Hohenegger Univ.Prof.Dr. Johann 

Department of Paleontology,
Geozentrum, Althanstrasse 14, A-1090 Vienna, Austria
Tel.: +43-1-4277 / 535 60
E-mail:
(johann.hohenegger@univie.ac.at)

Official

Teaching

Research

Projects

Publications 1971 – 2012

Curriculum Vitae


Official:

 

Head of the Micropaleontological division 

 


Teaching:

 

Introduction to Biology for Earth Scientists (2-st., VO), WS 
Basic Course in Paleontology (3-st.,UE), SS 
Statistics for Earth Scientists (3-st., VO+UE), WS 
Introduction to Biostratigraphy and Facies Analysis (2-st., VO), SS 
Micropaleontology (4-st., VO+UE), SS 
Population Genetics and Paleontology (2-st., VO), SS 
Methods in Stratigraphy (2-st., VO), WS 
Marine Actuopaleontological Course (4-st., VO + UE), SS 
 


Research:

 

Principles of Classification and Systematic Biology:

Classification is the elementary process for the recognition of entities consisting of objects, which are similar in characters. A class system is thus based on character homogeneity. Structuring a set of objects according to the grade of connections by various criteria results in a connection system that differs from class systems. Depending on different types of relations between objects representing these connections mathematically, a universal definition for this type of structuring is possible.

Structuring of sets of organisms into classes by various criteria is often declared as the ‘natural system’ of organisms. While ‘phenetic’ systems using the intensity of symmetrical relations between objects as the classification criterion result in class systems (evolutionary systems, transformed cladistics, partly molecular genetics), ‘phylogenetic systems’ based on asymmetrical relations belong to a special type of connection systems called trees. Differentiation of structured and unstructured trees allows determination of homomorphic tree parts, which can be regarded as entities, similar to hierarchical classes in phenetic systems.


Ecology and Taphonomy of Living Larger Foraminifera:

 

 

Larger Foraminifera with test sizes from 2mm up to 13cm are characteristic organisms inhabiting shallow water subtropical and tropical environments today. They prefer clear, nutrition depleted water as can be found in the surroundings of coral reefs. Two main factors acting as single gradients regulate the distribution of larger foraminifera within coral reef complexes. All house symbiotic microalgae and are thus restricted to the photic zone (-130m), getting independence from food resources outside the cell. Differences in hydrodynamics, mostly correlated with substrate, and light availability are managed in various ways. Larger foraminifers inhabiting the intertidal and extremely shallow subtidal block high irradiation by thick test walls or porcelaineous wall strucures, while species living near the base of the euphotic zone facilitate light penetration by thin transparent test walls developing light collecting structures. Water turbulence, often extreme in coral reef environment, is handled in different ways, but tests are restricted to a few paradigmatic forms. Similar tests were developed in various phylogenetic lines at different climaxes during earth history starting from the Late Paleozoic, enabling environmental reconstruction using to the functional uniformitarianism.

Living and death assemblages of larger foraminiferal species can be compared for estimating transport intensities as an important taphonomic factor. Three factors were shown to induce transport: (1) traction intensities caused by waves, tidal and bottom currents, or tropical cyclones that cross the area, (2) sea bottom topography, and (3) differences in test buoyancies. Due to the range of living populations, the combination of transport factors leads to varying displacement intensities and mixing of empty tests.


Projects:

 

Populationsdynamik von Großforaminiferen des Riffdaches im West-Pazifik (FWF: P11107 GEO): 1.12.1995 – 31. 3. 1998; Leadership: J. Hohenegger, 24 Mann-Monate (eingeworben)

            Die Populationsdynamik von symbiontentragenden Foraminiferen vom Riffdach des Saumriffes NW Sesoko (Okinawa) wurden erarbeitet. Das Material inklusive der Makro-algen, dem wichtigsten Substrat für Großforaminiferen, wurde während eines einjährigen Aufenthaltes vom September 1992 bis August 1993 gesammelt. In drei Phasen wurde die Dynamik der häufigsten Arten erfaßt, wobei der Fortpflanzungsmodus (Gamogonie, Agamogonie und Schizogonie) anhand der Gehäuseparameter erfaßt wurde, bzw. wie groß der Anteil der jeweiligen Generation an den Populationen ist.

            Die Vermessung der Individuen erfolgte mittels Mikroröntgens und in der Bildanalyse, die mathematische Auswertung der Ergebnisse ist noch ausständig, da der Projektmitarbeiter zwischenzeitlich andere Aufgaben zu erfüllen hatte. Die ersten Ergebnisse sollen im Laufe des Jahres 2000 publiziert werden.

 

Beziehungen zwischen Bio- und Taphozönoklinen am Beispiel von Großforaminiferen (FWF: P10946-GEO): 1.1.1996 - 31.12.1998; Leadership: J. Hohenegger, 36 Frau-Monate (eingeworben); ATS 979.579,33.

Das Projekt hatte das Ziel, die Abhängigkeiten lebender Großforaminiferen sowie deren leerer Gehäuse von Umweltgradienten zu erfassen. Die Zusammensetzung von Assoziationen ändert sich entlang eines ökologischen Gradienten (Zönokline). Wenn es sich um Organimen handelt, die fossil erhaltungsfähig sind, wie beispielsweise die Foraminiferen, dann stellt sich die Frage, ob eine solche Zönokline der lebenden Organismen (Biozönokline) sich auch mit den Skelettresten erfassen läßt (Taphozönokline) bzw. inwieweit Fossilisationsvorgänge (taphonomische Prozesse) das Bild der Biozönokline verändern können. In erster Linie wäre hier der Transport zu erwähnen, der die Zusammensetzungen der Totengemeinschaften am stärksten verändert. Insbesondere in marinen Bereichen wirken hier Strömungen, daneben ist auch Sedimenttransport durch Gleiten an steilen Abhängen möglich.

Da Biozönoklinen mit den (komplexen) Umweltgradienten hoch korreliert sind, lassen sich die Werte des einen aus dem anderen Gradienten ermitteln und umgekehrt. Dazu dienen Transferfunktionen, die eine Annäherung (Proxi) der Werte des Umweltgradienten aus den Assoziationen ermöglichen. Großforaminiferen eignen sich besonders für die Gliederung der Photischen Zone in subtropischen und tropischen Küstenbereichen und am Riffhang von Korallenriffen. Da Großforaminiferen fossil erhaltungsfähig sind und seit dem Jungpaläozoikum in subtropischen bzw. tropischen Gewässern oft in großen Häufigkeiten und gesteinsbildend auftreten, werden sie als Tiefenindikatoren für flache Schelfbereiche herangezogen. Inwieweit Zönoklinen, die sich in den fossilen Gesteinen gleichfalls feststellen lassen, tatsächlich eine gute Approximation von Paläotiefen ermöglichen und inwieweit sie von taphonomischen Prozessen gestört werden können, war das Ziel des vorliegenden Forschungsprojektes.

Die Arbeit erfolgte in Zusammenarbeit mit dem Tropical Biosphere Center der Ryukyu-Universität, Okinawa, Japan (Leiter Prof. K. Takano) und wurde an der Sesoko-Station dieses Centers durchgeführt. Im Sommer 1996 wurden 2 Tiefentransekte NW der Insel Sesoko aufgenommen und zahlreiche Sedimentproben wurden in Abständen von 10m genommen. Die Untersuchung der Mikrohabitate und der Umweltsparameter sowie die Antwort der Großforaminiferen mittels unterschiedlicher Häufigkeiten und Reproduktionen wurden in einer umfangreichen Arbeit veröffentlicht (Hohenegger et. al., 1999, siehe Literaturliste und Beilage). Erste Ergebnisse über die Biozönoklinen von Großforaminiferen wurden als eingeladener Vortragender am 10. Internationalen Protozoologenkongreß in Sidney, 1997 vorgetragen (siehe Jahrebericht 1997). Die dazugehörige Publikation ist ein umfangreicher Beitrag im Buch über „Biology of Foraminifera II“ (Herausgeber J.J. Lee und P. Hallock), das im Sommer 2000 erscheinen wird. Auf Zönoklinen wird auch in einem weiteren Artikel über die Rolle der Großforaminiferen hingewiesen. Der Vortrag wurde im Rahmen eines Symposiums über ‚Foraminifera as indicators of marine environments in the present and past‘ gehalten, das im Februar 1998 vom Kagoshima University Research Center for the South Pacific in Kagoshima, Japan abgehalten wurde. Die Untersuchung der leeren Gehäuse erbrachte Verschiebungen der Häufigkeitsverteilungen entlang des Tiefengradienten, die extrem von der Hangneigung und der Tiefe abhängen. Gleiche Hangneigungen bewirken unterschiedlichen Transport in Abhängigkeit von den Tiefen. Zusätzlich ergeben sich Schwierigkeiten durch die lokale Topographie, wo zusätzlicher Transport aus benachbarten Seichtwasserbereichen, wie beispielsweise von der Rifflagune über das Riffdach in den Vorriffbereich erfolgen kann. Es wurde ein mathematisches Erosions-Depositions-Modell entwickelt, das Transportweiten und –intensitäten zu erklären vermag. Zusätzlich muß bei der Bestimmung von Transportweiten die Gehäuseform der Foraminiferen in Betracht gezogen werden, da diese durch unterschiedliche Widerstandskoeffizienten verschiedentlich im Wasser driften. Dieses Modell wurde bei verschiedenen Tagungen vorgestellt und befindet sich derzeit im Publikationsstadium.

Weitere Zusammenarbeit ergab sich im Verlauf des Projektes mit dem ‚Kagoshima University Research Center for the South Pacific‘ (nunmehr Kagoshima University Research Center for the Pacific Islands), wobei die Veröffentlichung der gesamten Ergebnisse in populärwissenschaftlicher Form im Rahmen eines Buches mit dem Titel ‚Hoshisuna (= Sternensand auf Japanisch) and other living sand‘ geplant ist (in einem japanischen Universitätsverlag, mit vielen Farbbildern.

 

Morphoclines and depth dependence of metrical test characters in larger Foraminifera from the West Pacific (FWF: P13613-BIO): 1.9.1999 - 31.8.2001; Leadership: J. Hohenegger, 24 Frau-Monate (eingeworben)

Depth estimation using coenoclines strongly depends on species composition. Since larger foraminifers show high evolutionary rates, depth inference of fossil environments by comparison with taxonomically related, extant larger foraminifers are restricted to the Pliocene and Upper Miocene at least. But similar morphological characters of larger foraminifers developed in phylogenetically independent foraminiferal groups during earth history can be found from the Upper Paleozoic to the Recent. Starting from the Upper Cretaceous, similar trends in size increase led to gigantic tests, despite the phylogenetic roots were quite different. Characteristic traits of larger foraminifers can be mainly interpreted as functional, on the one hand to prevent irradiation in shallow waters, on the other to facilitate light penetration near the base of the euphotic zone. The second environmental factor that influences test morphology is water energy, which is handled by wall thickening or the construction of fusiform and globular tests. The latter sometimes develop canalicular spines for attachment to hard organic or inorganic substrates.

Considering these morphological characters independently from biologic systematics, qualitative characters can be treated in a similar manner like species or other taxa in coenoclines. This subject of ‘comparative ecology’ may lead to the recognition of morphoclines, which is defined here as a succession of qualitative characters along an environmental gradient. Since these characters can be interpreted functionally, they are not restricted to geological time periods as species in coenoclines. The investigation of qualitative morphological characters in form of morphoclines and the treatment of quantitative characters by general and - excluding extrinsic factors - partial multiple regression analyses may allow depth estimation using larger foraminifers also in fossil environments.

 

Temporal and spatial changes of microfossil associations and ichnofacies in the Austrian marine Miocene (FWF: P13743 - BIO): Start 1.3.2000 ; Leadership: J. Hohenegger, Co-leaders: Fred Rögl, Peter Pervesler, 2 X 36 Frau/Mann-Monate (eingeworben)

The geodynamic history of the marine Eastern Alpine Miocene is characterized by a complex system of basins, their deepening, shallowing and opening of seaways. Basin development is connected during the Early Miocene with the evolution of the Alpine Carpathian foredeep, while in the Middle Miocene intramountain basins were developed in the Alpine Carpathian nappe system and sedimentation occurred mainly in the down faulted Vienna and Styrian Basins. Restriction of these basins from the open sea started in the Sarmatian leading to brackish conditions distinguished by endemic faunas in the Pannonian.

This geodynamic history is reflected in bottom facies, which is pictured in benthic microfossil assemblages and ichnofossils beside mollusk faunas. Spatial differences of the sea-bottom that reflect water depth effect changes in microfossil assemblages as well as trace fossils. Beside water depth, which is a typical complex environmental gradient composed of the single factors water energy, light transparency, and hydrostatic pressure, changes in salinity are mainly caused by restrictions of parts or the whole basins from open seas. Salinity and oxygen content again is best reflected in benthic microfossil assemblages and ichnofossils, which proves the value of community analyses for the reconstruction of paleoenvironments.

Planktic organisms like globigerinid foraminifers and nannofossils are important for stratigraphic determination of the sediments. Beside this important role, they can be used determining physical and chemical properties of water masses, e.g. temperature, surface currents, upwelling, alkalinity etc.

The subject of this study will be the interaction between marine current systems, sediment distribution, ichnofacies, and microfossil assemblages, and the influence of geodynamic processes in the Alpine-Carpathian thrust belt.


Publications           

 

1.      Hohenegger J. and H. Lobitzer, 1971: Die Foraminiferen-Verteilung in einem obertiadischen Karbonatplattform-Becken-Komplex der östlichen Nördlichen Kalkalpen. Verhandlungen der Geologischen Bundesanstalt, Jahrgang 1971, Heft 3, 458-485, Wien.

2.      Hohenegger, J., 1974: Über einfache Gruppierungsmethoden von Fossil-Vergesellschaftungen am Beispiel obertriadischer Foraminiferen. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 146, 3, 263-297, Stuttgart.

3.      Hohenegger, J., 1974: Zur Anwendung stochastischer Methoden in der Taxonomie obernorischer Nodosarien. Verhandlungen der Geologischen Bundesanstalt, Jahrgang 1974, 25-69, Wien.

  1. Hohenegger, J. and W. Piller, 1975: Diagenetische Veränderungen bei obertriadischen Involutinidae (Foraminifera). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, Jahrgang 1975, 26-39, Stuttgart.
  2. Hohenegger, J. and W. Piller, 1975: Wandstrukturen und Großgliederung der Foraminiferen. Sitzungsberichte der Österreichischen Akademie der Wissenschaften, Mathem.-naturw. Kl., Abt. I, 184, 67-96, Wien.
  3. Hohenegger, J. and W. Piller, 1975: Ökologie und systematische Stellung der Foraminiferen im gebankten Dachststeinkalk (Obertrias) des nördlichen Toten Gebirges (Oberösterreich). Palaeogeography, Palaeoclimatology, Palaeoecology, 18, 241-276, Amsterdam.
  4. Hohenegger, J. and W. Piller, 1977: Die Stellung der Involutinidae Bütschli und Spirillinidae Reuss im System der Foraminiferen. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, Jahrgang 1977, 407-418, Stuttgart.
  5. Hohenegger, J. and W. Piller, 1977: Über ein Vorkommen von Triasina hantkeni Majzon in Zlambachmergeln (Obertrias). Anzeiger der Österreichischen Akademie der Wissenschaften, Mathem.-naturw. Kl., Abt. I, Jahrgang 1977, 26-31, Wien.
  6. Hohenegger, J., 1978: Populationsgenetische Deutung des morphologischen Wandels der triassischen Foraminifere Nodosaria striatoclavata. Lethaia, 11, 199-215, Oslo.

10.  Hohenegger, J. and R. Lein, 1977: Die Reiflinger Schichten des Schneeberg-Nordostabfalles und ihre Foraminiferenfauna. Teil 1: Geologie, Stratigraphie und Systematik (exklusive Lagenina). Mitteilungen der Gesellschaft der Geologie und Bergbausteudenten Österreichs, 24, 203-261, Wien.

  1. Hohenegger, J., 1980: Morphologische und taxonomische Analyse der liassischen berippten Ichthyolarien (Foraminifera). Beiträge zur Paläontologie von Österreich, 7, 17-106, Wien.
  2. Hohenegger, J., 1981: Ichthyolaria densicostata n.sp., eine charakteristische Foraminifere des Unteren Lias Mitteleuropas. Stuttgarter Beiträge zur Naturkunde, Serie B, 74, 1-33, Stuttgart.
  3. Hohenegger, J. and L. Wittibschlager, 1981. Eine einfache Methode zur Erfassung der Parameter von spitzwinkeligen Gastropodengehäusen. Géobios, 14, 827-833, Lyon.
  4. Hohenegger, J., 1982: Numerische Klassifikation von Individuen und Merkmalsnormierung. Sitzungsberichte der Österreichischen Akademie der Wissenschaften, Mathem.-naturw. Kl., Abt. I, 191, 15-72, Wien.
  5. Hohenegger, J. and P. Pervesler, 1985: Orientation of crustacean burrows. Lethaia, 18, 323-339, Oslo.
  6. Hohenegger, J., 1986: Weighted Standardization - a general data transformation method preceeding classification procedures. Biometrical Journal, 28, 295-303, Berlin.
  7. Hohenegger, J., 1987: Ein Modell der Morphogenese von Rippen liassischer Ichthyolarien (Foraminifera). Palaeontographica, Abt. A, 196, 57-103, Stuttgart.
  8. Hohenegger, J., 1988: Klassifikation von Organismen und das „Natürliche“ System. Sitzungsberichte der Österreichischen Akademie der Wissenschaften, Mathem.-naturw. Kl., Abt. I, 197, 135-181, Wien.
  9. Hohenegger, J., 1989: Morphogenetische Programme - Schlüssel zur Klärung evolutionärer und funktioneller Fragen. In Edlinger, K. (Editor): Form und Funktion. Ihre stammesgeschichtlichen Grundlagen, 109-125, Wien (WUV-Universitätsverlag).
  10. Hohenegger, J., Piller, W. and Ch. Baal, 1989: Reasons for the spatial microdistributions of foraminifers in an intertidal pool (Northern Adriatic Sea). P.S.Z.N. I. Marine Ecology, 10, 43-78, Berlin-Hamburg.
  11. Hohenegger, J., 1990: On the way to the optimal suprageneric classification of agglutinating Foraminifera. In Hemleben, C. et al. (eds.): Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera, 77-104, Amsterdam (Kluwer Academic Publishers).
  12. Hohenegger, J. and H. Zapfe, 1990: Craniometric investigations on Mesopithecus in comparison with two recent colobines. Beiträge zur Paläontologie von Österreich, 16, 111-143, Wien.
  13. Hohenegger, J., 1992: Die Art als basales Element des Systems der Organismen. Ein Klassifikationsproblem. In Goebl. H. and M. Schader (eds.): Datenanalyse, Klassifikation und Informationsverarbeitung. 11-19, Heidelberg (Physica-Verlag).
  14. Hohenegger, J., 1992: Species as the basic units in taxonomy and nomenclature. In Proceedings of the 3rd Infoterm Symposion 1991, 15-30, Vienna.
  15. Hohenegger, J. and F. Tatzreiter, 1992: Morphometric methods in determination of ammonite species, exemplified through Balatonites shells (Middle Trassic). Journal of Paleontology, 66, 801-816, Tulsa (Oklahoma).
  16. Hohenegger, J., W.E. Piller and Ch. Baal, 1993: Horizontal and vertical spatial microdistribution of foraminifers in the shallow subtidal Gulf of Trieste, Northern Adriatic Sea. Journal of Foraminiferal Research, 23, 79-101.
  17. Hohenegger, J., 1993. The morphogenetic species concept. A tool for the definition and recognition of species also useful in fossils (in Japanese). Chikyu Monthly, 15, 9, 529-538.
  18. Hohenegger, J. 1993: Determination of Upper Triassic and Lower Jurassic Ichthyolarias using morphogenetic programs. Micropaleontology, 39, 233-262.
  19. Hohenegger, J., 1994. Distribution of living larger Foraminifera NW of Sesoko-Jima, Okinawa Japan. P.S.Z.N. I: Marine Ecology, 15 (2), 291-334.
  20. Hohenegger, J., 1995. Depth estimation by proportions of living larger foraminifera. Marine Micropaleontology, 26, 31-47.
  21. Hohenegger, J., 1996. Remarks on the distribution of larger Foraminifera (Protozoa) from Belau (Western Carolines). In: T. Aoyama (Ed.), The Progress Report of the 1995 Survey of the Research Project, ‘Man and the Environment in Micronesia’. Kagoshima University Research Center for the South Pacific, Occasional Papers 30, 85-90.
  22. Krüger, R., Röttger, R., Lietz, R. and Hohenegger, J. 1996/97: Biology and reproductive processes of the larger foraminiferan Cycloclypeus carpenteri (Protozoa, Nummulitidae). Archiv für Protistenkunde 147, 307-321.
  23. Röttger, R., R. Krüger and J. Hohenegger, 1997. Generationswechsel und Gehäusedimorphismus bei Foraminiferen. Natur und Museum, 127, 54-60.

34.  Hohenegger, J., 1997. Morphological niches as tools for phylogenetic analysis: Permian and Triassic Lagenina as a case study. In: C.A. Ross, J.R.P. Ross, and P.L. Brenckle (eds.), Late Paleozoic Foraminifera; their biostratigraphy, evolution, and palecology; and the Mid-Carboniferous boundary. Cushman Foundation for Foraminiferal Research, Special Publication 36, 63-69.

  1. Hohenegger, J., 1997. Tropical and subtropical marine single celled organisms as important producers of calcium-carbonate. Kagoshima University Research Center for the South Pacific, No.33, October 1997, 1-3.
  2. Zuschin, M. and J. Hohenegger, 1998. Subtropical coral-reef associated sedimentary facies characterized by molluscs (Northern Bay of Safaga, Red Sea, Egypt). Facies, 38, 229-254, pl. 56-57, 14 Figs.
  3. Reisinger, Ch. and J. Hohenegger, 1998. Sexual dimorphism in limb bones of Late Pleistocene cave bear (Ursus spelaeus, Carnivora, Mammalia) from three caves in Eastern Alps (Austria and Italy). Bolletino della Scietà Paleontologica Italiana, 37 (1), 99-116.
  4. Röttger, R., Ch. Dettmering, R. Krüger, R. Schmaljohan, and J. Hohenegger, 1998. Gametes in Nummulitids (Foraminifera). Journal of Foraminiferal Research, 28, 345-348.
  5. Dettmering, Ch., Röttger, R., Hohenegger, J., and R. Schmaljohan, 1998. The trimorphic life cycle in Foraminifera: Observations from cultures allow new evaluation. European Journal of Protistology, 34, 363-368.
  6. Hohenegger, J., Yordanova, E., Nakano, Y., and F. Tatzreiter, 1999. Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Marine Micropaleontology, 36, 109-168.
  7. Hohenegger, J., 1999. Larger Foraminifera – Microscopical greenhouses indicating shallow-water tropical and subtropical environments in the present and past. In Hatta, A. and Oki, K. (eds.), Foraminifera as indicators of marine environments in the present and past. Kagoshima Research Center for the Pacific Islands, Occasional Papers, 32, 19-45.
  8. Hohenegger, J., Yordanova, E., and Hatta, A., 2000. Remarks on West Pacific Nummulitidae (Foraminifera). Journal of Foraminiferal Research, 30, 3-28.
  9. Zuschin, M., Hohenegger, J., and Steininger, F.F., 2000. A comparison of living and dead molluscs on coral reef associated hard substrata in the northern Red Sea – implications for the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 159, 167-190.
  10. Hohenegger, J., 2000. Coenoclines of larger foraminifera. Micropaleontology, 46, supplement no. 1, 127-151.
  11. Hohenegger, J. and Yordanova, E., 2001. Displacement of larger foraminifera at the western slope of Motobu Peninsula (Okinawa, Japan). Palaios, 16, 53-72.
  12. Holzmann, M., Hohenegger, J., Hallock, P., Piller, W.E. and Pawlowski, J., 2001. Molecular phylogeny of large miliolid foraminifera (Soritacea Ehrenberg 1839). Marine Micropaleontology, 43, 57-74.
  13. Zuschin, M., Hohenegger, J. and Steininger, F.F., 2001. Molluscan assemblages on coral reefs and associated hard substrata in the northern Red Sea. Coral Reefs, 20, 107-116.
  14. Hohenegger, J. and Yordanova, E., 2001. Depth-transport functions and erosion-deposition diagrams as indicators of slope inclination and time-averaged traction forces: applications in tropical reef environments. Sedimentology, 48, 1025-1046.
  15. Yordanova, E.K. & Hohenegger, J., 2002. Taphonomy of larger foraminifera: Relationships between living individuals and empty tests on flat reef slopes (Sesoko Island, Japan). Facies, 46, 169-204.
  16. Hohenegger, J., Melis, R., Pervesler, P. and Pugliese, N. (eds.), 2002. EMMM ‘2002. The Third International Congress ‘Environmental Micropaleontology, Microbiology and Meiobenthology’. Field Excursion Guide: Friuli Lakes, Gulf of Trieste, Karst, Aquileia. September 6-9, 2002, Trieste, 47pp.
  17. Hohenegger, J. and Baal, Ch., 2002. Intertidal close to the Lido di Staranzano. Spatial distribution and seasonality of foraminifera. In Hohenegger, J., Melis, R., Pervesler, P. and Pugliese, N. (eds.). EMMM ‘2002. The Third International Congress ‘Environmental Micropaleontology, Microbiology and Meiobenthology’. Field Excursion Guide: Friuli Lakes, Gulf of Trieste, Karst, Aquileia. 17-18.
  18. Hohenegger, J. and Baal, Ch., 2002. Subtidal along a line from Aurisina to the Isonzo River Mouth. Spatial distribution and seasonality of foraminifera. In Hohenegger, J., Melis, R., Pervesler, P. and Pugliese, N. (eds.). EMMM ‘2002. The Third International Congress ‘Environmental Micropaleontology, Microbiology and Meiobenthology’. Field Excursion Guide: Friuli Lakes, Gulf of Trieste, Karst, Aquileia. 21-25.
  19. Spezzaferri, S., Coric, S., Hohenegger, J., and Rögl, F. 2002. Basin-scale paleobiogeography and paleoecology: an example from Karpatian (Latest Burdigalian) benthic and planktonic foraminifera and calcareous nannofossils from the Central Paratethys. Geobios, mem. Speciale 24, 241-256.
  20. Hohenegger, J. 2002. Inferences on sediment production and transport at carbonate beaches using larger foraminifera. In Magoon, Orville T., Robbins, Lisa L., and Ewing Lesley (eds.). Carbonate Beaches 2000. First International Symposium on Carbonate Sand Beaches, December 5 to 8, 2000, Key Largo, Florida. ASCE American Society of Civil Engineers, Reston, Virginia, 112-125.
  21. Hohenegger, J. and Baal, Ch., 2003. Gehäusebau bei Foraminiferen. In Hofrichter, R. (ed.). Das Mittelmeer. Fauna Flora, Ökologie. II/1 Bestimmungsführer. Spektrum Akademischer Verlag, Heidelberg-Berlin,122-123.
  22. Hohenegger, J. and Baal, Ch., 2003. Klasse Foraminiferea d’Orbigny 1826. In Hofrichter, R. (ed.). Das Mittelmeer. Fauna Flora, Ökologie. II/1 Bestimmungsführer. Spektrum Akademischer Verlag, Heidelberg-Berlin,124-134.
  23. Hohenegger, J. and Baal, Ch., 2003. Wandstruktur bei Foraminiferen. In Hofrichter, R. (ed.). Das Mittelmeer. Fauna Flora, Ökologie. II/1 Bestimmungsführer. Spektrum Akademischer Verlag, Heidelberg-Berlin,134-135.
  24. Holzmann, M.,  Hohenegger, J., and Pawlowski, J., 2003. Molecular data reveal parallel evolution in nummulitid foraminifera. Journal of Foraminiferal Research, 33, 277-284.
  25. Hohenegger, J., 2004. Depth coenoclines and environmental considerations of Western Pacific larger foraminifera. Journal of Foraminiferal Research, 34, 9-33.
  26. Spezzaferri, S., F. Rögl, S. Ćorić, and J. Hohenegger, 2004. Paleoenvironmental changes and aglutinated foraminifera across the Karpatian/Badenian (Early/Middle Miocene) boundary in the Styrian Basin (Austria, Central Paratethys). In Bubík, M. and M.A. Kaminski (eds.), Proceedings of the Sixth International Workshop on Agglutinated Foraminifera. Grzybowski Foundation Special Publication, 8, 423-459.
  27. Ćorić, S., M. Harzhauser, J. Hohenegger, O. Mandic, P. Pervesler, R. Roetzel, F. Rögl, R. Scholger, S. Spezzaferri, K. Stingl, L. Švábenická, I. Zorn, and M. Zuschin, 2004. Stratigraphy and correlation of the Grund Formation in the Molasse Basin, Northeastern Austria (Middle Miocene, Lower Badenian). Geologica Carpathica, 55, 207-215.
  28. Yordanova , E.K. and J. Hohenegger, 2004. Morphocoenoclines of living operculind foraminifera based on quantitative characters. Micropaleontology, 50, 149-177.
  29. Renema, W.and J. Hohenegger, 2005. On the identity of Calcarina spengleri (Gmelin 1791). Journal of Foraminiferal Research, 35, 12-21.

64.  Hohenegger, J. 2005. Estimation of environmental paleogradient values based on presence/absence data: a case study using benthic foraminifera for paleodepth estimation. Palaeogeography, Palaeoclimatology, Palaeoecology, 217, 115-130.

65.  Hohenegger, J., 2006. Morphocoenoclines, character combination, and environmental gradients: a case study using symbiont-bearing benthic foraminifera. Paleobiology, 32, 70-99.

66.  Pervesler, P. and J. Hohenegger, 2006. Orientation of crustacean burrows in the Bay of Panzano (Gulf of Trieste, Northern Adriatic Sea). Lethaia, 39, 173-186.

  1. Barbieri, R., Hohenegger, J. and N. Pugliese, 2006. Foraminifera and environmental micropaleontology (Editorial). In  Barbieri, R., Hohenegger, J. and N. Pugliese (eds): Foraminifera and Environmental Micropaleontology, Environmental Miropaleontology Symposium at the 32nd International Geological Congress. Marine Micropaleontology, 61 (1-3), 1-3.

68.  Hohenegger, J., 2006. The importance of symbiont-bearing benthic foraminifera for West Pacific carbonate beach environments. In  Barbieri, R., Hohenegger, J. and N. Pugliese (eds): Foraminifera and Environmental Micropaleontology, Environmental Miropaleontology Symposium at the 32nd International Geological Congress. Marine Micropaleontology, 61 (1-3), 4-39.

69.  Lehmann, G., Röttger, R. and J. Hohenegger, 2006. Life Cycle variation including trimorphism in the foraminifer Trochammina inflata from North European salt marshes. Journal of Foraminiferal Research, 36, 279-290.

70.  Holzmann, M., Berney, C. and J. Hohenegger, 2006. Molecular identification of diatom endosymbionts in nummulitid foraminifera. Symbiosis, 42, 93-101.

71.  Moser, M., Bryda, G., Draxler, I., Hohenegger, J., Krystyn, L., Piros, O. and F. Schlagintweit, 2007. Erste Ergebnisse einer Neukartierung des Scheibenberges und des Mendlingtales zwischen Lassing (Niederösterreich) und Palfau (Steiermark). Jahrbuch der Geologischen Bundesanstalt, 147, 335-351.

  1. Rögl, F., S. Ćorić, J. Hohenegger, P. Pervesler, R. Roetzel, R. Scholger, S. Spezzaferri and K. Stingl, 2007. Cyclostratigraphy and transgressions at the Early/Middle Miocene (Karpatian/Badenian) boundary in the Austrian Neogene basins (Central Paratethys). Scripta Facultatis Scientiarum Natruralium Universitatis Masrykianae Brunensis, Geology, 36, 7-13.
  2. Hohenegger, J. 2007. Populationsgenetik und Mikropaläontologie – Möglichkeiten zur Überprüfung unterschiedlicher Modelle der Artbildung. In Gusenleitner , F., Aubrecht, G., Aescht, E. and M. Pfosser. (eds.). Evolution – Phänomen Leben. Denisia 20, Linz, 59-74.
  3. Yordanova, E.K. and J. Hohenegger 2007. Studies on settling, traction and entrainment of larger benthic foraminiferal tests: implications for accumulation in shallow marine sediments. Sedimentology, 54, 1273-1306.
  4. Pervesler P., Hohenegger J., Wagreich M., Peryt T. and M. Kováč, 2008: The paleoenvironment at the Badenian type locality (Middle Miocene, Vienna Basin, Austria). Geologica Carpathica, 59, 365-366.
  5. Pervesler P., Uchman A. and J. Hohenegger, 2008: New methods for ichnofabric analysis and correlation with orbital cycles exemplified by the Baden-Sooss section (Middle Miocene, Vienna Basin). Geologica Carpathica, 59, 395-409.
  6. Báldi, K. and J. Hohenegger, 2008: Paleoecology of benthic foraminifera of the Baden-Sooss section (Badenian, Middle Miocene, Vienna Basin, Austria). Geologica Carpathica, 59, 411-424.
  7. Rupp, Ch. and J. Hohenegger, 2008: Paleoecology of planktonic foraminifera from the Baden-Sooss section (Middle Miocene, Badenian, Vienna Basin, Austria). Geologica Carpathica, 59, 425-445.
  8.  Ćorić S. and J. Hohenegger, 2008: Quantitative analyses of calcareous nannoplankton assemblages from the Baden-Sooss section (Middle Miocene of Vienna Basin, Austria). Geologica Carpathica, 59, 447-460.
  9. Hohenegger J., Andersen N., Báldi K., Ćorić S., Pervesler P., Rupp Ch. and Wagreich M., 2008: Paleoenvironment of the Early Badenian (Middle Miocene) in the southern Vienna Basin (Austria) – multivariate analysis of the Baden-Sooss section. Geologica Carpathica, 59, 461-487.
  10. Bassi, D., Nebelsick, J.H., Checconi, A., Hohenegger, J. and Iryu, Y., 2009: Present-day and fossil rhodolith pavements compared: Their potential for analyzing shallow-water carbonate deposits. Sedimentary Geology, 214, 74-84.
  11. Hohenegger J., Pervesler P., Uchman, A. and M. Wagreich, 2009: Upper bathyal trace fossils document palaeoclimate changes. Terra Nova, 21, 229-236.
  12. Hohenegger J., Ćorić S., Khatun M., Pervesler P., Rögl F., Rupp C., Selge A., Uchman A. and Wagreich M., 2009: Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria) – the Baden-Sooss core. International Journal of Earth Sciences, 98, 915-930, DOI 10.1007/s00531-007-0287-7.
  13. Hohenegger, J., Rögl, F., Ćorić S., Pervesler P., Lirer, F., Roetzel, R., Scholger, R. and K. Stingl, 2009: The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions, Austrian Journal of Earth Sciences, 102, 102-132.
  14. Briguglio, A. and J. Hohenegger, 2009: Nummulitids hydrodynamics: an example using Nummulites globulus Leymerie, 1846. Bolletino della Scocietà Paleontologica Italiana, 48, 105-111.
  15. Hohenegger, J., 2009: Functional shell geometry of symbiont-bearing benthic Foraminifera. Galaxea, Journal of Coral Reef Studies, 11, 81-89.
  16. Barras, C., Fontanier, C., Jorissen, F. and Hohenegger, J., 2010: A comparison of spatial and temporal variability of living benthic foraminiferal faunas at 550m depth in the Bay of Biscay. Micropaleontology, 56, 275-295.
  17. Hohenegger, J. 2011: Large Foraminifera: Greenhouse Constructions and Gardeners in the Oceanic Microcosm. The Kagoshima University Museum, Kagoshima, Japan, 85 pp.
  18. Hohenegger, J., Ćorić S. and M. Wagreich, 2011: Beginning and division of the Badenian stage (Middle Miocene, Paratethys). In Bąk, M., Kaminski, M.A. and  A Waśkowska (eds.). Integrating Microfossil Records from the Oceans and Epicontinental Seas. Grzybowski Foundation Special Publication, 17, Part 2. Abstracts of the Eight Micropalaeontological Workshop “MIKRO-2011” and TMS Foraminiferal-Nannofossil Group Annual Meeting, 92-93.
  19. Hohenegger, J. 2011: Growth-invariant meristic characters. Tools to reveal phylogenetic relationships in Nummulitidae (Foraminifera). Turkish Journal of Earth Sciences, 20, 655-681, 10.3906/yer-0910-43.
  20. Briguglio, A., Metscher, B. and J. Hohenegger, 2011: Growth rate biometric quantification by X-ray microtomography on larger benthic foraminifera: Three-dimensional measurements push Nummulitids into the fourth dimension. Turkish Journal of Earth Sciences, 20, 683-699, DOI 10.3906/yer-0910-44.
  21. Pervesler, P., Uchmann, A., Hohenegger, J. and S. Dominici, 2011: Ichnological record of environmental changes in Early Quaternary (Gelasian-Calabrian) marine deposits of the Stirone Section, Northern Italy. Palaios, 26, 578-593.
  22. Briguglio, A. and J. Hohenegger, 2011: How to react to shallow water hydrodynamics: The larger benthic foraminifera solution. Marine Micropaleontology, 81, 63-76.
  23. Hohenegger, J. and M. Wagreich, 2012: Time calibration of sedimentary sections based on insolation cycles using combined cross-correlation: dating the gone Badenian stratotype (Middle Miocene, Paratethys, Vienna Basin, Austria) as an example. International Journal of Earth Sciences (Geologische Rundschau), 101, 339-349: DOI 10.1007/s00531-011-0658-y.
  24. Hohenegger, J. and A. Briguglio, 2012: Axially oriented sections of Nummulitids: A tool to interpret larger benthic foraminiferal deposits. Journal of Foraminiferal Research, 42, 145-153.
  25. Wagreich, M., Hohenegger, J. and S. Neuhuber, 2012: Nannofossil biostratigraphy, strontium and carbon isotope stratigraphy, cyclostratigraphy and an astronomically calibrated duration of the Late Campanian Radotruncana calcarata Zone. Cretaceous Research, doi:10.1016/j.cretres.2012.04.06

 


Curriculum Vitae:

Educational background and professional career :

Education:

 

1952 - 1956:                                         Primary School (Volksschule) in Vienna

1956 - 1964:                                         Junior and Senior High school (Realgymnasium) in Vienna

 

Studentship:

 

May 26, 1964:                                      Graduation (Matura) for University studies

October 1, 1964 - September 30, 1967 Studying Biology, Earth Sciences, and Geography at the University of Vienna

October 1, 1967 - July 31, 1972             Graduate Student at the Institute of Paleontology (Vienna University)

Since July 11, 1972:                             Doctor of Philosophy (Paleontology, Zoology)

 

Professional career:

 

April 1, 1968 – July 31, 1972                 Scientific Assistant at the Institute of Paleontology, Vienna University

August 1, 1972 - February 6, 1980         Assistant Professor at the Institute of Paleontology, Vienna University

 

Since February 7, 1980                         Associate Professor (venia docendi in Paleontology, Dozent) of Vienna University

April 11, 1988:                                      Qualified as a University Professor by the Federal President of Austria

 

January 1, 2000  - December 31, 2004   Head of the Institute of Paleontology, Vienna University

 

 

Longer stays outside Austria

 

September 1 - September 30, 1984:     Geological Institute University of Exeter, United Kingdom (sponsored by the Austrian Academy of Sciences).

Studies on the ecology of living foraminifers (Host Prof. J. Murray)

 

October 1 - October 31, 1985:              VSEGEI, Leningrad, USSR (sponsored by the Austrian Academy of Sciences).

Mathematical methods in Paleontology (Host Prof. A. Oleynikov)

 

June 1 - August 31, 1986:                    Sesoko Marine Science Center, University of the Ryukyus, Japan (sponsored by the Japanese Society for the Promotion of Science).

Researches on foraminifers in coral reefs (Host Prof. K. Yamazato).

 

September 1 - September 30, 1986:     Seto Marine Biological Station, Kyoto University, Japan (sponsored by the Japanese Society for the Promotion of Science). Researches on warm temperate foraminifers.

 

April 1 - July 31, 1992:                         Professor of Micropaleontology (substitute) at Universität Kiel, Germany.

 

September 1, 1992 - August 30, 1993:  Invited foreign researcher at the Sesoko Marine Science Center, University of the Ryukyus, Japan.

Population dynamics of larger foraminifers on a coral reef flat.

 

June 7 - September 30, 1996:               Invited foreign researcher at the Tropical Biosphere Research Center, Sesoko Station, University of the Ryukyus, Japan.

Estimation of ecological gradients by biocoenoclines and taphocoenoclines of larger foraminifers.

 

September 3, 1997 – March 13, 1998:    Visiting Professor at the Kagoshima University Research Center for the South Pacific, Japan.

Geographical distribution of larger foraminifers in the NW-Pacific.

 

April 1, 2003 – June 30, 2003:               Visiting Professor at the Museum of the Kyoto University, Japan.

Larger foraminifers as important carbonate producers and the role of symbionts in warm shallow seas.

June 1, 2005 – June 30, 2005:               Guest Professor at the Laboratoire d’Etude des Bio-indicateurs Actuels et Fossiles, Université d’Angers, France. Courses on spatial statistics used in Marine Ecology and Paleoecology.