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Abstract

The number of spanning subsets of a finite vector space is closely related to a g-analog
of the Stirling numbers (cf. [3]). The purpose of this note is to study these numbers in more
detail.

1. The ¢-Stirling Numbers { :}
q

The Stirling number {:} of the second kind counts the number of

partitions 7 of {0, 1,...,n— 1} into k nonempty subsets By, B,,..., B, _,.
We use the notation proposed by D. Knuth ([5],[6]). We also use his
version of [verson’s convention, setting [ P(n)] = 1 if the statement P(n)
is true and [P(n)] =0 if it is false.

We now associate a weight w(n) with each partition n. To this end we
distinguish that part of © which contains the number 0 and call it B,,.

Then w(r):= q:ezao g
For each set A of partitions let w(A):= ) w(n).

neA

Let A, , be the set of all partitions of {0, 1,...,n — 1} into k nonempty
parts.
Then we define

k
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{n} =wd,,), mk=1,
q



and

{g}q: [k =0], {g}q: [n=0], nk>0.

4
E.g. {2} =1+q+9*+29° +q*+q°, since w(4, ,)=w(0/123)+
q
w(01/23) + w(02/13) + w(03/12) + w(012/3) + w(013/2) + w(023/1) = 1 +
a+q*+a*+q’ +q* +¢°.

The numbers {:} satisfy the following recurrence
q

n+1 n n
= — " =Z0,k21.
{ k }q {k‘l}q-’-(k 1+q){k}q, =0kl

To see this write 4, ,, , =C,VC, V(5.

C,isthesetofallmeA,, , , such that {n} is one of the nonempty parts
of .

C, is the set of all & such that neB,,i # 0, and B)\{n} # .

C, is the set of all m such that ne B,

Then obviously

w(c,)={kf1}, w(cz>=(k—1){2},

and w(C,) = q"{n} .
k q
We get the following table:

0 1 0 0 0
1 0 1 0 0
2 0 q 1 0
3 0 q° 1+q+4* 1
4 0 q°® 149+ +2¢+q*+q¢* 3+9+¢*+¢°

In order to give an explicit formula for {Z} we need the g-binomial

q
coefficients

ny _ [n]!
(k . [k[n—k]!

n

with [#]! = [n][n— 1]---[21[1] and [n] = ‘fl -
It is well known (cf. e.g. [2]), that

(a+x)(a+qx)n.(a_,_qn-lx):z‘l(';) (i

q

Replacing x by gx and comparing coefficients of x' gives

i+1
Z qj,+jz+...+ji=(n> q(z)_
1Sji<ja<jisn t/g

Writing neA4, ,, ,,, in the form

n= {0’]1511}/B1//Bk

we get therefore

n+1 n—i
{k+l}qzw Apsihe1) = Z Z q“+ +J{ k }

i<

n+1 _ n i (=i
], =2 () e g

As special case we note

{n+1+k} ifn)(n+k> (-iv), )

n+1

We thus get

where f;(n) = {n : l} are the usual Stirling polynomials (cf. [4]) of degree

2i.
E.g. we have

1
{n: }q=[n]q+<;>,
n+2 n+1 n n+1
U e+ 500

7%



From the well known formula

A* n
K=o = e p
(cf. e.g. [7], [8]) we get

bt o

A* n—1\ @ty i,
= — 2 n-i x=
k! ( i )ﬂ X =0

k

= 2@+ )@+ 3@+ Do

Observing that Ax?=Ax(x —1)---(x —n+1)=nx"=1 we get
immediately

Z{ki1}qx5=(q+x)(q2+x)-~(q"“ + %)

or by multiplying both sides with (1 + x) the slightly more symmetric
formula

(x+1)(x+q)---(x+q"‘1)=2{2}(x+1)5 )

By choosing successively x =0, 1,2,... we get

{'11} =q%, 2Aq+ D@+ D@+ D) =2{?}+ 2{;}

{;’} =(1+a)(1+gY) (1 +¢" ") — q&)

1e.

etc.

It is well known that the Stirling numbers {Z

extended to all n,keZ satisfying the same recurrence. The same is of

n
course also true for {k} .

q

} can be uniquely

We have therefore a uniquely determined set of numbers {Z}

q
satisfying

{g}q=[n=o], {2}q=[k=0], nkeZ )

n+1 n N
{ k }q {k_l}q+(k—1+q){k}q, nkel. (5)
. n —k
Settmg[k:ll={_n} we get
1 —k —k+1 —k
|:n-;<' :I%={—n~l}q={ _: }q+(n+l—q_k){—n}q
_‘[ n ( : N[ n
Tl T ‘(5) )M

2. The ¢-Stirling Numbers [Z:l

g

We now define the g¢-Stirling numbers [Z} of the first kind as

q

—k
[::| ={ } , or equivalently as the uniquely determined numbers
q

satisfying.

n k
|:0:|q=[n=0], [O:Iq=[k=0], nkeZ (6)

n+1 n n
[ p l:[k—ll+(n+1—qk)[k]q’ nkeZ W)

We get the following table:

=
o s
.L_I

i

0 1 0 0 0
1 0 1 0 0
2 0 2-q 1 0
3 0 2-9G-9 5—q—¢* 1
4 0 Q-9B-9@—-q 26-99—8¢*+4*+q* 9-q-¢*"-¢




It is easy to verify that the generating function is given by

(4 D(x+2)-(x +n)=2|:::| x+Dx+qg)-(x+g“1) (8

q

This follows at once from

(x+n+ 1)|:n] =|:n} (x+4)+mn+1—g").
k q k q
f(gx)— f(x)
(@-Dx
Then Dy(x 4+ 1)+ (x +¢" ") =[n](x + 1)---(x + "7 ?).
Therefore we get

Let now D, be the g-derivation (D, f)(x) =

Dk
m — R D+ Db

n+1
k

n 1 n+1] ,_,
s o S

Observing that (x + 1)---(x + n) = Z[ :Ix"—1 we get

or
n n+1|/k
= — 1)k 9
Ll ) e &
As a special case we get
n—1 _z": n n—i—1 (1) (10)
n—k—1], Soln—il\ k=i /, ‘
Remark. This is of course the same formula as (2).
—n n+i
We have only to observe that [ ] = { }
—hn—1 Fi n q
and

—m e i (mEp—1
(P)%(l)q ( p )q'

Then

n+k+1 —n—1 —n —n—i—1 -
{n+1 }qz[—n—k—l]é=z[_n_i:|< k—i )5(—1)
_ n+i n+k (k—;+ 1).
_Z{ n }q(k_i>qq

As special cases we get

5]

n _(n n+1\ nn?-—1)0Gn+2)
[n—zl_(z)q“["_l]< 2 )+ a '

From the generating function it is immediate that

m =2-B - —aq)

Remark. The Stirling numbers s(n, k) introduced in [3] are given by

s(n, k) = (— 1)"-"[211.

*
3. The ¢-Stirling Numbers [Z]

q

The classical Stirling numbers satisfy the inversion formulas

Z[Z]{f;}(—lr‘u [ =]
Z{Z}[Z](—lr—u[wn}

In order to get a g-analog of these formulas we introduce another
*
class of g-Stirling numbers [::l .
q
We define them via the generating function

and

Zm*(ﬂ)"—‘ww Doefe+ g7 = (x + D2 (1

q



Then clearly

and

Z[Z]*{Z} (=1 =[n=m] (12)

k *
2 Z}[m} (=1 =n=m. (13)

From (x + )™ = (x + 1 — n)}{x + 1)* we get

n+1]* no|* NE
[ i :|q=[k_1:|q+(n—1+q)l:k]q, nked. (14)

Of course we also have

m —[n=0] and m —[k=0]. (15)

q q

We get the following table:

L L Hi

0 1 0 0 0

1 0 1 0 0

2 0 q 1 0

3 0 q(g+1) > +q+1 1

4 0 qlq+ g +2) P+ +q*+3q+2 P+ +q+3

From the generating function we find setting x = —¢, —g?, ... explicit

n *

formulas for [ ] .
k q

E.g.

m =q(g+1)(q+n~2)
H* @@+ 1)@ +n-2)—glg + - +n—2)

= 2
2, q°—q

*
Remark. It turns out that [Z] = t(n, k), the ¢-Stirling numbers
q
connected with multisets introduced in [3].

It is easy to obtain analytically the formula

n+1 |* n k+i ;
[k+1]q:;[k+i]( k >q'q‘ (16)

But it may be more instructive to give a purely combinatorial proof.
. n. .
It is well known that [k] is the number of permutations n of

{1,2,...,n} with k cycles C,,C,,...,C,_,.

We order the cycles with respect to decreasing largest elements: Let
max(C;) be the largest element of C,. Write this element as last element of
the cycle and order the cycles so that max(C;) > max(C;,,). Eg n=
[476][31][82][5] becomes m =[28][647][5][13] with C,=[28].

In this form we may forget the brackets, since the last elements of the
cycles are the successive absolute maxima. Given a permutation a, a,...q,
we call the corresponding decomposition into nonempty parts C,,
C,,...,C,_, the natural decomposition of 7 and the ordering according
to decreasing largest elements the natural ordering of the parts.

Since max(C,)=n we have a natural decomposition C,= {n},
Coy1s- .-, Cy;, but we shall prefer to write the one element cycle {n} at the
end after C, in order to indicate the special role of C,,.

A permutation ® may thus be uniquely described a set of k + i cycles
of some permutation n'eS,_, and a subset of i cycles (those belonging
to Co).

E.g. m=[562149]1[38][7] is uniquely determined by the set of cycles

[381, [71, [56], [214]
together with the subset

{[56], [214]}.

Every choice of a set of k+i cycles of some permutation of
{1,2,...,n— 1} together with a specified subset of i cycles determines a
unique permutation ©t of {1,2,...,n} with z(r) =k + 1 cycles.

This is the combinatorial content of the well known formula (cf. [5])

FoELU0T)

. n|*
We now introduce a weight w(r) on the permutations such that [kjl

q
becomes the weight of the set of all permutations 7, such that the natural

decomposition has exactly k parts.



For n=[Cy,[Cp,| -+ Coi|n]C{|Cy| - |1Cy -y
let

w(n):= qjl +j2+“'+ji’

where j,=m if C, lies between C,,_; and C,, in the natural ordering of
parts.
If max(C,,) < max(C,_,), then j, = k.

Example
n=[123]=[[12][3]]

[12] comes after C,, = [123]. Thus w([123]) =q'.
n=[213]=[[2][1][3]]

We have [123] <[2] <[1], thus w([213])=q*** =42
n=[231[1]1=[[2][3]1[1],[23] < [2] < [1], thus w(m) = q".
n=[13][2] = [[1][311[2], [3] < [2] <[1], thus w(m) = ¢*.
n=[3][12], [3] < [12], thus w(rx) = 1.
n=[3]1[2][1], w(n) = 1.

From this we get

m = w([123]) + w([213]) = g + &%

q

3 *
[2] =w([23][1D) + w([1312D + w([31[12D) =g + ¢* + 1,

q

3 |*
[3] =w(3][2][1])=1.

q

n|* L .

We show first that [ k} defined in this way satisfies the recurrence
q

relation together with the (trivial) boundary conditions.

Tothisend letforne S, , | denote i’ the permutation obtained from n
by eliminating | and reducing each element by 1.

Egifn=246135 then n'=13524

Then

w(r) = w(r') if Cy; # {1}
=qg"Pw(rn’) if Co;={1}.

Note that in the first case each max(C,;) remains unchanged. In the
second case C,, contributes g* to the weight of w and 1 to the weight of .

Let B, be the set of permutations te S, , such that C, _, = {1}. Then

w(31)=[kfl]*,

Let B, be the set of permutations te S, , , such that C,_, # {1} and
*

Co: # {1}. Then w(B,) = (n — 1)[2] , because there are n — 1 possibilities
q

for 1 (before each element). Let B, be the set of permutations with

Co;={1}. Then
w(B;) =qk[2]q.

[”“,: 1]* = w(B,) + w(By) + w(B,)

Obviously

which proves our first assertion.

Consider now the set B, of all permutations e S, |, with k + 1 parts,
such that C, contains i parts Cy,,... C,, apart from [n].

Then

w(B,) = y gttt
t+k2j12j2,...2j4i21
where the sum runs over all j,,...,j; with the stated properties.

This is obvious because for each given set of k + i parts D,,..., D, ,;
with D, <--- <D, and given j, > j, = --- 2 j; those D, belonging to the
distinguished subset C,,,. .., C,; are uniquely determined.

From the well known formula

1 i+k)
(1_x)(1_qx)...(1_qu)=§( i )q"

it follows that

(l+k) - Z qr1+rz+---+ri’
q Lri <k

Thus



From this we get immediately the desired formula (16),

P A T

A special case is

n+k+11*  E[n+k|/n+i)
psealipAlov] G LA

* -1
LA

£ 3

which gives e.g.

4. The ¢-Stirling Numbers {:}

q9

These numbers are given by

Therefore we have

n+1)* -k |* —k+1 |* . —k |x
v }ﬁ[—n—l};:[ - L*(" "‘—“[_J;

This gives
n+1]* no* Nid.
{ k }qz{k_l}q_*-(k_*-l_q){k}q’ mkel 1)
U o0y, OV Ck=01, nkez 19
0 q_[n_ ]7 k q—[ - _—_lx n’ EL. ( )

This leads to the following table

R B b,

0 ] 0 0 0
1 0 1 0 0
2 0 2-¢ 1 0
3 0 2—4¢*)12—q) S—q-¢* 1
4 0 Q2-¢22-92—-q ¢°+¢*—4¢>—5¢*—5¢+19 9-¢>—q¢*—¢q

The generating function is given by

Z{Z} (= D= (= Dlx =) (x g, (20)

q

* k+1 -
Rl R

Finally we remark that it is also possible to generalize the generating
functions to negative indices. Writing (3) in the form

which gives

(x+Dx+q)—(x+g"" )= ) {nfk} (e + 1=,

k=0

this formula holds true for negative n.
The simplest interpretation is via formal power series in — as in [1].
X
We shall not go into details but state only the formal result:

1

_Z{ —n 1
< 1)( 1) ( 1)“ —n—k§ (x+2)-(x+n+k+1)
x+5 x+? el X+

q"

or equivalently

1 _Z[n+k:| 1
(x+@x+g2)(x+q") nofx42) e bntk+1)

Analogous formulas hold in the other cases.
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