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Abstract 

This note collects some facts and conjectures about the Hankel determinants and their 
generating functions of the columns of Hoggatt triangles which apparently are related to 
combinatorial objects such as Young tableaux and Narayana numbers.  

 

0. Introduction 

This note originated from the accidental observation that the Hankel determinants  
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of Pascal’s triangle coincide (apart from the sign) with the columns 
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 of the r Hoggatt triangle,  an analog of Pascal’s triangle, which has been 

introduced in [4] and further studied in [2] and [3]. The fact that the r Hoggatt binomials 
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count the number of semistandard Young tableaux with shape kr  and that  their 

generating functions are related to Narayana polynomials and their r  dimensional analogs 

suggests that the Hankel determinants of the binomials 
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m

 
 
 

 also have some combinatorial 

interpretation related to these objects. It would be interesting to find such interpretations. 

Computations suggest that also the Hankel determinants of the r Hoggatt binomials 
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and their generating functions have similar properties. We formulate them as conjectures 
hoping that someone will prove them. 
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1. Hoggatt binomials 

Let us first recall from [2] and [3] some properties of the r Hoggatt binomials .
r
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For a positive integer r  let  
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in terms of the hypergeometric function  
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The last entry in (5) shows that the r Hoggatt binomials can be interpreted as the number of 

semistandard Young tableaux with shape kr  (a box with r  columns and k rows) which 

generalizes the fact that 
n

k

 
 
 

 is the number of k  element subsets of {1,2, , }.n  

The formula 
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Noting that ( )( )!
( 1)
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   also holds for negative k  this follows from 
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They are also unimodal with center of symmetry at ,
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 which means that 
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In [3] it is shown that 
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In [6] Robert A. Sulanke introduced Narayana numbers ( , , )N r n k  of dimension .r  His results 
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Remark 

There seems to be no known closed formula for the r  dimensional Narayana numbers, but 
their sum is the r  dimensional Catalan number  
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2. Hankel determinants of the sequences 
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For 0r    it will be convenient to set ( ,0) 1kd m   for k m  and ( ,0) 0kd m   else. 

The case 1r   is trivial. But let us state some results which will later be generalized. 

We have  

 ( ,1)k

k
d m

m

 
  
 

 (15) 

and   

 1 1

0 0

(1 ) ( ,1) (1 ) .m k m k m
k

k k

k
x d m x x x x

m
 

 

 
    

 
   (16) 

Computations suggest  
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Thus the matrix of the signed Hankel determinants is the r Hoggatt matrix 
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3. Conjectures for Hankel determinants of the sequences 
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It would be interesting if there exists an alternative formula for , , ( )s m rA x  which generalizes 
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