

p(payoff for G2 I role I) + (1 -p)(payoff for G, 1 role II) 

which is given by x xjM,= (Mx),. 
Thus the game is described now by a single 4 x 4 matrix M. The payoff 

is the increment in reproductive value. According to the usual game 

65313913-E 
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dynamics (Taylor and Jonker. 1978; see also Hofbauer and Sigmund, 1988) 
we assume that the rate of increase of each type is given by the difference 
between its payoff and the average payoff in the population. This yields 

.i-, = x, [ (Mx), - iif] (1) 

with &?=C xi(Mx);. The state space S, and its boundary (consisting of 
the faces where xi= 0) are invariant. From now on we consider only the 
restriction of (1) to S4. Subtracting rn,; from the ith column of M does not 
affect the dynamics. Hence we may use without restriction of generality the 
matrix 

r 

0 -R 

M= 
R 0 
r -R-s 0 

R+r --s 

where R=C-A, S=B-D, r=c-a, and s=b-d. 
One checks immediately that the ratio x,xq/x2xX is an invariant of 

motion, i.e., remains constant under (1). Each equation x1x4 = Kx2x3 (for 
K > 0) defines a saddle-shaped surface W, in the interior of the state space 
Sq. It is bounded by the four edges belonging to ZY 

Of special interest is the case K = 1. In the well-known two-locus, two- 
alleles equation from populations genetics (see, e.g., Crow and Kimura, 
1970) the surface W, is called the Wright manifold. In this genetic model 
G, to G, are the gametes, xi to xq are the gamete frequencies, and 
x1 xq = x2x3 means that the allele pairs are in linkage equilibrium. In our 
setup, x1x4 = x2x3 means that the strategies in role I and role II are inde- 
pendent. W, divides S4 into two halves. 

The equilibria of (1) are given by (Mx)~ = A? whenever xi > 0. In int S4, 
this means (Mx), = ... = (Mx),. Together with x, + ... +x4= 1, this 
yields a system of four linear equations which is in general of rank 3. The 
equations (Mx), = (Mx), and (Mx), = (Mx), imply 

S s 
Xl+X2=R+S, x,+x,=- 

r+s 

if the denominators do not vanish. These two equations determine a line of 
fixed points, which can be written as 

xi=mi+p (i= 1, 4) 

x,=mi-p (i=2, 3) 
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with 

1 
m = (R + S)(r + s) 6% Sr, & Rr). 

We note that m satisfies m1m4= rn2rn3 and that the line of fixed points 
given by (2) intersects int S, if and only m E W,, i.e., if and only if RS > 0 
and rs > 0. Thus either all of the invariant surfaces W, (0 < K < cc ) contain 
a fixed point or none do. The p-values for which (2) then yields a point in 
int S, are those satisfying 

-min(m,, m4) <p < min(m,, m3). 

One can compute the Jacobian and hence the eigenvalues of (1) at the 
interior equilibria. One eigenvalue is always 0, of course. We list now a 
brief classification and deal subsequently with some biologically relevant 
examples. Essentially, the arrows of the diagrams in Fig. 1 will correspond 
to orbits of (1) along the edges of f. 

(A) No equilibrium in the interior. Then all orbits converge to the 
boundary, so that the dynamics are reduced to a simple lower dimensional 
one. Actually, it is easy to check that generically, there exists a single 
corner of S4 which attracts all interior orbits. This corner corresponds to 
an ESS, and hence we obtain cases (a) or (b) of Fig. 1. Thus the outcome 
is fixation of a single type. We call this the case of global stability. 

(B) A line of equilibria in the interior, and Rr > 0. Each equilibrium is 
a saddle on the corresponding invariant surface. A surface S containing the 
equilibria and two corners divides S, into two parts. In each, there is a 
corner attracting all orbits, while the orbits in Sn S4 converge to interior 
equilibria. S consists of orbits leading from the repelling corners to the 
fixed point line (see Fig. 2). This is the case of bistability: up to a set of 
measure zero, all initial conditions lead to one of two opposite corners. 
These corners are ESSs. This corresponds to (c) in Fig. 1. 

(C) A line of equilibria in the interior, and Rr < 0. This is the cyclic 
case: G1 beats GZ, which beats G,, which beats G,, which in turn beats 
G1 (or the other way round). The Jacobian at the inner equilibria has a 
pair of complex eigenvalues, which corresponds to a rotational component 
on the invariant surface W,. 

On W,, the eigenvalues are purely imaginary. There exists a further 
invariant of motion, namely 

S log(x, +x2) + R log(x, +x4) -s log(x, +x3) - r log(x, + x4) 

(actually, this is a Hamiltonian on W,). Thus W, consists of periodic orbits 
(see Fig. 3), which is also seen from (4) below. For K > 1 the fixed point 
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FIG. 2. The simplex is divided into two basins of attraction (with R = -4, S = -6, r = -2, 
s = -3). 

is a spiral sink, and for K E (0, 1) a spiral source (or vice versa), provided 
R + S + Y + s # 0. Thus if one travels along the line of equilibria, there 
occurs a degenerate Hopf bifurcation as one crosses W,: stability changes 
into instability. This is somewhat similar to the zip bifurcation studied by 
Farkas (1984) in ecological models although there is no parameter here to 
zip the zipper. 

FIG. 3. Orbits on the Wright manifold W, for R = 4, s = fj, r = -2, s = -3. 
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We show in the Appendix that off W,, there is no periodic orbit. The 
edges are orbits converging to one corner as t -+ ---co and to the next one 
as t + +co. Together, they form a heteroclinic cycle. In one half of int S4, 
all orbits spiral away from the inner equilibria and towards r. In the other 
half, they spiral away from r and towards an interior equilibrium. 

In the class of all dynamical systems, such a behaviour is structurally 
unstable to a high degree: (a) the saddle connections-orbits leading from 
one saddle-type equilibrium to another-correspond to intersections of 
stable and unstable manifolds which are not transversal, which is a non- 
generic situation; (b) the constant of motion foliating the state space into 
invariant surfaces W, is nongeneric too; (c) the line of equilibria is a 
degeneracy, since usually equilibria are isolated; (d) the Hopf bifurcation 
(which leads to no limit cycle) is also degenerate, since at the critical 
parameter value K= 1 there occurs a constant of motion. Nevertheless, this 
heteroclinic cycle which is partly attracting and partly repelling occurs in 
a perfectly robust way within the dynamics of asymmetric games: a small 
change in parameters will leave the behaviour unaffected. 

The outcome is highly unpredictable. In one-half of the state space, the 
evolution tends towards an equilibrium with all four types present. 
However, this equilibrium is only neutrally stable, as it is imbedded within 
a line of equilibria. Under random fluctuations, the state will drift along 
this line and eventually enter the other half of the simplex. There, the 
dynamics will lead towards r. The state will hover close to one corner, 
then abruptly switch along an edge to the next corner, stay there for a 
much larger time, switch rapidly (and without exterior cue) to the next 
one, etc., in a “cycle” with ever increasing period. Since the state is close to 
r, two or three of the types are present in only a minute amount. Even- 
tually, one of them will be wiped out by a random fluctuation. Then, the 
cycle is broken and fixation at one of the corners occurs (it is impossible 
to predict which one). A fortunate sequence of fluctuations (due to muta- 
tion or migration for example) can reintroduce some of the missing types, 
or even all of them; it could even happen that this leads to a state in that 
half of S, where convergence to an interior fixed point occurs, and the 
whole evolution is repeated again. But basically, the outcome is fixation of 
a randomly chosen pure type. 

3. EXAMPLES 

(A) Battling Spiders 

Conflicts between the owner of a territory and an intruder have been 
analysed by Hammerstein (1981), Maynard Smith (1982), Maynard Smith 
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and Parker (1986) and others, and exemplary field studies of territorial 
lights of funnel web spiders have been carried out by Riechert (1978). Let 
role I be that of the owner and role II that of the intruder. Both contestants 
have the option to escalate (e, resp. f,) or to stick to ritualized lighting. We 
denote by -D the cost of an injury and by - T that of a drawn-out 
ritualized conflict. For the owner, the probability of winning is f in a ritual 
fight and q in an escalated battle. By V, and V2 we denote the value of the 
territory for the owner resp. for the intruder (they need not be the same). 
The payoff matrices are 

E= qV,-(l-q)D 
( 

VI 
0 VI/2 - T 

(1-q) V,-qD V, 
0 > VJ2 - T ’ 

Then R=(l-q)D-qV,, r=qD-(1-q) V,, S=V,/2+T>O, s= 
V,/2 + T > 0. Interior fixed points exist iff R > 0 and r > 0. In this case the 
fixed points are saddles. We have a bistable case with two ESSs (the 
bourgeois strategy-owner escalates and intruder flees-and the opposite, 
paradoxical strategy). As mentioned in Maynard Smith (1982, p. 95), the 
assumption that roles and strategies are independent is not quite watertight 
if an animal participates in a series of contests, since the readiness to 
escalate affects the probability that the animal is an owner in the next 
contest. 

(B) Bluffing Shrimps 

This example has been proposed by Gardner and Morris (1989) to 
describe the territorial behaviour of a mantis shrimp, which lives and hides 
in cavities. These crustaceans undergo periodically a stage during which 
their exoskeleton is renewed. Such newly molten individuals are highly 
vulnerable to conspecific attacks. Nevertheless, they display sometimes a 
threatening behaviour towards intruders, leaning out of their cavity and 
raising their raptorial appendage in a so-called meral spread (a “bluffing” 
signal similar to the shaking of a list). If the intruder is in an intermolt 
stage, it would win an escalated fight, but does not know the actual state 
of the owner (P is the probability that it is newly molten). 

In the Gardner-Morris example, role I is: owner in a newly molten 
stage, and role II: intermolt intruder. The owners strategies are e, (to flee) 
and e2 (to bluff), while the intruders alternatives are f, (to attack) or f, (to 
withdraw). If V denotes the value of the territory, -B the cost of bluffing 
(leaning out of the cavity is not without danger) and -C the cost of losing 
a fight, the payoff matrices are 
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E= 
0 0 

-B(l -P) (V-B)(l -P) > 

F= V(l-P)-CP 

( 

V(l-P)-CP 
V(l-P) > 0 . 

This yields R=-B(l-P)<O, r=CP>O, S=(B-V)(l-P) and s= 
V( 1 -P) - CP, and hence R + S + r + s = 0 a degenerate case which 
displays an extra constant of motion (see Appendix). If we assume B< V 
and CP < V( 1 -P), so that S < 0 and s < 0, there is a line of fixed points 
in int S,. All other orbits in int S, are periodic. 

(C) Coy Birds 

A pretty example related to the question of parential investment has 
been proposed by Dawkins (1976). Some (hypothetical) male birds are 
faced with the temptation to desert (leaving the female with the task of 
raising the brood) and to found a new family somewhere else. The coun- 
terstrategy of the females is to insist upon a long engagement. It would 
then be too late in the season, for the male, to start it all over again, and 
much better to stay and help with the offspring. The two roles are female 
(I) and male (II); the female can be coy, i.e., insist upon a long engagement 
before copulation (e,), or it can be fast (ez). The male can be a philanderer, 
i.e., not prepared to put up with a long wait (f,), or it can be faithful, i.e., 
willing to accept a long engagement (fi). If G denotes the increase in fitness 
(for each parent) corresponding to the successful raising of a brood, -C 
the cost of parental investment (which can be shared, or borne entirely by 
the female), and -E the cost inflicted by a long engagement on each 
partner, then the payoffs are given by 

E= 
0 G-C/2-E 

G-C G - C/2 > 

G 
F= 

0 
G-C/2-E > G-C/2 ’ 

This yields R=G-C, S= -E<O, s=C/2>0, and r=G-C/2-E. In 
order to have fixed points in int Sq, we must have 0 <E < G < Cc 
2(G - C). In this case R + S + r + s = 2(G - E) - C > 0. The fixed point on 
W, is a spiral sink for K > 1 and a spiral source for 0 < K< 1. This is an 
example with cyclic dynamics. 
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4. RECOMBINATION 

In this final section we modify the dynamics (1) by adding recom- 
bination: 

i, = x, [(Mx); - M] - tzipD. (3) 

Here Ed = -Ed = -Ed = Ed = 1, p > 0 is the recombination fraction and 
D = X, xq - xzxj the linkage disequilibrium. This system on S4 describes a 
haploid population (not quite realistic in view of the previous example, but 
in the tradition of game dynamical models; see Maynard Smith (1982)) 
which reproduces sexually, thereby giving rise to recombination. The two 
loci correspond to the two possible roles and the two alleles determine the 
strategy played in that role. 

Then for Z = x, xq/x2x3 we have 

which shows that Z + 1 along all solutions in int S,. Hence the Wright 
manifold W, = {D = 0} = {Z = 1 } is globally attracting for the system (3), 
while the other manifolds W, are no longer invariant. 

The dynamics on W, is the same as before and its expression can be sim- 
plified further: If x = x1 + x3 denotes the frequency of e, and y = x, + x2 
the frequency of f, , then on W, we have x1 = xy, x2 = (1 - x) y, . . . and 
therefore 

ii-xX(1 -x)(S-(R+S)y) 

p = y(1 - y)(s - (1. + s)x). 
(4) 

Hence the dynamics on W, coincide with the dynamics for bimatrix games 
introduced by Schuster and Sigmund (1981) and studied further in 
Schuster et al. (1981) and Hofbauer and Sigmund (1988, Chaps. 17 and 
27). 

APPENDIX 

Using the transformation int S4 -+ int iw:, x t-+ y, where yi = xi/x4, 
i = 1, . . . . 4 we write the replicator equation (1) as Lotka-Volterra equation 

Jil=yl((S+s)-(R+r)y,-(R-s)y,+(S-r)y,) 

32 = 14s - vl + w2 - v3) 

~~=Y~(S-RY,-RY~+SY~). 
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The line of fixed points is given by the equations my, - sy, + ry, = s and 
Ry, + Ry, - Sy, =S. H=log(y,/y, y-,) is an invariant of motion, i.e., 
y, = Ky2 y, (K I=- 0) define invariant surfaces wK in int RI. 

Therefore we can study the dynamics on these surfaces and reduce the 
system to two dimensions: 

92 = Y& + SYZ - ry3 - rKyz ~3) 

$3 = Y,(S- RYZ + SY, - RKyz ~3). 

For K= 1 we obtain 

(Al 1 

.h = y2(l+ y2)(s - v3) 

j3 = ~3(1+ Y~)(S- RYZ). 

Hence the fixed point on RI is given by F = (Ss/Rr, S/R, s/r) (from now 
on Rr # 0) and the line of fixed points can be written as 

ss 
y,=g+(Ss-Rr)J. 

y,=f+R(r+s)i.. 

This line intersects int rW: iff RS > 0 and rs > 0. 
The Jacobian of (Al) at the fixed point F = (y2, y3) is given by 

J= (s-rK.3) $2 -41 +fW Y2 
(S- RKP,) jj > ’ -R(l + Kj3) P3 

We note that 

SslRr + (Ss - Rr)l 
IC=(S/R+r(R+S)l.)(s/r+R(r+s)l.)’ 

A direct computation yields 

trJ=Rr(R+S+r+s)l 

and 

det J= -(R + S)(r + s)[Rr(Ss - Rr) A2 + 2SsA + Ss/Rr]. 
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It is easy to check that det J does not change its sign along the line of fixed 
points. 

Equation (Al ) can be written as 

“i-2 = 4’2[s( 1 + j’2 + !‘3 + Ky2 y3) - (r + s)( 1 + KY*) 4’31 

j, = y3CS(l + ~‘2 + ~3 + KY? ~3) - (R + S)(l + Ky3) y2]. 

After dividing the right-hand side by y, y3( 1 + y, + y, + Kyz y,)-which 
does not change the orbits-we obtain 

s (r+~)(l +KY,) 

j’2=~-1+y2+~3+Ky2y1 

(R+Wl +KY,) 
2 1 +Y~+Y~+KY~Y,’ 

The divergence of this system is given by 

div(9,, JjJ = - 
(R+S+r+s)(K-1) 

v+Y2+Y3+KY*Y3)2’ 

If K= 1 (o L=O) or R+ S+ r +s= 0 (these are the cases for which 
tr J= 0) the system is divergence-free and hence is Hamiltonian, i.e., of the 
form j2 = -aHlay,, j3 = aH/dy,. The Hamilton function H can be easily 
computed to : 

H = S log y, - (R + S) log( 1 + y2) - s log y, + (Y + s) log( 1 + y3) 

in the case K=l; in the case R+S+r+s=O it is given by 

H = S log y, - s log y, + (r + s) log( I+ y, + y, + Ky2 y3). 

We note that H is a constant of motion. Therefore the fixed point is either 
a saddle or surrounded by periodic orbits. 

If K # 1 and R + S+ Y + s #O then div(j2, 9,) is strictly positive or 
strictly negative, having the same sign as tr J. Hence-by the Theorem of 
Bendixson-Dulac-there does not exist any periodic orbit on qK. 

The following classification of the fixed points in int S4 characterises also 
the global dynamics on each surface PI,: 

If Rr > 0 then det J < 0 and all fixed points are saddles. 
If Rr < 0 then det J > 0 and we obtain: 

R+S+r+s<O 
R+S+r+s=O 
R+S+r+s>O 

K<1 K=l 

Sink Centre 
Centre Centre 
Source Centre 

K>l 

Source 
Centre 
Sink 
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