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Shifted Hankel determinants of Catalan numbers and related results 

Johann Cigler 

 

Abstract    

In this (partly expository) paper we give a short overview about the close relationship 
between the sequence of Catalan numbers and Hankel determinants from the point of view of 
orthogonal polynomials and show that an analogous situation exists for more general 
sequences. 

 

1. Introduction 
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For fixed n  the right-hand side of (1.1) is a polynomial ( ).nH k  

Motivated by this result we look for other sequences whose shifted Hankel determinants are 
given by polynomials. 

First we consider the numbers  
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,b  where the coefficients  
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 are the entries of the Catalan triangle 

[7], A009766: 
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For 0b   this sequence reduces to the Catalan numbers  0 ( ) .nM n C   
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For other values of b  we also get known sequences. For example 1 1( ) ,nM n C   
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  For 1b    we get the Fine numbers [7], A000957, for 3b   the sequence 

[7], A049027 and  for 4b   the sequence [7], A076025. 

For these sequences there exist polynomials ( , )nH b x  such that  
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They are given by  
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 (1.5) 

For 0b   we reproduce a combinatorial proof due to Christian Krattenthaler, which 

establishes  a close connection with plane partitions of the form  1, 2, ,1 :n n    There are 

bijections of such plane partitions with  a) families of nonintersecting Dyck paths which are 
counted by the Hankel determinant (1.4) and b) families of other lattice paths which are 
counted by (1.5). The last property has previously been proved by Robert Proctor [8] using 
results of representation theory.  

Finally we show similar results for central binomial coefficients in place of Catalan numbers. 
The analog of (1.1) is  
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More generally for  
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 there are polynomials ( , )nV b x  such that  
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They are given by  
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I want to thank Sam Hopkins and Michael Somos for their helpful answers to my question [6] 
and Christian Krattenthaler for his combinatorial proof.   



3 
 

2. Some known background material.  

2.1. A sequence of monic polynomials ( )np x   of degree n  is called orthogonal if  

 1 1 2 2( ) ( ) ( ) ( )n n n n np x x s p x t p x       (2.1) 

for some values ns  and .nt  Let   denote the linear functional on the polynomials defined by 

 ( ) [ 0].np x n    Then (2.1) implies the orthogonality relations  ( ) ( ) 0n mp x p x   for 

n m  and  2( ) 0.np x   

Define numbers ( , )c n k  by   

 
0

( , ) ( ).
n

n
k

k

x c n k p x


  (2.2) 
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 (2.3) 

The moments  ( ) nM n x   are given by 

  ( ) ( ,0).nM n x c n    (2.4) 

 The first two Hankel determinants are 
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  (2.5) 

These results are well known. A detailed account can be found in [10] with a somewhat 
different notation. 

 

2.2. The intimate relation between Hankel determinants and Catalan numbers stems from the 
case  0ns   and 1.nt    

The corresponding monic orthogonal polynomials are the Fibonacci polynomials  
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They satisfy  

 1 2( ) ( ) ( )n n nF x xF x F x    (2.7) 
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 with initial values 0 ( ) 1F x   and 1( ) .F x x   

Since ( , ) 0c n k   if mod 2k n  we can write  
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k

   if  0 2k n   and 0
n

k
  else.   

 These numbers satisfy the same recurrence  
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 as the binomial coefficients. 

By induction it is easy to verify that    
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As special case we get the moments  
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2.3. We also need the polynomials  2( )n nf x F x  and 
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 1 2( ) ( 2) ( ) ( )n n nf x x f x f x     (2.13) 

with initial values 0 ( ) 1f x   and 1( ) 1f x x   and are orthogonal with 1nt   and 0 1s   and 
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If   denotes the linear functional defined by    [ 0]nf x n   then we get for the moments 
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3. The sequences ( ).bM n  

3.1. Let us now consider more generally  for b the orthogonal polynomials ( , )nP b x    with 

1,nt    0 ( ) 1s b b   and ( ) 2ns b   for 0.n     

Then we have ( ) (0, )n nf x P x  and ( ) (1, ).n ng x P x  

The polynomials ( , )nP b x  are monic and orthogonal and satisfy  
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By (2.4) the moments of  ( , )nP b x  are ( ) ( , ,0),bM n r b n  where  
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3.2. Let  
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4. Associated polynomials 

4.1. The following well-known result (cf. e.g. [4], Th. 33)  
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   (3.1) 

shows that the Hankel determinants on the left-hand side are polynomials in k  for fixed .n
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A direct proof has been given in [1], Th. 4.  As observed there this is a special case of a more 
general result (cf. [5] and [9]). 
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(3.6) in combination with (2.12) gives 
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4.3. A combinatorial proof of (3.7) (due to Christian Krattenthaler, personal 
communication). 

4.3.1. Let us consider plane partitions of the form  1, 2, ,1n n    of integers between 0  

and .k  These are arrays of the form 

1,1 1,2 1, 1

2,1 2, 2

1,1

n

n

n

  
 












 
 

with ,0 i j k   such that , , 1i j i j    and , 1, .i j i j    

For 1k   the number of these partitions is .nC  For 1n   we have only the empty partition.  

For 2n   we have 22 C such partitions 0 ,  1 .  

For 3n   we get 35 C  partitions: 
0  0

0
 , 

1  0

0
,

1  1

0
, 

1  0

1
,

1  1

1
 .  

 

As a typical example ( 6, 5)n k   for the following proofs consider the partition 

5 5 5 3 2

5 3 34

2 2 2

2 1

0

 

R. Proctor [8] using methods from representation theory has shown that the number of these 
plane partitions is ( ).nH k  

We want to give a more elementary proof of this fact.  

We first associate to each such plane partition a family of k  non-intersecting Dyck paths as 
suggested by Sam Hopkins in [6]. 

We sketch this map using our example.  

We draw dividing lines between different entries of the partition as in the left figure. Then we 
pull them apart in direction ( 1,1)  and add vertical steps at the beginning and horizontal steps 

at the end such that the new beginning and end are on the diagonal y x  as shown in the 

right figure. Finally we turn the figure 45 degrees.  

This gives k  non-overlapping Dyck paths with initial points ( 2 ,0)iA i   and end points 

(2 2 ,0)iE n j   for 0 , 1.i j k     
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By the Lindström-Gessel-Viennot theorem [2] the number of families of non-intersecting 

paths from the set  iA  to the set  jE is    1
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det , ,

k

i j
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 where  ( , )i jc A E  denotes the 

number of  Dyck paths from iA to .jE  

Since the number of Dyck paths from (0,0)  to (2 ,0)n  is given by the Catalan number nC  we 

get 
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4.3.2. Next we show that the number of plane partitions is given by the determinant (3.7). 

We assign to each row of the partition a lattice path which starts on the y  axis and ends on 

the x  axis, where the heights of the horizontal steps are the entries of the row. 

If we denote by H  a horizontal step and by V  a vertical step then our example gives the 
paths (cf. the left side of the next figure) 

 , , , , .H HVHV HHHVV HVHVHHVVV HHHVVHVHVV  (3.8) 

Then we shift these paths in direction (2,1)  and add horizontal and vertical steps at the start to 

obtain non-intersecting paths 

                               : ( 1, 1) (2 1, 1),i i iP A k i E i i         1 ,i n     

 and finally we can add a new vertical path 0P   from ( 1, 1)k    to ( 1, 1)    to obtain a nicer 

determinant (see the right part of the next figure). 
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In this way (3.8) is changed to 
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Let ( , )i js A E  denote the number of paths from iA to jE  consisting of  steps H  and .V  
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The first terms of the sequence ( , )nH b x  are 0 ( , ) 1,H b x  1( , ) 1 ,H b x bx   

 2 2
2

1
( , ) (1 ) 6 ( 6) 2 ,
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H b x x b b x b x      

   2 2 2 3 3
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For 0b   this reduces to Theorem 1 with ( ) (0, ).n nH x H x  
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Proof 
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For  0,1,2b  the formulas are more complicated because then ( , )nH b x has some irreducible 

factors of higher degree. 
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4.5. Lemma 6 (cf.  Michael Somos [6]) 
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  Then condensation gives 

 2( , ) ( 2, 2) ( 2, 1) ( , 1) ( 1, 1) 0.u n k u n k u n k u n k u n k           

If all ( , ) 0u n k   then given (0, )u k  and (1, )u k  and ( ,1)u n   all ( , )u n k are uniquely 
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2 2 1( ) ( 2) ( 1) ( 1) ( 1) 0n n n n nV x V x V x V x V x           

and ( ) 0nV k   for all , .n k  

Given 0a  and 1a  and 0 ( )V x  and 1( ).V x  Then there are uniquely defined na  such that 

  1

0, 0
det ( )

k

i j i j
a V k



 
  and   1

1 1, 0
det ( ).

k

i j i j
a V k



  
  

Corollary 7 

Let 
2 1

( , ) 2 , .
2

n
n n

x
V b x H b

   
 

 Then 

 
 
 

1

, 0

1

, 0

det ( ,1)
( , ) .

det ( ,1)

k

n i j i j
n k

i j i j

V b
V b k

V b



  


 

  (3.12) 

 

Computations suggest that 
0

( ,1)
n

n j
n

j

n j
V b b

j




 
  

 
  and that these numbers are the moments 

corresponding to (0) 2,bs b   ( ) 2bs n   and (0) 2bt b   and ( ) 1.bt n   

We first prove  

Lemma 8 

The orthogonal polynomials corresponding to  (0) 2,bs b   ( ) 2,bs n   (0) 2bt b   and 

( ) 1bt n   are 

 
0 0

2 2 1
( , ) ( 1) ( 1) .

2 2 1

n n
n j j n j j

n
j j

n j n jn n
p b x x b x

j jn j n j
 

 

     
          
   (3.13) 

Their moments are 

 
0

( , )
n

n j

j

n j
M b n b

j




 
  

 
  (3.14) 

 and their Hankel determinants are  
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   1 1

, 0
det ( , ) (2 ) .

k k

i j
M b i j b

 


    (3.15) 

Proof 

To prove (3.13) we must verify (2.1) which is easily done. 

 

To prove (3.14) it suffices by (2.3) to compute ( , )s n k  satisfying 

(0, ) [ 0],

( ,0) ( 2) ( 1,0) (2 ) ( 1,1),

( , ) ( 1, 1) 2 ( 1, ) ( 1, 1).

s k k

s n b s n b s n

s n k s n k s n k s n k

 
     
       

 

We have to show that 
0

( , )
n k

n k j

j

n k j
s n k b

j


 



  
  

 
   satisfies these conditions. This is easily 

verified.  

  1 1

, 0
det ( , ) (2 )

k k

i j
M b i j b

 


    follows from (2.5). 

If we write 
n n j

j j

   
   

   
 then we get the triangle [7], A046899 

, 0

1

1 2

3 61 .
10 201 4

5 15 35 701
n j

n

j


 
 
 
   

    
    

 
  
      

 

Note that 
1

1

n n n

j j j

     
           

 for j n  and 2 .
1

n n

n n

   
      

 

This implies that 
0

1k

j

n n

j k

   
   

   
  and 

0

1 2 2 2 1
(1, ) .

1 1

n

j

n n n n n n
M n

j n n n n n

            
                           
  

 

If we set  
( )

( )
2

n
n

V x
W x

b



  then 

 
 

 1 1

, 0 , 0

1 1

, 0

det (1) det (1)
( )

(2 )det (1)

k k

n i j n i ji j i j
n k k

i j i j

V V
V k

bV

 

    
 

 

 


  

 reduces to 
 

 
1

1
1, 0

, 0
, 0

det (1) (1)
( ) det det (1) .

(2 ) 2

k
k

n i j ki j n i j
n n i jk i j

i j

V V
W k W

b b
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Proof of Corollary 7 

The conditions of Lemma 6 are satisfied:  

1) ( )nW x  satisfies the condensation condition. 

2) 0

1
( )

2
W x

b



 and 1

2 (2 1)
( ) .

2

x b
W x

b

 



 

3)   1

, 0

1
det (1)

2

k

i j i j
W

b



 



  and   1

1 , 0

2 (2 1)
det (1)

2

k

i j i j

k b
W

b



  

 



 by (2.5) and 

( 1) ( ,0) 2 (2 1) .k
kp b k b     

 

Remark 

For 2b   we get from (3.11) 

 
2 1

2, 2 (1, 1)
2

n
n n

x
H H x

    
 

 (3.16) 

and therefore 
0

1
2 2, 2 4 .

2

n
n n j n

n
j

n j
H

j




      
   

  

From (3.6) we get 

 

Theorem 9 

 

 

1

, 0

2 1 2 2 2 2 1
( , ) 2 , det

2 2 12

n

n
n n

i j

x i j x i jx x i x i
V b x H b b

j jx i j x i j





                             
 

 (3.17) 

 

Remark 

The last results are another illustration of the fact that there are many similarities  between 
Fibonacci polynomials and Catalan numbers on the one hand and Lucas polynomials and 
central binomial coefficients on the other hand. 

The analogs of the Fibonacci polynomials (2.6) are  the (modified) Lucas polynomials defined 
by 

  1 2( ) ( ) ( )n n n nL x xL x t L x     (3.18) 

 with initial values 0 ( ) 1L x   and 1( )L x x  where 0 2t   and 1nt   for 0.n   The analog of 

(2.8) is 
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2

.
2

0

( ) .

n

n
n k

k

n
L x x

k

 
  




 
 

 
   (3.19) 

If we define the linear functional   on the polynomials by  ( ) [ 0]nL x n    this implies  

   2 2n n
x

n

 
   

 
  (3.20) 

 and  2 1 0.nx    

From  

 
2

2

0

( ) ( 1)

n

k n k
n

k

n k n
L x x

k n k

 
  





 
    
   (3.21) 

 for 0n   we get 

   2
0

2
( 1)

2

n
n j j

n
j

n j n
L x x

j n j




 
     
   (3.22) 

  and  

 
 2 1 1

0

2 1
( 1) .

2 1

n
n n j j

j

L x n j n
x

j n jx

  



  
     
   (3.23) 

 Thus (3.13) can be written as 

     2 1

2( , ) ,
n

n n

L x
p b x L x b

x


    (3.24) 

which is an analog of (2.20). 

 

5. A related result 

Theorem 10 

Let  

 
min( , )1

1

( ) .
k n kn

n
k

x k
h x

k





   
 

  (4.1) 

Then we get (1) ( )

2
n

n

h b n n

 
         

and   12

, 0
( ) ( 1) det ( ) .

k
n

k

n i j
h k b n i j

 
   


     (4.2) 
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Proof 

The polynomials ( )nh x  satisfy  

2
2 2 1( 1) ( ) ( 2) ( 1) ( 1) ( 1) 0.n

n n n n nh x h x h x h x h x           

Therefore  2( , ) ( 1) ( )
k

n

nu n k h k
 
 
     satisfies 

2( , ) ( 2, 2) ( 1, 1) ( , 1) ( 1, 1) 0.u n k u n k u n k u n k u n k           

It would be interesting if there are analogous results as above. 
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