A New q-Analog of Stirling Numbers

 $\mathbf{B}\mathbf{y}$

J. Cigler

(Vorgelegt in der Sitzung der math.-nat. Klasse am 15. Oktober 1992)

Abstract

The number of spanning subsets of a finite vector space is closely related to a q-analog of the Stirling numbers (cf. [3]). The purpose of this note is to study these numbers in more detail.

1. The q-Stirling Numbers $\begin{Bmatrix} n \\ k \end{Bmatrix}_q$

The Stirling number $\binom{n}{k}$ of the second kind counts the number of partitions π of $\{0, 1, \ldots, n-1\}$ into k nonempty subsets $B_0, B_1, \ldots, B_{k-1}$. We use the notation proposed by D. K nuth ([5], [6]). We also use his version of I verson's convention, setting [P(n)] = 1 if the statement P(n) is true and [P(n)] = 0 if it is false.

We now associate a weight $w(\pi)$ with each partition π . To this end we distinguish that part of π which contains the number 0 and call it B_0 .

Then
$$w(\pi) := q^{\sum_{i \in B_0} i}$$
.

For each set A of partitions let $w(A) := \sum_{\pi \in A} w(\pi)$.

Let $A_{n,k}$ be the set of all partitions of $\{0, 1, ..., n-1\}$ into k nonempty parts.

Then we define

$$\begin{Bmatrix} n \\ k \end{Bmatrix}_q := w(A_{n,k}), \quad n, k \geqslant 1,$$

Sitzungsberichte der mathem.-naturw. Kl., Abt. II, 201. Band, 1.—10. Heft

$$\begin{cases} 0 \\ k \end{cases}_q := [k = 0], \quad \begin{cases} n \\ 0 \end{cases}_q := [n = 0], \quad n, k \ge 0.$$

E.g. $\begin{cases} 4 \\ 2 \\ q \end{cases} = 1 + q + q^2 + 2q^3 + q^4 + q^5$, since $w(A_{4,2}) = w(0/123) + w(01/23) + w(02/13) + w(03/12) + w(012/3) + w(013/2) + w(023/1) = 1 + q + q^2 + q^3 + q^3 + q^4 + q^5$.

The numbers $\begin{Bmatrix} n \\ k \end{Bmatrix}_q$ satisfy the following recurrence

$${n+1 \brace k}_q = {n \brace k-1}_q + (k-1+q^n) {n \brace k}_q, \quad n \geqslant 0, k \geqslant 1.$$

To see this write $A_{n+1,k} = C_1 \cup C_2 \cup C_3$.

 C_1 is the set of all $\pi \in A_{n+1,k}$ such that $\{n\}$ is one of the nonempty parts of π .

 C_2 is the set of all π such that $n \in B_i$, $i \neq 0$, and $B_i \setminus \{n\} \neq \emptyset$.

 C_3 is the set of all π such that $n \in B_0$.

Then obviously

$$w(C_1) = \begin{Bmatrix} n \\ k-1 \end{Bmatrix}_q, \quad w(C_2) = (k-1) \begin{Bmatrix} n \\ k \end{Bmatrix}_q,$$

and $w(C_3) = q^n \begin{Bmatrix} n \\ k \end{Bmatrix}_a$.

We get the following table:

n		${n \brace 1}_q$	$\begin{Bmatrix} n \\ 2 \end{Bmatrix}_q$	$\begin{Bmatrix} n \\ 3 \end{Bmatrix}_q$
0	1	0	0	0
1	0	1	0	0
2	0	q	1	0
3	0	q^3	$1+q+q^2$	1
4	0	q^6	$1 + q + q^2 + 2q^3 + q^4 + q^5$	$3 + q + q^2 + q^3$

In order to give an explicit formula for $\binom{n}{k}_q$ we need the q-binomial coefficients

$$\binom{n}{k}_q = \frac{[n]!}{[k]![n-k]!}$$

with $[n]! = [n][n-1]\cdots[2][1]$ and $[n] = \frac{q^n-1}{q-1}$.

It is well known (cf. e.g. [2]), that

$$(a+x)(a+qx)\cdots(a+q^{n-1}x) = \sum \binom{n}{i}_a q^{\binom{i}{2}} x^i a^{n-i}.$$

Replacing x by qx and comparing coefficients of x^i gives

$$\sum_{1 \leq j_1 < j_2 < \dots j_i \leq n} q^{j_1 + j_2 + \dots + j_i} = \binom{n}{i}_q q^{\binom{i+1}{2}}.$$

Writing $\pi \in A_{n+1,k+1}$ in the form

$$\pi = \{0, j_1, \dots j_i\}/B_1/\dots/B_k$$

we get therefore

$${n+1 \brace k+1}_q = w(A_{n+1,k+1}) = \sum_{i} \sum_{j_1 < \dots < j_i} q^{j_1 + \dots + j_i} {n-i \brace k}.$$

We thus get

$${n+1 \brace m+1}_q = \sum_i {n \choose i}_q {i \brack m} q^{\binom{n-i+1}{2}}.$$
 (1)

As special case we note

$${n+1+k \brace n+1}_q = \sum_{i=0}^k f_i(n) \binom{n+k}{k-i}_q q^{\binom{k-i+1}{2}},$$
 (2)

where $f_i(n) = {n+i \choose n}$ are the usual Stirling polynomials (cf. [4]) of degree

E.g. we have

$${n+1 \choose n}_q = [n]q + {n \choose 2},$$

$${n+2 \choose n}_q = {n+1 \choose 2}q^3 + [n+1]q{n \choose 2} + {n+1 \choose n-1}.$$

From the well known formula

$$\frac{\Delta^k}{k!} x^n \big|_{x=0} = \begin{Bmatrix} n \\ k \end{Bmatrix}.$$

(cf. e.g. [7], [8]) we get

$${n \atop k+1}_{q} = \sum {n-1 \atop i}_{q} {n-1-i \atop k} q^{{i+1 \choose 2}}$$

$$= \frac{\Delta^{k}}{k!} \sum {n-1 \atop i}_{q} q^{{i+1 \choose 2}} x^{n-i-1}|_{x=0}$$

$$= \frac{\Delta^{k}}{k!} (q+x)(q^{2}+x) \cdots (q^{n-1}+x)|_{x=0}.$$

Observing that $\Delta x^n = \Delta x(x-1)\cdots(x-n+1) = nx^{n-1}$ we get immediately

$$\sum \left\{ {n \atop k+1} \right\}_q x^{\underline{k}} = (q+x)(q^2+x)\cdots(q^{n-1}+x)$$

or by multiplying both sides with (1 + x) the slightly more symmetric formula

$$(x+1)(x+q)\cdots(x+q^{n-1}) = \sum_{k} {n \brace k}_{q} (x+1)^{\underline{k}}$$
 (3)

By choosing successively x = 0, 1, 2, ... we get

$${n \brace 1}_q = q^{\binom{n}{2}}, \quad 2(q+1)(q^2+1)\cdots(q^{n-1}+1) = 2{n \brace 1} + 2{n \brace 2},$$

i.e

$${n \brace 2}_{q} = (1+q)(1+q^{2})\cdots(1+q^{n-1})-q^{\binom{n}{2}},$$

etc

It is well known that the Stirling numbers $\binom{n}{k}$ can be uniquely extended to all $n, k \in \mathbb{Z}$ satisfying the same recurrence. The same is of course also true for $\binom{n}{k}$.

We have therefore a uniquely determined set of numbers $\begin{cases} n \\ k \end{cases}_{q}$ satisfying

$$\begin{Bmatrix} n \\ 0 \end{Bmatrix}_q = [n = 0], \quad \begin{Bmatrix} 0 \\ k \end{Bmatrix}_q = [k = 0], \quad n, k \in \mathbb{Z}$$
(4)

$${n+1 \brace k}_q = {n \brace k-1}_q + (k-1+q^n) {n \brace k}_q, \quad n, k \in \mathbb{Z}.$$
 (5)

Setting
$$\begin{bmatrix} n \\ k \end{bmatrix}_{\frac{1}{q}} = \begin{Bmatrix} -k \\ -n \end{Bmatrix}_q$$
 we get
$$\begin{bmatrix} n+1 \\ k \end{bmatrix}_{\frac{1}{q}} = \begin{Bmatrix} -k \\ -n-1 \end{Bmatrix}_q = \begin{Bmatrix} -k+1 \\ -n \end{Bmatrix}_q + (n+1-q^{-k}) \begin{Bmatrix} -k \\ -n \end{Bmatrix}_q$$
$$= \begin{bmatrix} n \\ k-1 \end{bmatrix}_{\frac{1}{q}} + \left(n+1-\left(\frac{1}{q}\right)^k\right) \begin{bmatrix} n \\ k \end{bmatrix}_{\frac{1}{q}}.$$

2. The q-Stirling Numbers $\begin{bmatrix} n \\ k \end{bmatrix}$

We now define the q-Stirling numbers $\begin{bmatrix} n \\ k \end{bmatrix}_q$ of the first kind as $\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{Bmatrix} -k \\ -n \end{Bmatrix}_{\frac{1}{q}}$ or equivalently as the uniquely determined numbers satisfying.

$$\begin{bmatrix} n \\ 0 \end{bmatrix}_{a} = [n = 0], \quad \begin{bmatrix} k \\ 0 \end{bmatrix}_{a} = [k = 0], \quad n, k \in \mathbb{Z}$$
 (6)

$$\begin{bmatrix} n+1 \\ k \end{bmatrix}_{a} = \begin{bmatrix} n \\ k-1 \end{bmatrix}_{a} + (n+1-q^{k}) \begin{bmatrix} n \\ k \end{bmatrix}_{a}, \quad n, k \in \mathbb{Z}$$
 (7)

We get the following table:

n	$\begin{bmatrix} n \\ 0 \end{bmatrix}_q$	$\begin{bmatrix} n \\ 1 \end{bmatrix}_q$	$\begin{bmatrix} n \\ 2 \end{bmatrix}_q$	$\begin{bmatrix} n \\ 3 \end{bmatrix}_q$
0	1	0	0	0
1	0	1	0	0
2	0	2-q	1	0
3	0	(2-q)(3-q)	$5 - q - q^2$	1
4	0	(2-q)(3-q)(4-q)	$26 - 9q - 8q^2 + q^3 + q^4$	$9 - q - q^2 - q^3$

It is easy to verify that the generating function is given by

$$(x+1)(x+2)\cdots(x+n) = \sum_{k=0}^{n} {n \choose k}_{q} (x+1)(x+q)\cdots(x+q^{k-1}).$$
 (8)

This follows at once from

$$(x+n+1) \begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{bmatrix} n \\ k \end{bmatrix}_q ((x+q^k) + (n+1-q^k)).$$

Let now D_q be the q-derivation $(D_q f)(x) = \frac{f(qx) - f(x)}{(q-1)x}$.

Then $D_q(x+1)\cdots(x+q^{n-1})=[n](x+1)\cdots(x+q^{n-2})$. Therefore we get

$$\begin{bmatrix} n \\ k \end{bmatrix}_a = \frac{D_q^k}{[k]!} (x+1)(x+2)\cdots(x+n)|_{x=-1}.$$

Observing that $(x+1)\cdots(x+n) = \sum_{k=0}^{\infty} \binom{n+1}{k} x^{k-1}$ we get

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{1}{\lfloor k \rfloor!} D_q^k \sum_{l} \begin{bmatrix} n+1 \\ l \end{bmatrix} x^{l-1}|_{x=-1}$$

or

$$\begin{bmatrix} n \\ m \end{bmatrix}_q = \sum_k \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} \binom{k}{m}_q (-1)^{k-m}. \tag{9}$$

As a special case we get

Remark. This is of course the same formula as (2).

We have only to observe that $\begin{bmatrix} -n \\ -n-i \end{bmatrix}_{\frac{1}{q}} = \begin{Bmatrix} n+i \\ n \end{Bmatrix}_{q}$

and

$$\binom{-m}{p}_{\frac{1}{q}} = (-1)^p q^{\binom{p+1}{2}} \binom{m+p-1}{p}_q.$$

Then

$$\left\{
\begin{array}{l}
 n+k+1 \\
 n+1
\end{array}
\right\}_{q} = \begin{bmatrix}
 -n-1 \\
 -n-k-1
\end{bmatrix}_{\frac{1}{q}} = \sum_{n=1}^{\infty} \begin{bmatrix}
 -n \\
 -n-i
\end{bmatrix} \binom{-n-i-1}{k-i}_{\frac{1}{q}} (-1)^{i-k}$$

$$= \sum_{n=1}^{\infty} \begin{Bmatrix} n+i \\ n \end{Bmatrix}_{q} \binom{n+k}{k-i}_{q} q^{\binom{k-i+1}{2}}.$$
(E1)

As special cases we get

$$\begin{bmatrix} n \\ n-1 \end{bmatrix}_q = {n+1 \choose 2} - [n]$$

$$\begin{bmatrix} n \\ n-2 \end{bmatrix}_q = {n \choose 2}_q - [n-1] {n+1 \choose 2} + \frac{n(n^2-1)(3n+2)}{4!}.$$

From the generating function it is immediate that

$$\begin{bmatrix} n \\ 1 \end{bmatrix}_{q} = (2-q)(3-q)\cdots(n-q).$$

Remark. The Stirling numbers s(n, k) introduced in [3] are given by

$$s(n,k) = (-1)^{n-k} \begin{bmatrix} n \\ k \end{bmatrix}_q.$$

3. The q-Stirling Numbers $\begin{bmatrix} n \\ k \end{bmatrix}_q^*$

The classical Stirling numbers satisfy the inversion formulas

$$\sum {n \brack k} {k \brack m} (-1)^{n-k} = [m=n]$$

and

$$\sum {n \brace k} {k \brack m} (-1)^{n-k} = [m=n].$$

In order to get a q-analog of these formulas we introduce another class of q-Stirling numbers $\begin{bmatrix} n \\ k \end{bmatrix}_{a}^{*}$.

We define them via the generating function

$$\sum_{k=0}^{n} {n \choose k}_{q}^{*} (-1)^{n-k} (x+1) \cdots (x+q^{k-1}) = (x+1)^{n}.$$
 (11)

Then clearly

$$\sum \begin{bmatrix} n \\ k \end{bmatrix}_{q}^{*} \begin{Bmatrix} k \\ m \end{Bmatrix}_{q} (-1)^{n-k} = [n=m]$$
 (12)

and

$$\sum \begin{Bmatrix} n \\ k \end{Bmatrix}_q \begin{bmatrix} k \\ m \end{bmatrix}_q^* (-1)^{n-k} = [n=m]. \tag{13}$$

From $(x + 1)^{n+1} = (x + 1 - n)(x + 1)^n$ we get

$$\begin{bmatrix} n+1 \\ k \end{bmatrix}_q^* = \begin{bmatrix} n \\ k-1 \end{bmatrix}_q^* + (n-1+q^k) \begin{bmatrix} n \\ k \end{bmatrix}_q^*, \quad n, k \in \mathbb{Z}.$$
 (14)

Of course we also have

$$\begin{bmatrix} n \\ 0 \end{bmatrix}_{q}^{*} = [n=0] \quad \text{and} \quad \begin{bmatrix} 0 \\ k \end{bmatrix}_{q}^{*} = [k=0]. \tag{15}$$

We get the following table:

n	$\begin{bmatrix} n \\ 0 \end{bmatrix}_q^*$	$\begin{bmatrix} n \\ 1 \end{bmatrix}_q^*$	$\begin{bmatrix} n \\ 2 \end{bmatrix}_q^*$	$\begin{bmatrix} n \\ 3 \end{bmatrix}_q^*$
0	1	0	0	0
1	0	1	0	0
2	0	q	1	0
3	0	q(q + 1)	$q^2 + q + 1$	1
4	0	q(q+1)(q+2)	$q^4 + q^3 + q^2 + 3q + 2$	$q^3 + q^2 + q + 3$

From the generating function we find setting $x = -q, -q^2, \dots$ explicit formulas for $\begin{bmatrix} n \\ k \end{bmatrix}_a^*$.

E.g.

$$\begin{bmatrix} n \\ 1 \end{bmatrix}_{q}^{*} = q(q+1)\cdots(q+n-2).$$

$$\begin{bmatrix} n \\ 2 \end{bmatrix}_{q}^{*} = \frac{q^{2}(q^{2}+1)\cdots(q^{2}+n-2)-q(q+1)\cdots(q+n-2)}{q^{2}-q}.$$

Remark. It turns out that $\begin{bmatrix} n \\ k \end{bmatrix}_q^* = t(n, k)$, the q-Stirling numbers connected with multisets introduced in [3].

It is easy to obtain analytically the formula

$$\begin{bmatrix} n+1 \\ k+1 \end{bmatrix}_{q}^{*} = \sum_{i} \begin{bmatrix} n \\ k+i \end{bmatrix} \binom{k+i}{k}_{q} \cdot q^{i}. \tag{16}$$

But it may be more instructive to give a purely combinatorial proof.

It is well known that $\begin{bmatrix} n \\ k \end{bmatrix}$ is the number of permutations π of $\{1, 2, ..., n\}$ with k cycles $C_0, C_1, ..., C_{k-1}$.

We order the cycles with respect to decreasing largest elements: Let $\max(C_i)$ be the largest element of C_i . Write this element as last element of the cycle and order the cycles so that $\max(C_i) > \max(C_{i+1})$. E.g. $\pi = [476][31][82][5]$ becomes $\pi = [28][647][5][13]$ with $C_0 = [28]$.

In this form we may forget the brackets, since the last elements of the cycles are the successive absolute maxima. Given a permutation $a_1 a_2 \dots a_n$ we call the corresponding decomposition into nonempty parts C_0 , C_1, \dots, C_{k-1} the natural decomposition of π and the ordering according to decreasing largest elements the natural ordering of the parts.

Since $\max(C_0) = n$ we have a natural decomposition $C_0 = \{n\}$, C_{01}, \ldots, C_{0i} , but we shall prefer to write the one element cycle $\{n\}$ at the end after C_{0i} in order to indicate the special role of C_{0i} .

A permutation π may thus be uniquely described a set of k+i cycles of some permutation $\pi' \in \mathfrak{S}_{n-1}$ and a subset of i cycles (those belonging to C_0).

E.g. $\pi = [562149][38][7]$ is uniquely determined by the set of cycles

together with the subset

Every choice of a set of k+i cycles of some permutation of $\{1, 2, ..., n-1\}$ together with a specified subset of *i* cycles determines a unique permutation π of $\{1, 2, ..., n\}$ with $z(\pi) = k+1$ cycles.

This is the combinatorial content of the well known formula (cf. [5])

We now introduce a weight $w(\pi)$ on the permutations such that $\begin{bmatrix} n \\ k \end{bmatrix}_q^*$ becomes the weight of the set of all permutations π , such that the natural decomposition has exactly k parts.

For
$$\pi = [C_{01}|C_{02}|\cdots C_{0i}|n]C_1|C_2|\cdots |C_{k-1}|$$
 let

$$w(\pi) := q^{j_1+j_2+\cdots+j_i},$$

where $j_l = m$ if C_{0l} lies between C_{m-1} and C_m in the natural ordering of parts.

If $\max(C_{0l}) < \max(C_{k-1})$, then $j_l = k$.

Example

$$\pi = [123] = [[12][3]]$$

$$[12] \text{ comes after } C_0 = [123]. \text{ Thus } w([123]) = q^1.$$

$$\pi = [213] = [[2][1][3]]$$

$$\text{We have } [123] < [2] < [1], \text{ thus } w([213]) = q^{1+1} = q^2.$$

$$\pi = [23][1] = [[2][3]][1], [23] < [2] < [1], \text{ thus } w(\pi) = q^1.$$

$$\pi = [13][2] = [[1][3]][2], [3] < [2] < [1], \text{ thus } w(\pi) = q^2.$$

$$\pi = [3][12], [3] < [12], \text{ thus } w(\pi) = 1.$$

$$\pi = [3][2][1], w(\pi) = 1.$$

From this we get

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix}_{q}^{*} = w([123]) + w([213]) = q + q^{2},$$

$$\begin{bmatrix} 3 \\ 2 \end{bmatrix}_{q}^{*} = w([23][1]) + w([13][2]) + w([3][12]) = q + q^{2} + 1,$$

$$\begin{bmatrix} 3 \\ 3 \end{bmatrix}_{q}^{*} = w([3][2][1]) = 1.$$

We show first that $\begin{bmatrix} n \\ k \end{bmatrix}_q^*$ defined in this way satisfies the recurrence relation together with the (trivial) boundary conditions.

To this end let for $\pi \in \mathfrak{S}_{n+1}$ denote π' the permutation obtained from π by eliminating 1 and reducing each element by 1.

E.g. if
$$\pi = 2 \ 4 \ 6 \ 1 \ 3 \ 5$$
 then $\pi' = 1 \ 3 \ 5 \ 2 \ 4$.
Then

$$\begin{split} w(\pi) &= w(\pi') & \text{if } C_{0i} \neq \{1\} \\ &= q^{z(\pi)} w(\pi') & \text{if } C_{0i} = \{1\}. \end{split}$$

Note that in the first case each $\max(C_{0i})$ remains unchanged. In the second case C_{0i} contributes q^k to the weight of π and 1 to the weight of π' .

Let B_1 be the set of permutations $\pi \in \mathfrak{S}_{n+1}$ such that $C_{k-1} = \{1\}$. Then $w(B_1) = \begin{bmatrix} n \\ k-1 \end{bmatrix}_q^*$.

Let B_2 be the set of permutations $\pi \in \mathfrak{S}_{n+1}$ such that $C_{k-1} \neq \{1\}$ and $C_{0i} \neq \{1\}$. Then $w(B_2) = (n-1) {n \brack k}_q^*$, because there are n-1 possibilities for 1 (before each element). Let B_3 be the set of permutations with $C_{0i} = \{1\}$. Then

$$w(B_3) = q^k \begin{bmatrix} n \\ k \end{bmatrix}_a^*$$

Obviously

$$\begin{bmatrix} n+1 \\ k \end{bmatrix}_{a}^{*} = w(B_{1}) + w(B_{2}) + w(B_{3}),$$

which proves our first assertion.

Consider now the set B_i of all permutations $\pi \in \mathfrak{S}_{n+1}$ with k+1 parts, such that C_0 contains i parts $C_{01}, \ldots C_{0i}$ apart from [n].

Then

$$w(B_i) = \sum_{1+k \ge j_1 \ge j_2, \dots \ge j_i \ge 1} q^{j_1+j_2+\dots+j_i},$$

where the sum runs over all j_1, \ldots, j_i with the stated properties.

This is obvious because for each given set of k+i parts D_1, \ldots, D_{k+i} with $D_1 < \cdots < D_{k+i}$ and given $j_1 \ge j_2 \ge \cdots \ge j_i$ those D_i belonging to the distinguished subset C_{01}, \ldots, C_{0i} are uniquely determined.

From the well known formula

$$\frac{1}{(1-x)(1-qx)\cdots(1-q^kx)} = \sum_{i} {i+k \choose i}_q x^i$$

it follows that

$$\binom{i+k}{i}_q = \sum_{0 \leqslant r_1 \leqslant \cdots \leqslant r_i \leqslant k} q^{r_1+r_2+\cdots+r_i}.$$

Thus

$$w(B_i) = \binom{i+k}{i}_q q^i.$$

From this we get immediately the desired formula (16),

$$\begin{bmatrix} n+1 \\ k+1 \end{bmatrix}_q^* = \sum_i \begin{bmatrix} n \\ k+i \end{bmatrix} \binom{k+i}{k}_q q^i.$$

A special case is

$$\begin{bmatrix} n+k+1 \\ n+1 \end{bmatrix}_{a}^{*} = \sum_{i=0}^{k} \begin{bmatrix} n+k \\ n+i \end{bmatrix} \binom{n+i}{n}_{a} q^{i}. \tag{17}$$

which gives e.g.

$$\begin{bmatrix} n \\ n-1 \end{bmatrix}_{q}^{*} = {n-1 \choose 2} + q[n-1].$$

4. The q-Stirling Numbers $\binom{n}{k}_q^*$

These numbers are given by

$$\begin{Bmatrix} n \\ k \end{Bmatrix}_q^* = \begin{bmatrix} -k \\ -n \end{bmatrix}_{\frac{1}{q}}^*.$$

Therefore we have

$${n+1 \brace k}_{q} = {-k \brack -n-1}_{\frac{1}{q}} = {-k+1 \brack -n}_{\frac{1}{q}} - (q^{-n}-k-1) {-k \brack -n}_{\frac{1}{q}}$$

This gives

$${\binom{n+1}{k}}_q^* = {\binom{n}{k-1}}_q^* + (k+1-q^n) {\binom{n}{k}}_q^*, \quad n, k \in \mathbb{Z}$$
 (18)

$$\begin{cases} n \\ 0 \end{cases}_q^* = [n = 0], \quad \begin{cases} 0 \\ k \end{cases}_q^* = [k = 0], \quad n, k \in \mathbb{Z}.$$
(19)

This leads to the following table

n	$\begin{cases} n \\ 0 \end{cases}_q^*$	$\begin{Bmatrix} n \\ * \\ 1 \end{Bmatrix}_q$	$\begin{Bmatrix} n \\ * \\ 2 \end{Bmatrix}_q^*$	${n \brace 3}_q^*$
0	1	0	0	0
1	0	1	0	0
2	0	2-q	1	0
3	0	$(2-q^2)(2-q)$	$5 - q - q^2$	1
4	0	$(2-q^3)(2-q^2)(2-q)$	$q^5 + q^4 - 4q^3 - 5q^2 - 5q + 19$	$9 - q^3 - q^2 - q$

The generating function is given by

$$\sum_{k=0}^{n} {* \choose k}_{q} (x-1)^{\underline{k}} = (x-1)(x-q)\cdots(x-q^{n-1}), \tag{20}$$

which gives

$${n \brace m}_q^* = \sum_k {n \choose k}_q {k+1 \brace m+1} (-1)^{m-k} q^{\binom{m-k}{2}}.$$
 (21)

Finally we remark that it is also possible to generalize the generating functions to negative indices. Writing (3) in the form

$$(x+1)(x+q)\cdots(x+q^{n-1}) = \sum_{k=0}^{\infty} \left\{ \frac{n}{n-k} \right\}_{a} (x+1)^{n-k},$$

this formula holds true for negative n.

The simplest interpretation is via formal power series in $\frac{1}{x}$ as in [1]. We shall not go into details but state only the formal result:

$$\frac{1}{\left(x+\frac{1}{q}\right)\left(x+\frac{1}{q^2}\right)\cdots\left(x+\frac{1}{q^n}\right)} = \sum_{n=1}^{\infty} \left\{ -\frac{n}{n-k} \right\}_q \frac{1}{(x+2)\cdots(x+n+k+1)}$$

or equivalently

$$\frac{1}{(x+q)(x+q^2)\cdots(x+q^n)} = \sum_{n=0}^{\infty} \frac{1}{n} \frac{1}{(x+2)\cdots(x+n+k+1)}.$$

Analogous formulas hold in the other cases.

References

- [1] Cigler, J.: Some remarks on Rota's umbral calculus. Indag. Math. 40 (1978), 27-42.
- [2] Cigler, J.: Operatormethoden für q-Identitäten. Monatshefte für Mathematik 88 (1979), 87-105.
- [3] Cigler, J.: Über die Anzahl erzeugender Mengen in endlichen Vektorräumen. Anzeiger d. Österr. Akad. Wiss. 5 (1992), 27-33.
- [4] Gessel, I., and R. P. Stanley: Stirling polynomials. J. Combin. Theory A 24 (1978), 24-33.
- [5] Graham, R. L., D. E. Knuth, and O. Patashnik: Concrete Mathematics. Addison-Wesley, 1989.
- [6] Knuth, D. E.: Two notes on notation. Amer. Math. Monthly 99 (1992), 403-422.
- [7] Rota, G.-C.: Finite Operator Calculus. Academic Press, 1975.
- [8] Stanley, R. P.: Enumerative Combinatorics. Wadsworth, 1986.

Author's address: J. Cigler, Institut für Mathematik, Universität Wien, 1090 Wien, Strudlhofgasse 4.