
G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

From High-Level Model to
Branch-and-Price Solution in G12

Jakob Puchinger1 Sebastian Brand2 Peter J. Stuckey2

Mark Wallace3

arsenal research, Vienna, Austria

NICTA, University of Melbourne, Australia

Monash University, Melbourne, Australia

ISDS-Kolloquium 23. März 2009

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Outline

G12

An Example

Dantzig-Wolfe Decomposition

Column Generation

Identical Subproblems

Specialised Branching Rules

Conclusions and Outlook

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

The G12 Solver Platform

• Software environment for stating and solving combinatorial
problems by mapping high-level models to efficient
combinations of solving methods.

• We develop user-controlled mappings from a high level
model to different solving methods.

• Allowing users to experiment with different mappings.
• These mappings must be

• easy-to-use and easy-to-change for efficient
experimentation with alternative hybrid algorithms.

• flexible, allowing plug-and-play between different
sub-algorithms;

• efficient, allowing, if necessary, to tightly control the
behaviour of the algorithm;

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Mapping to Branch-and-Price

Our mapping to branch-and-price is designed to meet all three
objectives:
• The user can select branch-and-price and control its

behaviour by annotating a high-level model of the problem.
• The generated algorithm can use separate solvers for the

subproblems. The user can control the decomposition and
select the subproblem solver.

• Identical subsystems can be aggregated. Search control
can be expressed in terms of original model variables. The
system also supports specialised branching rules.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Components of the G12 Platform

• ZINC – Modelling Language Family
• ZINC
• MINIZINC
• FLATZINC

• CADMIUM – Mapping Language
• MERCURY – Solver Implementation Language

System of pluggable components:
• MERCURY Solvers
• Hybrid Solvers
• External Solvers

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

G12 - Constraint Programming Platform

Zinc/MiniZinc Modelling

Mercury

Cadmium Mappings

Mercury Solvers

External Solvers

Solver Input Languages

FlatZinc

LP FormatHybrid Solvers

Debugging Support
Visualisation

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Example: Trucking Problem

• We are given N trucks; each truck has a cost and an
amount of material it can load.

• We are further given T time periods; in each time period a
given demand of material has to be shipped.

• In each consecutive k time periods each truck must be
used at least l and at most u times.

• At each time period we need to choose which trucks to use
in order to satisfy the constraints.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Trucking.zinc
int: P; type Periods = 1..P;
int: T; type Trucks = 1..T;
array[Periods] of int: Demand; array[Trucks] of int: Cost;
array[Trucks] of int: Load; array[Trucks] of int: K;
array[Trucks] of int: L; array[Trucks] of int: U;
array[Periods] of var set of Trucks: x;

constraint forall(p in Periods)(
sum_set(x[p], Load) >= Demand[p]);

constraint forall(t in Trucks)(
sequence([bool2int(t in x[p]) | p in Periods],

L[t], U[t], K[t]));

solve minimize sum(p in Periods)(sum_set(x[p], Cost));

• The sum set(s, f) function returns Σe∈sf (e).
• sequence([y1, . . . , yn], l ,u, k) constrains the sum of each

subsequence of length k , yi + · · ·+ yi+k−1,1 ≤ i ≤ n − k + 1
to be between l and u inclusive.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

• As it stands this model is directly executable in an FD
solver that supports set variables. There exist specialised
propagators for sum set and sequence.

• In ZINC we can control the search by adding an annotation
on the solve item, for example:
solve :: set_search(x, "first_fail", "indomain", "complete")

minimize sum(p in Periods)(sum_set(x[p], Cost));

which indicates we label the set variables with smallest
domain first (first fail) by first trying to exclude an
unknown element of the set and then including it
(indomain) in a complete search.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Dantzig-Wolfe Decomposition

• Decomposing a linear programming model into a master
problem and one or several subproblems.

• The Original Problem has the form

OP: minimise
∑
k∈K

ckxk

subject to
∑
k∈K

Ak
j xk ≥ bj ∀j = 1 . . .M

xk ∈ Dk k ∈ K .

• The Dk are finite sets of vectors in ZNk
+ implicitly defined by

additional constraints. We have Dk = {dk
p | p ∈ Pk}.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Dantzig-Wolfe Decomposition
• We can alternatively write

Dk = {ek ∈ RNk |

ek =
∑

p∈Pk

dk
pλ

k
p,

∑
p∈Pk

λk
p = 1; λk

p ∈ {0,1} ∀p ∈ Pk }.

• Substituting xk , we obtain the Master Problem:

MP: minimise
∑
k∈K

∑
p∈Pk

ckdk
pλ

k
p

subject to
∑
k∈K

∑
p∈Pk

Ak
j dk

pλ
k
p ≥ bj ∀j = 1 . . .M

∑
p∈Pk

λk
p = 1 k ∈ K

λk
p ∈ {0,1} ∀p ∈ Pk , k ∈ K .

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Dantzig-Wolfe Decomposition and Column Generation

• DW Decomposition typically results in a Master Problem
with a possibly exponential number of variables.

• Column generation is the method of choice:
• Start from a restricted LP-relaxation of the original problem:

the Restricted Master Problem (RMP).
• Profitable variables (columns) are iteratively included.
• For every Dk , a subproblem is solved to find such variables.
• Find feasible columns dk with negative reduced cost:

(ck − πAk)dk − µk

where π are the dual variable values corresponding to the
constraints and µk is the dual value of the k th convexity
constraint.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Column Generation in G12

In G12 we need to annotate models to explain:
• what parts define the sub-problems,
• which solver is to be used for each subproblem, and
• which solver is to be used for the master problem.

Trucking.zinc (changes)
constraint forall(p in Periods)(

sum_set(x[p], Load) >= Demand[p]
::colgen_subproblem_constraint(p, "mip"));

solve ::colgen_solver("lp") ::lp_bb(x, most_frac, std_split)
minimize sum(p in Periods)(sum_set(x[p], Cost));

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Column Generation in G12
Implicit Dantzig-Wolfe decomposition on the model, separating
original, master, and subproblem variables, as well as adding
constraints linking those variables:

Trucking.zinc (changes)
array[Periods] of var set of Trucks: x ::colgen_var;
array[Periods] of var set of Trucks: mx::colgen_master_var;
array[Periods] of var set of Trucks: sx::colgen_subproblem_var("mip");

constraint forall(p in Periods)(colgen_link(x[p], mx[p], sx[p]));

constraint forall(p in Periods)(
sum_set(sx[p], Load) >= Demand[p]

:: colgen_subproblem_constraint(p));

constraint forall(t in Trucks)(
sequence([bool2int(t in mx[p]) | p in Periods],
L[t], U[t], K[t]));

solve :: colgen_solver("lp") :: lp_bb(x, most_frac, std_split)
minimize sum(p in Periods)(sum_set(mx[p], Cost));

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Implementation

• In the G12 system, the column generation module looks
almost like any other LP solver from the outside.

• The mapping between the original variables and the
master problem variables is straight-forward; we simply set

xk =
∑

p∈Pk

dk
pλ

k
p.

• Colgen requires an initial feasible solution. It is either
provided by the user or determined during a first phase.

• Branching is performed on original variables, therefore not
affecting the subproblem.

• The availability of the original variables in the column
generation solver is the key to being able to use this solver
in further hybrids.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Trucking Experiments

Finite domain model versus linearised branch-and-bound
versus Column Generation.

FD LP-BB DW
Nodes Time Nodes LP opt. Time Columns LP/IP opt. Time

4655 0.80s 3282 177.0 0.55s 19 220.0 0.18s
5860 0.85s 1992 177.0 0.47s 12 210.0 0.16s
4607 0.77s 3102 177.0 0.55s 20 224.0 0.18s

39848 5.04s 25646 267.0 2.64s 24 324.0 0.18s
2361926 215.90s 194000 244.8 18.75s 18 287.0 0.18s

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Identical Subproblems

• Solving problems with identical subproblems by the pure
Dantzig-Wolfe approach can be inefficient.

• We therefore aggregate identical subproblems:
• The set K of subproblems is partitioned into sets K s by

grouping identical subproblems.
• We turn ∑

k∈K s

∑
p∈Pk

dk
p λ

k
p into

∑
p∈Ps

ds
pλ

s
p

where λs
p are integer variables satisfying 0 ≤ λs

p ≤ |K s| and∑
p∈Ps λs

p = |K s|.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Identical Subproblems

• The MP becomes the Aggregated Master Problem:

AMP: minimise
∑
s∈S

∑
p∈Ps

csds
pλ

s
p

subject to
∑
s∈S

∑
p∈Ps

As
j ds

pλ
s
p ≥ bj ∀j = 1 . . .M

∑
p∈Ps

λs
p = |K s| s ∈ S

λs
p ≤ |K s|, λs

p ∈ Z+ ∀p ∈ Ps, s ∈ S.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Automatic Disaggregation

• The direct mapping between the original variables and the
newly introduced variables is not obvious anymore.

• In the aggregated case we have

xk =
∑
p∈Ps

λs
pds

p/|K s|.

• This usually leads to highly fractional values for the original
variables, even if the λs

p are integer.

• We therefore decompose the λs
p values into λk

p values
preserving integrality as much as possible, and then we
use the mapping for the non-aggregated case.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Automatic Disaggregation

• In order to allow branching on the original variables the
problem is disaggregated as required by the branching.

• It is possible to post any kind of linear constraint on the
original variables without affecting the subproblem.

• Each aggregated subproblem appearing in these
constraints is automatically disaggregated.

• If a constraint is posted involving an original variable
belonging to a specific subproblem, this subproblem
becomes different to the others and is disaggregated.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

The Cutting Stock Problem
CuttingStock.zinc

int: K; int: N; int: L;
type Pieces = 1..K ::colgen_symmetric;
type Items = 1..N;
array[Items] of int: i_length;
array[Items] of int: i_demand;

array[Pieces] of var 0..1: pieces;
array[Pieces, Items] of var int: items ;

constraint forall(i in 1..N)(
sum([items[k, i] | k in 1..K]) >= i_demand[i]);

constraint forall(k in 1..K)(
(sum(i in 1..N)(

items[k,i] * i_length[i]) <= pieces[k] * L)
:: colgen_subproblem_constraint(k, "knapsack"));

solve :: colgen_solver("lp") :: colgen_ph("mip", 100, 10)
:: lp_bb([pieces, items], "most_frac", "std_split")

minimize sum([pieces[k] | k in 1..K]);

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

The Cutting Stock Problem
A CADMIUM transformation creates an aggregated version:

CuttingStockAgg.zinc (changes)
var 0..1: s_pieces ::colgen_subproblem_var("knapsack");
var int: m_pieces ::colgen_master_var;

array[Items] of var int: s_items ::colgen_subproblem_var("knapsack");
array[Items] of var int: m_items ::colgen_master_var;

constraint colgen_link(pieces, m_pieces, s_pieces);

constraint forall(i in Items) (
colgen_link([items[k,i] | k in Pieces], m_items[i], s_items[i]));

constraint forall(i in 1..N)(m_items[i] >= i_demand[i]);

constraint
sum(i in 1..N)(s_items[i] * i_length[i]) <= s_pieces * L

::colgen_subproblem_constraint(0);

solve :: colgen_solver("lp") :: colgen_ph("mip", 100, 10)
:: lp_bb([pieces, items], "most_frac", "std_split")

minimize m_pieces;

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Cutting Stock

Experimental results with a maximum run-time of 5 min.

Class Items No Aggregation Aggregation
Opt % Feas % Obj Time [s] Opt % Feas % Obj Time[s]

Class1 10 30 70 12.70 210.40 30 70 12.60 209.95
Class2 10 70 10 118.75 100.89 90 10 112.90 59.36
Class3 20 30 0 23.33 242.52 20 80 24.50 250.05
Class4 20 0 0 n.a. 298.63 10 30 222.50 268.17
Class5 10 100 0 49.50 6.07 100 0 49.50 0.32
Class6 10 80 10 518.56 68.39 100 0 494.90 21.84
Class7 20 70 20 90.22 105.18 90 10 90 50.00
Class8 20 60 0 947.83 184.24 90 10 893.50 30.51
Class9 10 100 0 64 2.04 100 0 64 1.79
Class10 10 80 10 657.67 70.08 90 10 639.70 39.27
Class11 20 70 10 117.75 95.10 80 20 115.50 60.15
Class12 20 70 10 1182.25 154.79 80 20 1146.90 50.06

Average 63.33 11.67 330.74 128.19 73.33 21.67 327.46 86.79

Increase from 75% to 95% of solved instances.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Specialised Branching Rules

• Specialised branching rules for specific problem types
were developed to overcome symmetry.

• They usually require changes to the subproblems during
the branch-and-bound process.

• G12 enables users to implement such specialised
branching rules, changing the structure of the
subproblems, but preserving aggregations.

• The user can define specialised branching rules by
introducing constraint branches on subproblem variables.

• In the master problem these constraint branches can be
enforced by setting forbidden columns to zero.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Two-Dimensional Bin Packing
• We implemented a simple, well-known rule for the

two-dimensional bin packing problem.
• The solution space is divided by branching on whether two

different items are in the same bin.
2DBinPacking.zinc

int: K; type Bins = 1..K ::colgen_symmetric;
int: N; type Items = 1..N;
int: W; array[Items] of int: ItemWidth;
int: H; array[Items] of int: ItemHeight;
array[Bins] of var 0..1: bin;
array[Bins, Items] of var 0..1: item;

constraint forall(j in Items)(sum(k in Bins)(item[k, j]) >= 1);

constraint forall(k in Bins)(
is_feasible_packing(bin[k], [item[k, j] | j in Items])

::colgen_subproblem_constraint(k, "mip"));

solve :: colgen_solver("lp") :: colgen_ph("mip", 100, 10)
:: bp([bin, item], "most_frac_master", "special_split")

minimize sum(k in Bins)(bin[k]);

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Two-Dimensional Bin Packing

Experimental results for two-dimensional bin packing with a
maximum run-time of 5 min.

Class Std. Branching Sp. Branching
Opt % Feas % Obj Time [s] Opt % Feas % Obj Time[s]

Class1 68 22 19.49 109.90 90 8 39.90 53.54
Class2 26 0 1.31 223.24 30 2 64.19 203.08
Class3 70 10 13.05 116.37 84 8 13.85 82.90
Class4 26 0 1.31 228.76 26 0 1.31 228.74
Class5 84 6 17.40 69.65 90 2 17.61 53.13
Class6 24 0 1.08 228.03 24 0 1.08 227.97
Class7 76 16 16.30 80.52 88 10 16.78 57.52
Class8 78 10 15.73 89.48 84 6 15.98 77.04
Class9 96 4 42.62 13.94 100 0 42.60 2.17
Class10 48 4 7.46 155.95 52 0 7.46 149.39
Average 59.6 7.2 17.95 131.58 66.8 3.6 23.65 113.55

Increase from 66.8% to 70.4% of solved instances.

G12 An Example DW Decomposition Column Generation Identical Subproblems Specialised Branching Conclusions

Conclusions and Outlook

• G12 provides a framework for easy experimentations with
Column Generation and Branch and Price.

• Different strategies for avoiding symmetries.
• Combination of different solvers allowing easy algorithm

hybridisation.

• Address ipmlementation challenges such as column
management and more sophisitcated branching rules.

• Specifying specialised branching rule in Zinc.
• Other problem decomposition methods such as

Lagrangian or Benders decomposition.

	G12
	An Example
	Dantzig-Wolfe Decomposition
	Column Generation
	Identical Subproblems
	Specialised Branching Rules
	Conclusions and Outlook

