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To Raoul Bott – with great respect.

“At that time, blowups were the poor man’s tool to resolve singularities.” This phrase of
the late 21st century mathematician J.H.Φ. Leicht could become correct. In our days,
however, blowups are still the main device for resolution purposes (cf. fig. 1).

Figure 1: Resolution of the surface Helix: x2 − x4 = y2z2 by two blowups.

These notes shall give an informal introduction to the subject. They are complemented
by the discussion of many special and less known features of blowups.

The lectures adress to students and geometers who are not experts in the field, but who
need to use blowups occasionally or who just want to have a good comprehension of
them. References are scattered in the literature and mostly concentrate on only part of
the story. This text is neither complete, but hints at least at the variety of properties,
results and techniques which are related to blowups and which make them so attractive.
Actually, it may serve as the starting point to write a comprehensive treatise on blowups
(which should in particular include the solutions to all exercises). The obvious objection
from algebraic geometers to such a project will be that blowups are too simple to deserve
a separate treatment. The many open and intricate questions listed in these notes may
serve as a reply to this reproach.

Supported in part by FWF-project P 15551, and the bilateral exchange program Acciones Integradas.
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The material stems from lectures held by the author at the Mathematical Sciences Re-
search Institute (MSRI) at Berkeley in April and May 2004 and during the Conference on
Geometry and Topology at Gökova, Turkey, in June 2005. Both classes were taught ex
tempore (i.e., without preparation) in order to incorporate better the doubts and ques-
tions of the audience. And the nicest compliment was the remark of a solid algebraic
geometer saying “I thought to know already all about blowups, but I am no longer sure
about this”.

We are very grateful to Frank Sottile and Selman Akbulut for the kind invitations to
Berkeley and Gökova, and all the people from MSRI for their warm hospitality. The
students of the classes interfered many times with interesting remarks and inquiries – this
helped a lot to shape the material. As a pop star would formulate it: “You are the best

audience I ever had”.

Here is a list of reading literature. Eisenbud-Harris’ book on the geometry of schemes
is probably the source which gives the most inspiration on the topic [EiH]. Several phe-
nomena were taken from there. Another excellent reading is the beginning of Hironaka’s
Annals article [Hi 1]. There are almost no proofs, but many of the main properties appear
with precise details and in all generality. Abhyankar’s papers can be very stimulating if
one really succeeds to read the information hidden between the lines. In Hartshorne’s
book [Hs], blowups have a prominent place, but the discussion lacks the concrete cal-
culations and the various aspects which can arise in examples. Let us also mention the
articles of Encinas-Villamayor [Vi 1, Vi 2, EV 1, EV 2] and Bierstone-Milman [BM 1 to
BM 6], the survey of Lipman [Lp 3], the notes of Cutkosky, Matsuki and Kollár [Cu 7,
Ma, Ko]. Above all, we recommend reading Zariski, especially his paper on the resolution
of threefolds [Za 4] and therein the section on resolution of surfaces.

The proof of resolution in characteristic zero which we develop in big lines towards the
end of these notes stem’s from the author’s collaboration with Santiago Encinas [EH].
The enclosed pictures were produced by Sebastian Gann with the ray-tracing program
POV-Ray.

1. Introduction and examples

By a resolution of an algebraic set (variety, scheme) X with singularities we understand
a map π : X ′ → X which represents X as the image of a manifold X ′, i.e., which
parametrizes X. It is by no means clear how to find such a parametrization.

Example 1: The first example of a resolution of a surface is the contraction of the cylinder
X ′ given by x2 + y2 = 1 in A

3 to the (double) cone X : x2 + y2 − z2 = 0. The map is
induced by π : A

3 → A
3, (x, y, z) → (xz, yz, z). It collapses the xy-plane z = 0 to the

origin of A
3 so that the cone appears as the image of the cylinder contracted along a

circle (cf. fig. 2). Despite its simplicity, the example is quite instructive, because it leads
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to the problem of reconstructing by a natural and general procedure the cylinder X ′ and
the map π from the knowledge of X.

Figure 2: Cylinder and cone.

Example 1a: To answer this question, we consider a yet simpler example, the crossing
X of the two diagonals in A

2, given by x2 − y2 = 0. The manifold X ′ should of course
consist of two separate lines. Therefore, to separate the two branches of X, we lift the
two diagonals to A

2 × P
1 by associating to each point (x, y) the height z given by the

slope of the line through (x, y) and (0, 0), more precisely,

σ : A
2 \ 0 → A

2 × P
1,

(x, y) → ((x, y), (x : y)).

This map is defined outside the origin of A
2, not only on X. Geometrically it is clear

that the image of X \ 0 under σ consists of two “parallel” lines (each deprived of one
point). The Zariski-closure X ′ of σ(X \ 0) in A

2 × P
1 consists of the entire lines and is

thus a submanifold of A
2 × P

1. The map X ′ → X is the restriction of the projection
A

2 × P
1 → A

2 onto the first two components. We leave it to the reader to compute
the affine or projective equations of X ′ in A

2 × P
1 as well as the chart expression of

π : X ′ → X.

The construction works fine because all points on one of the two lines of X have the same
slope. What happens if this is not the case?

Example 1b: Consider the variation of the preceding example, taking X defined in A
2 by

(y − x2)(y − x − x3) = 0, a parabola and a cubic, intersecting over the reals only at the
origin. The two components meet transversally at 0. There are now two options how to
separate the branches.

(i) Either we associate to points (x, y) ∈ A
2 again the triple ((x, y), (x : y)) ∈ A

2 × P
1.

Notice that for points (x, y) on the curve X, the projective point (x : y) is the secant line

through (x, y) and (0, 0).
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A computation shows that the Zariski-closure X ′ of the image of X\0 under the above map
σ consists of two disjoint regular curves, and it comes with a surjective map π : X ′ → X.
This construction is called the blowup of A

2 with center the origin (or the ideal (x, y) of
K[x, y]), and X ′ is the strict or proper transform of X. It’s not a bad exercise to carry
out this computation.

(ii) The second option is to associate to a point (x, y) on the curve X the triple (x, y, t) ∈
A

2 × P
1, where t is now the tangent line to X in (x, y). This construction, of course,

works for the moment only at (the regular) points of the curve, and not on whole A
2. The

resulting transformation of X is known as Nash modification (it corresponds to blowing
up the jacobian ideal of the curve given by the partial derivatives of the defining equation,
and is thus defined a posteriori again on whole A

2). Though geometrically attractive, it
has not been used and exploited systematically beyond curve and surface singularities.

Nota bene: Blowups whose centers are points or regular subvarieties of the ambient scheme
represent the main modification of varieties to resolve their singularities. Their impact
on the singularities, however, is very modest. They only succeed to improve them “pi-
colissimo”. Actually, it is very hard in general situations to show that an improvement
actually occurs.

Therefore it would be nice to find substitutes which are more powerful and more refined,
and Nash modifications are one possible option. You should always keep in mind to look
out for possible new modifications to replace classical blowups.

After all, it can be shown by Hironaka’s theorem that there does exist (at least in char-
acteristic 0) a non reduced ideal structure on the singular locus of an arbitrarily difficult
variety (i.e., an ideal with support the singular locus) such that blowing up the respective
ideal resolves the singularities of X ad hoc in one capital stroke, and moreover preserves
the regularity of the ambient scheme. Nobody has the slightest idea how this non-reduced
structure should look like. Aside of non-significant examples nothing seems to be known.
End of N.b.

Example 1c: Consider the curve X defined in A
2 by (y−x2)(y−xk) with k ≥ 3. The two

components meet now tangentially at the origin. Taking the blowup with center (0, 0), i.e.,
corresponding to secant lines, yields (in the relevant chart) the equation (y−x)(y−xk−1).
The two components now meet less tangentially, but this, obviously, has to be made precise
and captured by an intrinsic measure of tangency.

Here is a first (and somewhat) preliminary definition of the blowup of affine space A
n

with center an ideal P of K[x1, . . . , xn] (said differently, with center Z the subvariety
V (P ) of A

n): Choose generators g1, . . . , gk of P and consider the map

A
n \ Z → A

n × P
k−1,

x → (x, g1(x) : . . . : gk(x)).
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This is a well defined injective morphism. The image is the graph Γ(g) of g : A
n \ Z →

P
k−1, x → (g1(x) : . . . : gk(x)). The Zariski-closure Ã

n of Γ(g) in A
n × P

k−1 is the
blowup of A

n with center Z. It does not depend on the choice of the generators gi up to

isomorphism (show this). The restriction of the projection on the first factor π : Ã
n → A

n

is the associated blowup map. It is a birational morphism which is an isomorphism over

the complement of Z, say π : Ã
n \ π−1(Z) ∼= A

n \Z. The subvariety π−1(Z) of Ã
n which

is contracted under π to Z is a hypersurface (show also this) and called the exceptional

divisor E of the blowup.

From the definition, the algebraic equations of Ã
n in A

n ×P
k−1 as well as the affine chart

expressions of π can be directly deduced. The projective equations for Ã
n in A

n × P
k−1

are uigj(x) − ujgi(x) = 0 for 1 ≤ i, j ≤ k and coordinates u1, . . . , uk on P
k−1.

For X a subvariety of A
n containing Z we obtain in a similar fashion the Zariski-closure

X̃ of the image of

X \ Z → X × P
k−1,

x → (x, g1(x) : . . . : gk(x)),

called the blowup of X with center Z. Again, π : X̃ → X is the associated blowup map.

It is not difficult to show that Ã
n is regular if P is the reduced ideal of a regular subvariety

Z of A
n. For Z = 0 the origin in the real plane R

2, we obtain (cum grano salis) for Ã
2

the Möbiusband in R
3 (cf. fig. 3).

Figure 3: The Möbiusband, blowup of A
2 with center a point.

Exercises. Writing down the above introductory examples with all details is almost
mandatory for being able to enjoy the remaining material. There are also more com-
plicated examples where everybody can try out its resolution instinct.

Exercise 2: To warm up, we start with some computations of blowups of affine space.

Exercise 2a: Determine the affine chart expressions for the blowup map π : Ã
n → A

n for
n = 2 and Z = 0, n = 3 and Z = 0, n = 3 and Z = V (x, y) = z-axis. Show that in the
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last case, the blowup map π is the cartesian product of the blowup map in the first case
with the identity map on the z-axis.

Exercise 2b: Take various curves in A
2 and A

3 (e.g., y2 = x3−x, y2 = x2−x3, y2 = x3 or
the parametrized curves (t2, t3, t4) or (t3, t4, t5)) and compute their pullbacks under the
previous blowups, both projectively and in the affine charts. Distinguish the locations of
the intersections of the “pullbacks” of xy = 0, x2 − y2 = 0, xy(x2 − y2) = 0 with the
exceptional divisor E (cf. fig. 4).

Figure 4: Blowup of A
2 with center a point and transform of cuspidal curve.

Exercise 2c: Show that the ideals (x, y), (x, y)2 and more generally (x, y)k define the same
blowup of A

2 when taken as center.

Exercise 2d: If the center is a hypersurface, the resulting blowup map is an isomorphism.

Exercise 2e: Compute the point blowup of the ideal (x, y2) in A
2. Show that Ã

2 is
singular. Resolve its singularities by a further blowup.

Exercise 2f : Compute the blowup of the ideal (x, y2)(x, y) in A
2. Show that Ã

2 is regular.

Exercise 2g: Let Ã
2 be the blowup of A

2 with center the origin. Let a ∈ Ã
2 be the point

corresponding to the direction of the line y = 0 in A
2 (make this precise). Blow it up.

You get a composition of two blowups, say τ : Â
2 → A

2. Show that it is the blowup of A
2

with center an ideal (not reduced) supported by the origin. Determine this ideal. Show
that it is not unique.

Exercise 2h: Compute the blowup of A
3 with center the circle x2 + y2 = 1, z = 0. Make

sure to compute all affine charts. Show that Ã
3 is regular.

Exercise 2i: Show that the exceptional divisor E of a blowup is indeed a hypersurface.
Compute its equation in various circumstances.

6



Seven short stories on blowups

Exercise 2j : Blow up the “arithmetic line” A
1
Z

= Spec(Z[x]) in the ideal (x, p), p ∈ Z a

prime. What could be the “affine” equations of Ã
1
Z
?

Exercise 3: We next try to resolve some singularities: The double-cone x2 +y2 = z2 in A
3

should not pose to many problems, as well as the Dingdong surface x2 + y2 = z2(1 − z)
(figure out first how this creature looks like?). More interesting is the Whitney-umbrella
x2 − y2z = 0 in A

3. The singular locus is the z-axis. Again, it is worth to try first a
simpler example, namely

Exercise 3a: The cylinder over the cusp x2 − y3 in A
3. The equation is x2 − y3 = 0, but

considered in three variables. What is the correct blowup to be applied? The question
applies to any varieties which are cartesian products (cf. fig. 5).

Figure 5: Plop, the cartesian product of a cusp with the parabola.

Exercise 3b: A somewhat more delicate example is the Limão x2 = y3z3 in A
3 (cf. fig. 6),

which appears as a modification of the equation of the Whitney-umbrella x2 = y2z (cf.
fig. 7). The singular locus consists of the y- and the z-axis; it has therefore a singular
point at the origin. What is the correct choice of center of blowup? Can you preserve by
your blowups the symmetry between y and z.

Figure 6: Limão, of equation x2 − y3z3 = 0.

7



H. Hauser

Exercise 4: Let f be any polynomial in three variables, and denote by o its order of
vanishing at 0, i.e., the order of the Taylor expansion at 0. Blow up the origin in A

3 and

consider the strict transform f ′ of f at a point a′ of Ã
3 above a (i.e., take the pullback

f∗ of f and factor from it the maximal power of the equation defining the exceptional
divisor). Determine the cases where the order o′ of f ′ at a′ has remained constant.

2. Choosing the centers of blowup

We now turn to the problem of selecting for each singular variety a suitable center along
which the ambient space and the variety shall be blown up. Recall that the blowup map
is an isomorphism over the complement of the center, whereas it contracts the exceptional
divisor, which is a hypersurface, to the center (which could be rather small). Therefore,
our variety will be modified only along the center. And indeed, at its regular points we
have no reason to change it, they cannot be improved any further. So will agree to choose
our centers inside the singular locus of the variety.

This choice, however, is not a must, and there are several papers where the centers are
chosen to stick out of the singular locus and even out of the variety. The defect is due
to a lack of suitable stratifications of the variety, namely ones whose smallest stratum is
regular and could thus be chosen as center. And in fact, allowing singular centers is quite
a delicate job, see [Ha 2].

For the moment we will accept solely centers inside the singular locus of the variety. This
requirement is known as the economy of the resolution process: Only points are modified
where it is really necessary, because they are singular. Of course, in the resolution process,
each singular point has to belong once in a while to a center of blowup, otherwise it would
remain singular forever.

Let us then observe whether our singularities improve under the chosen blowups.

We shall concentrate on surfaces, because they represent a nice playground to develop
some of the most prominent ideas. In contrast, the reader should know that dimension
three is the critical dimension for bad phenomena to happen, especially but not exclusively
in positive characteristic. Quasi all “counterexamples” to properties one could hope for
are formulated for three-folds.

Let us start with isolated singularities. In this case there is no ambiguity how to choose
the center. It should coincide with the finitely many singular points, so it suffices to
consider one of these.

Example 4: The double-cone X given by x2 + y2 − z2 = 0 in A
3. The only singularity

sits in the origin. Blowing it up gives three charts, with a symmetry between the x- and
y-chart. In the x-chart we obtain x2(1 + y2 − z2) = 0, in the z-chart z2(x2 + y2 − 1) = 0.
Again, we will omit the exceptional monomial factors x2 and z2, so that the interesting
equations are 1 + y2 − z2 = 0 and x2 + y2 − 1 = 0. All three charts of the blowup X ′ are
regular.
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The exceptional divisor E of π : Ã
3 → A3 is the two-dimensional projective space P

2, and
X ′ meets E entirely in the z-chart (so we can discard the other charts). The intersection
is the circle x2 + y2 − 1 = 0, which shows that X ′ is indeed the cylinder (because outside
0 we did not alter X). We recover our example from the beginning of the first lecture.
Check that the blowup map π : X ′ → X is precisely the contraction described there.

Example 4a: Let us now change coordinates. As a first variation of the preceding example,
“rotate” the double-cone by taking for X the equation x2 − yz = 0, with a symmetry
between y and z. The equation is obtained from the previous example by substituting
there y− z by y and y + z by −z. The equations for X ′ are now in the x-chart 1− yz = 0
and in the y-chart x2 − z = 0. Therefore, the intersection of X ′ with E is no longer
contained in one of the three affine charts of E. This becomes relevant when computing
local invariants of X ′ at points of E. The fewer the charts are that have to be considered,
the shorter are the computations.

As a general observation, the choice of suitable coordinates (suitable with respect to
different intentions as e.g. achieving small complexity or defining coordinate independent
data) is a very subtle point and marks the entire literature on the subject.

Example 4b: What happens if we do not take the origin of the cone as center, but a whole
line through the origin? For simplicity we take X given by x2 − yz = 0. There are two
types of lines through 0, those contained in X and those which are transversal to X (in
an heuristic sense, meaning simply that they are not contained in X). Let first the center
Z ⊆ X be the z-axis of ideal (x, y). The transform X ′ of X has equation (replace (x, y) by
(x, yx) respectively (xy, y) and leave z untouched) x−yz = 0, respectively x2y−z = 0. It
is hence non-singular, but the global geometry seems to be somewhat twisted. We leave
it to the ambitious (or curious) reader to figure out whether X ′ is again the cylinder.

(Glueing affine charts may be tedious. We will encounter this task at many more occa-
sions, and a certain routine will be helpful.)

Let us now take as center Z 6⊆ X the “transversal line” of ideal (y, z), i.e., the x-axis.
By symmetry, we only have to consider the y-chart. The transform X ′ is given there by
x2 − y2z = 0, which is the Whitney-umbrella mentioned at the end of the first lecture. It
has a whole line as singular locus, and the origin is by all means the worst singularity on
this surface. It would be difficult to qualify X ′ as being less singular than the double-cone:
Our blowup did not improve the singularities – it made them worse.

This comes a bit as a surprise, but cannot be avoided: If the center leaves the variety, or
if it remains inside but is too small, the singularities may become more involved (further
examples still to come). Moreover, in our example, the singularities are no longer isolated.
We will see later that for instance the normality of surfaces need not persist under point
blowups. This has a simple meta-mathematic interpretation: Normal surface singularities
are isolated, but the variety has really to squeeze around these points in an intricate way
in order not to create singular curves. Now, when considering blowups of normal surfaces,
we think of all secants going through regular points and the (isolated) singular point. And
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there may appear in the limit – when the regular points come close to the singular one –
very complicated configurations of secants.

In particular, as a side-product, we see that the blowup of X in a center Z not contained
in X does not coincide with its blowup with center the intersection Z ∩X (neither for the
set-theoretic nor for the scheme-theoretic intersection Z ∩X). There is no way to expect
commutativity of blowups with respect to restricting the center to X.

Exercise 1: Prove this accurately. What happens if you take as center the scheme-theoretic
intersection Z ∩ X?

Fortunately, many other and very practical commutativity properties do hold, we will list
and prove them in detail. The first one appears in the next example.

Example 5: Let us take for X two transversal planes in A
3, say of equation x2 − y2 = 0,

considered in three variables. So X is the cartesian product of (or the cylinder over) the
union C of two transversal lines in A

2 with regular factor the z-axis, say X = C × A
1.

We have two options:

(i) Blow up the origin in A
2, get π : Ã

2 → A
2 and then take π × idA1 : Ã

2 × A
1 →

A
2 × A

1 = A
3. This is certainly an honest attempt, because X is a cartesian product, a

fact which should be reflected by the transformation we choose.

(ii) The second option is to blow up A
3 along the singular locus of X, i.e., with center

the z-axis. The ideal is (x, y).

It is easily checked (especially, if you have done some of the earlier exercises), that both
options are valid and resolve X, yielding for X ′ two separate (parallel) planes in A

2 ×
P

1 × A
1, respectively A

3 × P
1. And as you probably suspected by what was said before,

the two options coincide (not hard to be verified). Perfect! We state explicitly our first
functorial property:

Blowups commute with taking cartesian products with regular factors.

More explicitly: The blowup of A
n along a coordinate subspace Z equals the cartesian

product of the point-blowup in a transversal subspace V of A
n (of complementary dimen-

sion) with the identity on Z.

Exercise 2: Prove this in all generality without referring to affine charts but by recalling
that the blowup is the Zariski-closure of a graph.

Exercise 3a: This sounds nice, so will immediately test it in a concrete situation. Compute
the blowup of A

3 with center the circle Z of ideal (x2 + y2 − 1, z). You should at least
remember here that this coincides with an earlier exercise. If you don’t remember, you
can almost be sure that you did not do this exercise. What are the affine chart expressions
of the blowup map? Next, define a surface whose singular locus is precisely this circle.
What is its transform under the blowup?

Exercise 3b: Blow up the plain circle Z from before inside the surface Z × A
2.
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Exercise 4: Let us take for X the cylinder over the cusp, given by the equation x2−y3 = 0
in A

3. You should have no problems in defining the center and the induced resolution of
X by one blowup. But how does X ′ intersect the exceptional divisor E ∼= P

1 × A
1? Are

you pleased how they meet? If yes, go back to the blowup of the curve x2 − y3 in A
2 and

contemplate your satisfaction. If not, what do you suggest to remedy your discomfort?

To relax briefly and to prepare the field for new exercises, another definition of the blowup
of affine space A

n in an ideal P = IZ = (g1, . . . , gk) of K[x1, . . . , xn] = K[x] will be given.

This time, we indicate the affine coordinate rings of Ã
n as subrings of the quotient field

K(x). The i-th one is given as

K[x1, . . . , xn, g1/gi, . . . , gk/gi].

Exercise 5: Determine how these rings have to be glued in order to define Ã
n.

Exercise 6: Computations are fun, so show with this definition that P = (x, y2) in A
2

and P = (x, yz) in A
3 give singular blowups Ã

2 and Ã
3, whereas P = (x, y2)(x, y) in A

2

and P = (x, yz)(x, y)(x, z) in A
3 give regular ones. You may consult [Ha 2].

Exercise 7: This is a nice little exercise+ in discrete or toric geometry. Determine the
monomial ideals in K[x1, . . . , xn] which produce a regular blowup of affine space.

Exercise 8: This is a possibly nasty exercise++ in discrete geometry. Determine for
monomial ideals in K[x1, . . . , xn] a natural and simple multiplication procedure by other
monomial ideals (with smaller exponents) such that the entire product (which may have
many many generators) produces a regular blowup of affine space (not too hard for n = 2
or n = 3).

We are back to singularities.

Exercise 9: Here comes the first serious example, the Whitney-umbrella x2 − y2z = 0 in
A

3. Though easy, it shows many of the decisive features, so we will study it with patience.
You are invited to carry out all computations in detail.

This surface has non-isolated singularities along the z-axis. Locally in the euclidean
topology, at points on the z-axis but off the origin, it looks like two transversal planes
(this is not the case not in the Zariski-toplogy), which reminds us example 5. At the
origin, the surface bends around, making 0 strikingly more singular than the other points
on the z-axis.
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Figure 7: The Whitney-umbrella x2 = y2z.

According to the philosophy that the worst singularities should be taken care of first, we
blow up the origin with reduced ideal (x, y, z) in A

3. We get three affine charts and a
new surface X ′ of respective equations:

x-chart: 1 − xy2z = 0, no intersection with exceptional divisor E.

y-chart: x2 − yz = 0, our old acquaintance the double-cone, which, for any point of view,
should be simpler than the Whitney-umbrella. Note that the intersection of X ′ with E
is the z-axis (with multiplicity 2).

z-chart: x2 − y2z = 0, and – surprise – the same singularity we had before blowing
up pops up again at the origin of this chart. The singularity has survived our attack
without damage (cf. fig. 8). The intersection of X ′ with E is now the y-axis (again with
multiplicity 2).

Figure 8: The Pirat, point blowup of the Whitney-umbrella.

Tautology : If the singularity remains the same, there is no way to declare it less singular
than the original one.

Conclusion : Our choice of center was not appropriate (if we believe that resolutions
exist). We should have probably better taken a larger center.
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Parenthesis : We have cheated here a little bit. Even though the singularity was pre-
served in the z-chart, the situation has improved in a certain (and not yet revealed)
sense. And, actually, all existing resolution algorithms and their implementations choose
for the Whitney-umbrella the origin as the first center of blowup. The reason for this
“misbehaviour” of the algorithms will be explained later.

Exercise 10: In the y-chart we have an isolated singularity at the origin (the one of the
double-cone), in the z-chart we have a non-isolated singularity (the one of the Whitney-
umbrella). Explain this strange occurence. Think again of the configuration of secant
lines along the z-axis of X. How do the three charts patch?

Exercise 11: (mandatory) Show that blowing up the z-axis in A
3 resolves the Whitney-

umbrella in one step. Could this be expected geometrically before doing the calculation?

Exercise 12a: Resolve Himmel & Hölle x2 − y2z2 = 0 (cf. fig. 9).

Exercise 12b: Resolve Limão x2 − y3z3 = 0.

Figure 9: Himmel & Hölle, of equation x2 − y2z2 = 0.

3. Transforms of ideals

Now that we have got an approximate idea how blowups are defined and how they may
affect singularities, let us see more systematically how various types of objects transform
under blowup. These objects can be polynomials or hypersurfaces, ideals or subvarieties,
parametrizations of curves and surfaces, jacobian ideals of polynomials or singular loci of
varieties, sum and product decompositions of ideals, coefficient ideals, coordinate systems,
automorphisms, group actions, local flags, local invariants, vector fields, differential forms,
etc.

Given is a blowup π : W ′ → W with center Z ⊂ W of ideal P in OW and exceptional
divisor E = π−1Z. We shall mostly assume that W is equal to affine space A

n, so that
P is an ideal in K[x1, . . . , xn], with Z = V (P ) regular. We wish to lift a given object B
in W to an object B′ in W ′ in a natural and significant way.

13
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There are two options: Either we take the usual pullback B∗ of B under π. Or, more
subtly, we restrict B to W \ Z, get an object C on W \ Z, apply to the restriction C the
inverse ϕ−1 of the isomorphism ϕ : W ′ \ E → W \ Z induced by π and get an object C′

on W ′ \ E, which we can then try to extend to an object B′ defined on whole W ′. If the
original object is defined locally on W at a point of Z, the lifted object may only exist
locally on W ′ at certain points of E.

When realizing this procedure algebraically, we shall fix for convenience (local or affine)
coordinates x1, . . . , xn on W , and assume that Z is defined by the ideal P = (x1, . . . , xk)
for some k ≤ n. Moreover, we will place ourselves w.l.o.g. in the k-th affine chart of W ′

so that the blowup map W ′ → W has chart expression π : A
n → A

n sending xi to xi if
i ≥ k and to xixk if i < k. The exceptional divisor E has equation xk = 0 in this chart.
Of course, our setting specifies a point a ∈ Z and a point a′ above a in E by considering
the respective origins of the charts. Note here that the location of a′ on E depends on
the choice of the coordinates x1, . . . , xn at a.

Hint: It is much simpler to treat the chart expression of the blowup map as a map of
affine space onto itself with the same coordinates on source and image rather than to
consider two different affine spaces with different coordinate systems.

In any case, we have not specified yet what we mean by coordinates. For the moment
it suffices to take any regular system of parameters of K[x1, . . . , xn], later on we shall
mostly work in the local context with regular parameters of the formal power series ring
K[[x1, . . . , xn]]. In the second case, coordinate changes (i.e., K-algebra-automorphisms
of K[[x]]) are easier to handle.

Our study of transforms begins geometrically. Take a subvariety X of W (no component
of X should be contained in the center Z). How does it lift to W ′? We follow the recipe
described above: Consider U = X \ Z with preimage U ′ = π−1(U) = π−1(X \ Z) in
W ′ \ E. Clearly, π : U ′ → U is an isomorphism. We are interested in extending U ′

over the exceptional divisor E. Notice here that the way how U ′ approaches E may
be substantially different from the way how U approaches Z. By our assumption, U is
Zariski-dense in X, i.e., the points of X inside Z are “limit” or “boundary” points of U .

It is then more than natural to define X ′ as the Zariski-closure of U ′ in W ′, i.e., to add
to U ′ those points of E to which the points of U ′ tend in the limit when approaching
the exceptional divisor. We call X ′ for the moment the geometric transform of X. It is
contained in the total transform X∗ = π−1(X) of X, which is just the whole inverse image
of X under π and therefore contains the entire exceptional divisor E. So the irreducible
components of X ′ will be precisely the components of X∗ which are different from E.
Clearly, X ′ is the geometrically interesting object, whereas X∗ is easier to work with
algebraically.

It will be useful to provide an algebraic description of X ′ in terms of the ideal defining
X in W (the ideal of X ′ will be the strict or proper transform of the ideal of X, and X ′

will inherit this name).

14
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So let I be the ideal defining X in W . Assume in a first instance that I is principal, i.e.,
that X is a hypersurface given by a polynomial equation f = 0. Let f∗ be the pullback
of f to W ′. In the k-th chart, E is defined by xk = 0, and f∗ is again a polynomial. As
E is an irreducible component of X∗ (we shall always assume that Z is irreducible), f∗

must factor into a power of xk and another polynomial, say f ′, not divisible by xk,

f∗ = xr
k · f ′.

So r is the maximal power to which xk can be factored from f∗.

Exercise 1: Show that the exponent r of xk does not depend on the chart. It is called the
exceptional multiplicity of f∗ or X∗. Determine its precise value in terms of f .

Exercise 2: Verify your formula for r in case Z = V (x, y, z, u) in A
6 and

f = x33 + y21z13 + u35v11w11 + x8y8z8u8v8w8 ∈ K[x, y, z, u, v, w].

We can thus write globally f∗ = mr
E ·f ′ where mE = 0 is the reduced equation of E in W ′.

As we just stated, mE is locally in the affine charts a monomial in one of the variables.
Now it is (almost) evident that the polynomial f ′ defines X ′ in W ′. Said differently, the
geometric transform X ′ of X has equation f ′ = m−r

E · f∗ = 0 in W ′.

Exercise 3: Prove this with rigor over any ground field, including finite ones.

We call f ′ the strict transform of f . If X is not a hypersurface in W , things become more
complicated. Let again I be the ideal of X in W .

Fact: The geometric transform X ′ of X under blowup of W with center the ideal P is
defined by the ideal

I ′ =
⋃

s∈N

m−s
E · (I ∩ P s)∗.

This formula breaks with the leisurely going style we have gotten used to. So let’s have
a closer look at it: The intersection I ∩ P s simply means that you have to take all total
transforms (i.e., pullbacks) f∗ of elements f of I which vanish at least with order s along
Z; then factor from each of them the s-th power of (the equation of) the exceptional
divisor (you know that this is possible, because you have done exercise 1 above). Finally
take the union over s. The resulting ideal defines X ′. Not too difficult, isn’t it.

Exercise 4: Prove the fact.

Everybody will agree that the above description of I ′ is not very handy for practical
purposes. The curious reader may ask: “Does it suffice to consider here a generator
system of I?” – and the answer will be an exercise.

Exercise 5: Let I = (y2−xz, yz−x3, z2−x2y) = (f, g, h) ⊂ K[x, y, z] define the monomial
curve X in A

3 of parametrization (t3, t4, t5). Blow up the origin and prove that I ′ is
generated by the strict transforms f ′, g′ and h′ of f , g and h. What are the respective
exceptional multiplicities?

15
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Exercise 5a: By the way, does this blowup resolve X? If not, resolve it by further blowups.
Is the resolved curve transversal to the exceptional divisor? If not, achieve transversality
by still further blowups.

Exercise 5b, 5c, 5d: Compute the Nash modification of X, then the toric resolution and
finally the normalization.

Exercise 5e: Define directly the transform of a parametrized curve A
1 → W . Then

compute it in case of (t3, t4, t5).

Exercise 6: In exercise 5, we saw that the strict transforms of the three generators of the
defining ideal suffice to describe the geometric transform of the curve. Try to prove this
in all generality for the geometric transform of subvarieties X in A

n defined by ideals of
K[x1, . . . , xn].

Exercise 7a: Verify your proof in the case of the plane curve X in A
3 defined by x = 0

and y2−z2 = 0 (caution: the curve is embedded in three-space). What are the respective
multiplicities?

Exercise 7b: Verify your proof in the case of the curve X in A
3 which is the intersection of

the two surfaces S1 : x2 − y3 = 0 and S2 : xy − z3 = 0. Be sure to understand completely
how the geometric transform X ′ of X looks like, in particular, what are its irreducible
components. Then do the same for the intersection of the geometric transforms of the two
surfaces S1 and S2. How do S′

1 and S′
2 meet the exceptional divisor E? Finally, compute

in all cases the respective exceptional multiplicities.

Exercise 8: Show now that your proof from exercise 6 was erroneous. Then try to fix it
by modifying the original assertion on how to compute the strict transform of an ideal in
terms of generators.

Here is the answer: Let I be an ideal in K[x1, . . . , xn], and let f1, . . . , fq be a (local)
Macaulay basis of I, i.e., a generator system whose initial homogeneous forms (i.e., of
minimal degree) generate the ideal of all initial forms of elements of I. Then the strict
transform I ′ of I under the blowup of A

n in a regular center is generated by the strict
transforms of f1, . . . , fq:

〈f1, . . . , fq〉
′ = 〈f ′

1, . . . , f
′
q〉

with f ′
i = m−ordP fi

E ·f∗
i . You may want to check this on your own or look it up in chapter

III of Hironaka’s Annals paper from 1964. There, the statement is proven in the local
context for formal power series. Such generator system were originally called by Hironaka
standard bases. Only later, the notion of nowadays standard bases (with respect to initial
monomials selected by a monomial order on N

n) was introduced.

Standard bases served Hironaka to compute the strict transform of ideals, but more
decisively he used them to define his local resolution invariant νa(I) as the vector of
orders of the Taylor expansions at the point a of a minimal standard basis. To compare
the invariant before and after blowup, it was necessary to dispose also of a standard

16



Seven short stories on blowups

basis of the transformed ideal (which is not automatic) and to relate it to the one below.
To ensure this, he introduced the concept of reduced standard basis (whose existence
proof anticipated, at least implicitly, his famous division theorem). Nice thing: Reduced
standard bases are persistent under blowup.

The definition of the invariant suggests an immediate refinement: Instead of the vector of
the orders of the Taylor expansions of a reduced standard basis, take directly the vector
given by the initial monomials of the initial ideal of I with respect to a chosen monomial
order. The monomials will be listed increasingly. This vector can be made coordinate
independent by taking either generic or most specific (formal) coordinates [Ha 5]. It
represents a substitute for νa(I) and also for the more popular Hilbert-Samuel function.
Advantage. It is much easier to work with. And, by choosing different monomial orders,
it offers more flexibility and information.

Note: It seems to be an open problem how to describe the strict transform of a D-module
in terms of generators (where the strict transform is defined again by restricting first to
W \ Z and taking then an extension from W ′ \ E to W ′).

4. Properties of blowups

Blowups can be introduced axiomatically by a universal property. This goes as follows.
Let X be any scheme, and let E be a subscheme of X. Then E is a Cartier divisor in X
if, locally on X, E is defined by a non-zero divisor f in the structure sheaf of X: For any
a ∈ X there is an affine neighborhood U = Spec R of a in X such that E ∩ U equals the
subscheme V (f) of U defined by a non-zero divisor f ∈ R.

If X is regular, a Cartier divisor is just a (closed) hypersurface of X. If X is singular, the
notion is more subtle.

Exercise 1: Let E be one of the axes of the cross X = V (xy) in A
2. Is it a Cartier divisor?

Same question for E the origin.

Exercise 2: Let E be the reduced origin of X = V (xy, x2) in A
2. Show that E is not a

Cartier divisor.

Exercise 3: Any line through 0 inside the cone X = V (x2 +y2− z2) in A
3 is not a Cartier

divisor of X (though, locally at points different from the origin, it is).

Exercise 4: Are E = V (x2) in A
1 and E = V (x2y) in A

2 Cartier divisors?

It can be shown that a hypersurface E of X is a Cartier divisor of X if and only if it is
rare in X, i.e., if and only if X \E is (scheme-theoretically) dense in X. The examples of
the exercises show that this property depends in part on the location of E with respect
to the (embedded) components of X.

Here is the universal property of blowups. The blowup of X in a closed subscheme Z is
a morphism π : X ′ → X such that E = π−1(Z) is a Cartier divisor of X ′ and such that
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for any morphism τ : Y → X with τ−1(Z) a Cartier divisor in Y there exists a unique
morphism ρ : Y → X ′ with τ = π ◦ ρ.

If it exists, the blowup is unique (up to unique isomorphism). The existence can be
proven by different methods, constructing suitably the scheme X ′ and the morphism π.
For affine schemes, our method with the closure of the graph of the map defined by the
equations of Z does the job. There is a more general way to construct the blowup of X
as the Proj of the Rees-Algebra ⊕∞

k=0P
k where P denotes the ideal sheaf defining Z in

X.

The blowup of a regular scheme X in a closed hypersurface Z is an isomorphism, by
the universal property. This is no longer true if X is singular and/or Z is not a Cartier
divisor.

Exercise 5: Show that the blowup of the cone X = V (x2 − yz) in A
3 along the line

Z = V (x, y) is an isomorphism locally at all points outside 0, but not globally on X.

Exercise 6: Blow up the fat point X = V (x2) in A
2 in the (reduced) origin Z = 0. What

do you get?

Exercise 7: Blow up the subscheme X = V (x2, xy) of A
2 in the reduced origin.

Exercise 8: Blow up the subscheme X = V (xz, yz) of A
3 first in the origin, then in the

x-axis. At which points are the resulting morphisms local isomorphisms?

The universal property, as usual, is helpful when proving statements about blowups. The
most important is the commutativity of blowups with base change. Many special features
of blowups follow from this property.

Base change. Let π : X ′ → X be the blowup of X with center Z ⊂ X, let ϕ : Y → X be
a morphism (the base change) and let V = ϕ−1(Z) be the preimage of Z in Y . Consider

the fibre product Ỹ = Y ×X X ′ of Y and X ′ over X with induced diagram

Ỹ → X ′

↓ ↓

Y → X

where Ỹ → Y and Ỹ → X ′ denote the canonical projections. Let Y ′ be the Zariski-

closure of the preimage of Y \ V in Ỹ . Then the induced morphism τ : Y ′ → Y is the
blowup of Y along V .

We prove the base change property after a few remarks and exercises.

Special cases: Taking in the above situation as base change the inclusion Y ⊂ X of
an open subscheme, we find that blowups can be constructed from local data by gluing
blowups of open subsets: Given an open covering {Ui} of X the blowups of Ui with center
Zi glue to a global blowup of X if the Zi patch on the overlaps Ui ∩ Uj thus defining a
global center Z in X.
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Also, it follows that blowups are compatible with taking localizations at a point (or at a
closed subscheme) and completions. For a ∈ Z and a′ a point of E above a, say π(a′) = a,
we call the induced local morphism (X ′, a′) → (X, a) corresponding to the inclusion of
the local rings OX,a → OX′,a′ or their completions the local blowup of X at a and a′

with center Z.

Taking Y ⊂ X a closed subscheme of a regular scheme X and a center Z inside Y , we
recover the earlier notion of strict transform of Y : The strict transform of Y under the
blowup of X in Z ⊂ Y coincides with the blowup of Y in Z.

If Z is regular but not contained in Y , the intersection V = Z ∩ Y may be singular and
non-reduced. It then yields the blowup of Y in a center which is no longer regular.

Exercise 9: Take the cone Y : x2−yz = 0 in X = A
3 and as center the line Z : y = z = 0.

The intersection V = Z ∩ Y is the origin with ideal P = (y, z) in OY , the bars denoting
residues. Compute the blowup of Y in V (compare with exercise 4b of chapter II).

Exercise 10: Explain, why OX,a → OX′,a′ is an inclusion of rings. Then take X and Z
regular, a ∈ Z, and express the local blowup with respect to (suitably chosen) regular
systems of parameters of OX,a and OX′,a′ .

We may also use the base change property of blowups for field extensions.

Exercise 11: Let Y be the real points of the complex surface X : x4 − y4 − yz2 = 0 in A
3
C

.
Let Z ⊆ X be the curve x2 + y2 = z = 0. Compare the blowups of X in Z and of Y in
Y ∩Z. Then do the same for the center defined by the ideal (x2+y2, z)(x2+y2, xz, yz, z2).

Exercise 12: Consider L = F2 as a subfield of K = F32, and let X and Y be the surfaces
defined by x2 + y3 + z4 = 0 in A

3
K , respectively A

3
L. How many points have the blowups

of X and Y with center the origin? Do these resolve the surfaces in one blowup?

Exercise 13: Let K = C((t)) be the ring of formal Laurent series in one variable. Let
X : tx2 − y3 = 0 be the “cusp” in A

2
K . Blow up the origin and compute X ′.

Proof. The proof of the base change property goes by diagram chasing. So let ϕ : Y → X
be given and let τ : U → Y be a morphism for which τ−1(V ) is a Cartier divisor in
U . As (ϕτ)−1(Z) = τ−1(V ), the universal property of the blowup X ′ → X implies that
ϕτ : U → X factors through X ′ → X via some morphism ρ : U → X ′. By the universal

property of fibre products, we get from τ and ρ a morphism σ : U → Ỹ = Y ×X X ′. Its
composition with the projection to Y equals τ . We have to show that σ maps U into
Y ′. By construction, σ maps τ−1(Y \ V ) into Y ′. As τ−1(Y \ V ) is dense in U and Y ′ is

closed in Ỹ , we conclude that σ maps U into Y ′, thus getting the required factorization
of τ .

We constructed earlier, via graphs, the blowup π : Ã
n → A

n of affine space A
n in a closed

subscheme Z. It was done by choosing generators g1, . . . , gk of the ideal P defining Z in
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A
n, taking the morphism g : A

n\Z → P
k−1 with projective components (g1 : . . . : gk) and

the Zariski-closure Ã
n of its graph in A

n×P
k−1. So let us establish the universal property

for π : Ã
n → A

n. It will in particular show that, up to isomorphism, the construction
does not depend on the choice of the generators g1, . . . , gk.

We have already seen that E = π−1(Z) is a Cartier divisor, its affine equations were
gi = 0 (check this again accurately). Take a morphism τ : Y → A

n with τ−1(Z) a

Cartier divisor in Y . We wish to show that τ factors through π : Ã
n → A

n via a

morphism ρ : Y → Ã
n. The morphism τg : Y \ τ−1(Z) → P

k−1 lifts to a morphism
ρ̃ : Y \ τ−1(Z) → G into its graph G ⊂ Y × P

k−1, which, by construction, is contained in
the graph of g : A

n \Z → P
k−1. Taking closures on both sides and using that Y \ τ−1(Z)

is dense in Y , we get the desired morphism ρ : Y → Ã
n.

This proves the existence of the blowup of A
n in a closed center Z. From this, by the

base change property for subschemes, we get the existence of blowups of arbitrary affine
schemes with centers closed subschemes. The gluing property of blowups then implies
the existence of blowups for arbitrary schemes.

Let us summarize the advantages and drawbacks of our five equivalent definitions of
blowups.

Universal property: Very handy for proofs and general properties of blowups.

Rees-algebra and Proj: Most general explicit construction. Allows to read off global and
geometric properties of the blowup as regularity, normality, Cohen-Macaulayness, etc.
by applying methods of ring theory and commutative algebra. Very efficient if center is
monomial ideal. Somewhat unpleasant for local computations.

Closure of graph: Works for affine schemes. Geometrically intuitive. Allows explicit
computations for regular centers. Obsolete if the ideal of center has large number of
(complicated) generators.

Affine charts expression of morphism: Best suited for local computations if center is
regular. Allows often to choose privileged coordinates for which the local blowup is given
by a monomial substitution of the variables.

Equations of blowup: Works for affine schemes X ⊆ A
n and their blowup X ′ ⊂ A

n×P
k−1.

Both, affine or projective coordinates and equations may be taken.

We now come to more geometric properties of schemes and how they behave under blowup.

Exercise 14: Let X be a regular scheme, and Z a regular closed subscheme. Show that
the blowup X ′ of X along Z is again regular.

Blowups preserve also normal crossings singularities, provided the center is sufficiently
transversal. We make this more precise. Two subschemes X and Z of a regular ambient
scheme W are said to be transversal if the scheme defined by the product of the ideals
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of X and Z in W is a normal crossings scheme (we do not take the intersection of the
ideals).

Exercise 15: Show that a regular subscheme Z of a regular scheme X meets X transver-
sally.

Exercise 16: Let X be a surface in A
3 consisting of two regular components X1 and X2

meeting transversally. Let Z be a regular surface in A
3 which is transversal to X1 and

X2. Show that Z need not be transversal to X.

Exercise 17: Let X be a normal crossings subscheme of A
n, and let Z be a regular closed

subscheme which is transversal to X. Show that the blowup X ′ of X along Z is again a
normal crossings scheme (cf. fig. 10).

Figure 10: Tülle, non-normal crossings surface.

Exercise 18∗: Let X be a mikado scheme in A
n, i.e., a scheme which is a union of regular

components all whose intersections are regular (scheme theoretically). Example: A finite
union of linear subspaces Vi in A

n so that Vi \
⋃

j 6=i Vj is dense in Vi for all i. Show that
there is a sequence of blowups over A

n which transforms X in a normal crossings scheme
(taking always total transforms). Write a program for this and determine its complexity.
Compare with the papers of De Concini, Procesi [DCP] and Feichtner, Koslov [FK].

Exercise 19: Let X ′ → X be the blowup of any X in a chosen ideal P . Find three other
ideals which yield the same blowup.

Exercise 20∗: Let π : (W ′, a′) → (W,a) be a local blowup of a regular scheme W along a
regular center Z (you may choose first Z to be the point a). It should be clear what is
meant by a local flag F of regular subschemes in W at a. Assume that Z is transversal
to F (in the obvious sense). Show that F lifts in a natural way to a flag F ′ in W ′ at a′.
(Hint: Do first the point blowups of A

2 and A
3 in the case where the flags are given by

coordinate subspaces. You may wish to consult [Ha 5] for the general case.)
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Exercise 21: Now choose local coordinates on W at a for which the local blowup from
before is given by a monomial substitution of the variables (you may work in the comple-
tions of the local rings). Show that the coordinates can be chosen so that the flag in W is
given by coordinate subspaces. Then determine the equations of the induced flag in W ′.

There are two other important existential properties of blowups: The composition of
blowups is again a blowup (in a more complicated center), and any birational projective
morphism is a blowup. We refer to Bodnár’s paper [Bo] for the first and to Hartshorne
[Hs, p. 166] for the second.

Exercise 22: Blow up A
3 in the normal crossings center Z of ideal P = (xy, z), getting a

scheme Ã
3 with an isolated singularity (locally, it is a three-dimensional cone). Show that

the blowup of this point in Ã
3 yields a regular scheme. Then find an ideal in A

3 which,
when taken as center, defines the composition of the two blowups. (Hint: you may find
an appropriate candidate for the ideal in one of the exercises of the other chapters.)

Exercise 23: Same as before with the irreducible center P = (x2 − y2 − y3, z).

Exercise 24∗∗: Let P be an ideal in X = A
n, inducing the blowup π : X ′ → X. Determine

explicitly an ideal R in X such that the blowup τ : X ′′ → X of X in the product ideal
P · R yields a regular scheme X ′′ and such that τ factors through π, i.e., τ = πρ with
ρ : X ′′ → X ′. In particular, the morphism ρ will define a resolution of the singularities of
X ′. (A decent solution to exercise 24 in non-trivial cases is probably worth a publication
in an equally decent journal.)

5. Improving singularities by blowups

One of the roles of blowups in algebraic geometry is to eliminate successively the singu-
larities of a given variety. As this cannot be done by just one blowup (actually, it could
be done, it is just that we don’t know how to choose a suitable center), a whole series
of different blowups is necessary. Some invariant shall document that the singularities
become better with each blowup. This relies on a numerical measure of the complexity of
a singularity. We therefore ask: Which number tells us the “distance” of a singular point
from being a non-singular point? And: Does this number drop under blowup?

There are many proposals for such a measure, and each fullfils the expectation of certain
objectives. In our context, we shall confine in a first instance to measures which, at least,
do not deteriorate under blowup. This is not yet sufficient for the induction argument.
Nevertheless, it is an important step towards it, because in most cases the measure will
drop, and the remaining cases are so special that they can be treated by another type of
induction.
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A suitable numeric measure will be called a resolution invariant. By this we mean that
the measure belongs to a well ordered set Γ, typically N

n, that it is attached in an upper-
semicontinuous way to each point a of a variety X, and that it does not depend on any
choices: It is invariant under local isomorphisms of X at a. Said differently, it depends
only on the local ring OX,a or its completion. This is sometimes expressed by saying that
the invariant is intrinsic. Morever, if the center of blowup is chosen suitably (this will
have to be specified), it decreases with respect to the ordering on Γ.

We have already seen in the exercises that regular varieties remain regular under blowup
if the center itself is regular and transversal to or included in the variety. Which number
expresses regularity? Of course, this is a local notion. By the implicit function theorem,
a point a on a hypersurface is regular, if and only if the order of vanishing of the defining
polynomial f at a is 1. This order is just the order of the Taylor expansion of f at a,
which we will denote by ordaf .

For non-hypersurfaces the situation is trickier: Measuring regularity involves the dimen-
sion of the vartiety as well as the jacobian matrix of the defining equations. Hironaka
used his vector ν mentioned in the last chapter. Also the local multiplicity or the Hilbert-
Samuel function can be considered as invariants. For the sake of simplicity, we shall
restrict in the sequel to hypersurfaces. Non-hypersurfaces are technically a little bit more
complicated, but all the interesting phenomena already appear for hypersurfaces. This
justifies our restriction.

Observation: A regular hypersurface remains regular under blowup if we consider its
strict transform. This does not tell us how the transform meets the exceptional divisor, in
particular, if the intersection is transversal. We could instead consider the total transform
of the hypersurface, because it contains also this piece of information. But: The total
transform will never be a regular variety, even if the strict transform is regular. The best
we can hope for is to achieve a normal crossings singularity.

Now, it’s not difficult to prove that if we blow up a regular center which is (sufficiently)
transversal to the variety, a normal crossings singularity has total transform which has
again only normal crossings singularities (see exercise 17 in chapter IV). This suggests to
measure at a singular point instead of the distance to regularity the distance to having a
normal crossings point. Algebraically, this is the distance of an ideal of polynomials from
being a monomial ideal, possibly in other (formal) coordinates.

Quandary: A significant and genuine invariant indicating the distance of a singularity
from having normal crossings at a given point has not been discovered yet.

So there is homework to do. Be aware that it may not be easy: The invariant should be
intrinsic, upper-semicontinuous, and it should not increase under blowup (if the center
is chosen with care). A first candidate goes as follows: Factor from your polynomial the
monomial of maximal degree, over all choices of coordinates. Then take the order of the
remaining factor at the point in question.
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This is what (almost) everybody does, though it is rather clumsy. Essentially, it boils
down to considering the order of the strict transform of the hypersurface. Main drawback:
It does not work well in positive characteristic, cf. [Ha 1, Ha 4]. End of observation.

By lack of any better, we shall stick to the order of a polynomial and of its strict transform
as our main (though very rough) measure of singularity. And the question is: Does it
never increase under blowup? Some examples will lift the fog.

Example 1: The plane curve X : xm − yk = 0 with m < k of order m at 0. We blow
up the origin. The tangent cone of X (given by the homogeneous form of lowest degree
of the defining polynomial) at 0 is the y-axis x = 0 (would not hold for m = k). We
are therefore led to consider in the exceptional divisor E only the y-chart, and there the
point x = 0, i.e., the origin (prove this with care, cf. exercise 4 of chapter I). The strict
transform X ′ has equation xm − yk−m = 0 there. Ah! If m < 2k, the order has dropped
to k − m < m, and otherwise it has remained constant equal to m. Easy.

Example 2: The surface X : xm − ykzℓ = 0 in A
3 with m ≤ k and ℓ of order m at 0.

Which blowup is suited? With center the origin? Or a line? Let us do both.

First the origin. The tangent cone of X at 0 is the yz-plane x = 0 (because of m < k+ℓ), it
hence suffices to consider the y- and the z-chart of the blowup and there only the points
of E with x-coordinate equal to 0. In the x-chart, X ′ does not meet the exceptional
divisor. And outside of E, the order must have remained the same since the blowup is
an isomorphism there. By symmetry, we only consider the y-chart with strict transform
X ′ given by xm − yk+ℓ−mzℓ = 0. As k + 2ℓ > 2m, the order has remained constant equal
to m at the origin of E. Observe that X ′ intersects E in the y-chart along the z-axis
and has order m at each of its points. This shows that at no point of E the order has
increased. Fine!

So let’s blow up the line x = y = 0, i.e., the z-axis. In the y-chart, the equation of X ′

is xm − yk−mzℓ = 0 since m ≤ k. The order has remained constant at the origin and
did not increase at the other points (check this carefully at all points of the chart and
determine the respective orders). Fine again! What about the x-chart? It suffices to look
there at the origin, the other points being covered already by the y-chart. The equation
of X ′ is 1 − yk−mzℓ = 0 and X ′ does not pass through the origin of this chart (the order
is 0 there). Done!

Example 3: As the exercise-experienced reader already suspected, these examples are
misleading. Take the preceding surface X : xm−ykzℓ = 0 but with exponents k < m ≤ ℓ.
We assume that m ≤ k + ℓ so that X has order m at 0. We blow up the z-axis x = y = 0.
In the x-chart we get X ′ defined by xm−k − ykzℓ = 0 of order ≤ m. In the y-chart the
equation of X ′ is xmym−k−zℓ = 0. The order at the origin equals the minimum of 2m−k
and ℓ. As both 2m − k and ℓ are larger than m, the order has increased. Bad news!

But why did this happen? There is no apparent reason for the increase. But our algebraic
manipulations tend to hide the internal structure of the singularities.
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Zariski was one of the first – if not the first – to notice and understand this phenomenon.
Actually, it is not very complicated: In examples 2 and 3, compare the behaviour of X
along the points of the z-axis Z, which was our chosen center. The relative size of the
exponents k, ℓ and m comes into play.

If m ≤ k, ℓ, the order of X along Z is constant equal to m, because f = xm−ykzℓ belongs
to the m-th power of the ideal (x, y) defining Z (it suffices to have k ≥ m). If k < m ≤ ℓ,
this is not the case. Indeed, the order at 0 is m but at points of Z outside the origin it is
k < m. We have a drop of the order when leaving the origin.

We look closer at the total transform X∗ of X at the origin of the y-chart. In both cases
it is given by f∗ = xmym − ykzℓ = 0. The maximal power of the exceptional variable y
which we can factor from f∗ depends on the relative size of k and m. If k < m we can
factor only a power yk whose exponent k is smaller than the order m of f at 0. Therefore,
the strict transform f ′ has order which is larger than this order. If k ≥ m, we can factor
the whole power ym.

You may notice that we saw this type of question already in exercise 1 of chapter III.

Exercise 1: Do example 3 with center the origin.

Fact: The order of a variety does not increase at any point of its strict transform if we

blow up a regular center along which the variety has constant order. In particular, regular

points remain regular.

We shall establish the fact for hypersurfaces only. Let Z ⊂ X be the center, X defined
in W = A

n by f = 0, and ordaf = const for a ∈ Z. Let π : W ′ → W be the induced
blowup, and X ′ the strict transform of X in W ′. Choose a point a ∈ Z and a point a′

above a, i.e., so that π(a′) = a. Set o = ordaf and o′ = orda′f ′. We wish to prove that
o′ ≤ o.

This is done by specifying very nice coordinates at a and a′. With these, the proof
becomes almost automatic, so that the details can be grouped in a series of exercises.
We may work in the completion of the local rings of W and W ′ at a and a′, because
completion does not alter the order. Local shall always mean formally local, i.e., working
in K[[x1, . . . , xn]].

Exercise 2: Choose local coordinates x1, . . . , xn at a so that a = 0 and Z is defined by
x1 = . . . = xk = 0, where k = codimW Z.

Exercise 3: Permute the first k coordinates so that a′ belongs to the xk-chart of the
blowup W ′.

Exercise 4: Apply a lower triangular linear coordinate change in W (thus preserving the
ideal defining Z in W ) so that a′ becomes the origin of the xk-chart.

Exercise 5: Show that in these coordinates, the local chart expression of π at a′ and a is
given by a monomial substitution of the variables (the usual one, see chapter III).
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Exercise 6: Show that in the coordinates chosen at a, the expansion of f has order ≥ o
with respect to the variables x1, . . . , xk (i.e., belongs to the ideal (x1, . . . , xk)o).

Exercise 7: Use this to show that the exceptional monomial xo
k can be factored from the

total transform f∗ of f .

Exercise 8: Now use the fact that (x1, . . . , xk)o is the maximal power to which f belongs
to show that f ′ has order at most o with respect to all variables, i.e., f ′ does not belong
to (x1, . . . , xn)o+1.

Exercise 9: Conclude that o′ ≤ o, say orda′f ′ ≤ ordaf .

Question: This proof is very explicit, though not really conceptual. Where did you use
that the order of f is constant along Z?

Exercise 10: For those familiar with the Rees algebra of blowups, find a less computational
and more direct proof of the fact. Does it work also for singular centers?

Exercise 11: We have already seen that the total transform of a normal crossings singu-
larity has again normal crossings, provided that the center is sufficiently transversal to
the variety. Prove this again by exhibiting an invariant which measures the distance from
being normal crossings and which does not increase under blowup.

Exercise 12: You may choose at your taste 27 different lines and 15 different planes in
A

3, all passing through the origin, no line contained in a plane. Then modify their union
by blowups and taking total transforms until you get a variety with normal crossings.
Intuitively, it is clear that this should work in finitely many steps. So write a computer
program for it. What is the minimal number of blowups (with regular centers) needed?

6. The induction argument of resolution

Starting with this chapter, pace and level will go up. But before doing so, one and a half
examples.

Example 1: Once again our lemon-tree x2 − y3z3 = 0. The order at 0 is 2, and this is also
the case at the points of the y- and z-axis. The locus of maximal order is therefore the
cross formed by these two axes. Hesitating which axis would be better as our center of
blowup we take, to be on the sure side, their intersection the origin 0. The point blowup
gives in the y-chart the transform x2 − y4z3 (the z-chart is symmetric, and the x-chart is
irrelevant). The order has remained constant equal to 2 at the origin of the y-chart, not
too bad, but the polynomial itself has become worse as the degree of the monomial in y
and z has increased. How to build up an induction on this? Unclear.
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Example 1 1
2 : Hardly enchanted by the starter, we opt for an uncommon way to pursue:

We complicate the example, taking instead the hypersurface X in A
6 defined by x3 −

yαzβuγvδwε = 0. The exponents α, β, γ, δ and ε may be quite arbitrary and are only
subject to α + β + γ + δ + ε ≥ 3 so as to have a singularity of order 3 at 0 (the actual
value 3 does not matter here). Let us not care about symmetry when choosing the center.
We just take any regular subvariety of the locus L of order 3 of f . But we require that
it has maximal possible dimension among all regular subvarieties of L. By the shape of
L in the present situation, Z will be a coordinate subspace. To fix ideas, assume that we
choose for Z the vw-plane of equations x = y = z = u = 0.

There are four charts. The x-chart can be discarded by what we have already learned,
and up to a permutation we may restrict our attention to the y-chart. There, the total
transform X∗ is defined by x3y3 − yα+β+γzβuγvδwε = 0. The strict transform is given
by factoring the maximal power of y, which is the minimum of 3 and α + β + γ. As X
has, by the very choice of the center, order 3 along Z, we have α + β + γ ≥ 3 and the
minimum is 3. We get X ′ of equation x3 − yα+β+γ−3zβuγvδwε = 0, which we write as

x3 − yα−(3−β−γ)zβuγvδwε = 0.

Well, where is the point in all this? It is as follows, and this will be decisive: Up to
now, we have not used the hypothesis that Z has maximal possible dimension in L.
This assumption implies that the three-dimensional coordinate-subspace S defined by
x = y = z = 0 is not contained in L. Hence f does not have order 3 along S, which,
in turn, signifies that β + γ < 3. Therefore, in the equation of X ′, the degree of the
monomial yα−(3−β−γ)zβuγvδwε has decreased. Of course, this is a general phenomenon,
which we now state explicitly.

Exercise 1: Let f = xm−yα1

1 · · · yαn

n = xm−yα be a binomial with |α| = α1+. . .+αn ≥ m.
Then ord0f = m. Let L be the locus of points a where ordaf = m, and let Z be a
coordinate subspace of L of maximal possible dimension. Blow up Z in W = A

1+n with
strict transform f ′. Then at all points a′ of the exceptional divisor E either the order of f ′

has dropped, or the affine chart expression of f ′ is again a binomial f = xm−y
α′

1

1 · · · y
α′

n

n =

xm − yα′

with a monomial yα′

of total degree strictly smaller than the degree of yα, say
|α′| < |α|.

Exercise 2: Conclude from this that finitely many blowups in maximal dimensional centers
succeed in decreasing the order of binomials f as above.

Neglecting in this argument symmetry considerations is harmless as long as we work
locally at the point in question (though the equivariance of the resolution with respect
to group actions, say symmetries, will be lost). Globally, the center Z you may have
chosen may return after some promenade inside X to the respective point from a different
direction and thus form a normal crossings center there (recall that the center must be
closed, cf. figure 11). Therefore we would have a singular center. This problem can
be circumvented by applying first auxiliary blowups which help to separate the local

27



H. Hauser

components of possible (big) centers Z. For the moment, we do not discuss this topic any
further.

Exercise 3: Construct a surface X in A
3 whose locus L of order 2 is the node Y :

x2 − y2 − y3 = z = 0. Show that blowing up A
3 in Z = Y produces a singular variety.

Next, blow up the origin Z = 0 in A
3, and show that the locus L′ of the strict transform

X ′ has become either regular or a union of regular components intersecting transversally
(produce examples of X for both occurences). In the second case, show that there exists
a resolution of X (or, equivalently, of X ′) which preserves all local and global symmetries.

Exercise 4: Is it possible to equip Y with a non-reduced structure Y ′ so that the blowup
of A

3 with center Z = Y ′ is regular?

Figure 11: Quaste, cartesian product of cusp with node.

Let us look more closely at the order function: Given a variety X in a regular ambient
space W , we stratify X according to the local order o = ordaI of the defining ideal
I = IW (X) of X in W . Similarly as for hypersurfaces, ordaI denotes the maximal power
of the maximal ideal of OW,a at a which contains I. More generally, for S closed, we
define ordSI as the maximal power of the ideal IW (S) of OW defining S in W which
contains I. It can be shown that ordSI = mina∈S ordaI.

Note that, locally at a point a, the variety may be singular though the order at a is 1.
This happens when X is not minimally embedded locally at a. In particular, the order
depends on the embedding of X in the ambient space W . (We are somewhat imprecise
of what we understand by locally at a point: To avoid ambiguities and delicacies, you
may always take the completed local rings of the variety and its ambient space. This is
ok because the order is invariant under completion.)

As the order is an upper-semicontinuous function (you may convince yourself by some
examples or try to prove it rigorously), the stratum top(X) of points where the order
attains its maximum is closed. We call it the top locus of X. Recall here that a function
on a topological space with values in a totally ordered set is upper-semicontinuous if the
subsets of points where the function takes values ≥ a given value are closed.
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The top locus can be singular, so we cannot take it directly as center. Instead, we
may choose any regular closed subvariety Z of top(X), preferably of maximal possible
dimension. We have seen before that this choice may be non-canonical, for instance in the
case where X has a symmetry so that top(X) has two regular components intersecting
transversally. Then it will be up to us to choose one of these components. This problem
of choice may appear locally as well as globally.

In the published proofs of resolution in characteristic 0, this ambiguity is resolved by
prescribing ab initio a uniquely determined center, similarly as in exercise 3 from above.

So let the center Z inside top(X) be chosen, take the induced blowup π : W ′ → W of the
ambient space and consider the total transform X∗ of X in W ′. Let a be a point of Z,
and let a′ be any point of E = π−1(Z) above a. For reasons to be explained later, we set
o = ordaX = ordZX and define the weak transform Xg of X as the ideal Ig = I−o

E · I∗.
Here, I∗ is the total transform (= pullback) of I in W ′ and IE is the principal ideal
defining E in W ′. If you wonder whether the weak transform is well-defined (i.e., that
the ideal Io

E can indeed be factored from I∗), you missed to do one of the earlier exercises.

Exercise 5: Determine the geometric difference between weak and strict transform. Ex-
hibit this difference in three significant examples. After that you should have recognized
that working algebraically with the weak transform is more pleasant than with the strict
transform.

Fact: The order of the weak transform does not increase under blowup,

orda′Ig ≤ ordaI

for a ∈ Z ⊂ top(I) and a′ ∈ E.

The proof is similar to the hypersurface case.

Observation 1: At points a′ where orda′Ig < ordaI induction applies to deduce that after
finitely many steps the order of the weak transform has dropped to 0.

Exercise 6: Why 0 is better than 1?

Having order 0 implies that the total transform of X has become a normal crossings
variety supported by the exceptional components, provided the centers have always been
choosen transversal to the exceptional locus (so that the next exceptional locus is indeed
a normal crossings divisor).

Observation 2: At points a′ where orda′Ig = ordaI induction does not apply. But:
These equiconstant points are rare. In fact, they always lie inside a regular hypersurface
F = H ′ ∩E of E, where H ′ is a regular hypersurface in W ′ transversal to E (cf. exercise
4 of chapter I).

This can be seen by relating the equiconstant points to the tangent cone of X along Z.
Actually, if τ is the minimal number of variables necessary to define the tangent cone of
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X at a, the equiconstant points lie inside a regular subvariety of codimension τ in the
fiber Ea ⊆ E of π over a.

Exercise 7: Prove this.

What does this help, if there do exist points in X ′ where the order did not decrease? How
to apply any other type of induction?

To attack and overcome this intricacy, we consider two examples, a trivial and an almost
trivial one.

Example 2: Let X be a fat point in A
1, say the origin, defined by xm = 0 (from now

on, we will allow also non-reduced varieties). You would think there is not so much to
do with this fat point geometrically, but algebraically it is of some interest. Let’s blow
up the (reduced) origin in A

1. This is an isomorphism π : A
1 → A

1, with E = Z = 0.
Nevertheless, the weak transform Xg of X differs from X, because it is defined by the
ideal I−m

E · I∗ = (x−mxm) = (1). So Xg is empty and the order has dropped to zero.

Conclusion: In ambient dimension 1, there arise no equiconstant points.

Example 3: What about dimension 2, say plane curves? We take again xm − yk = 0
with k ≥ m, of order m at 0. We blow up the origin. If k < 2m, the order drops at all
points of E ∼= P

1. If k ≥ 2m there is precisely one point in E where the order remains
constant, namely the origin of the y-chart. There, the equation of the weak transform is
xm − yk−m = 0. The exponent of the second monomial has dropped. How to profit of
this drop?

The answer is to descend to the one-dimensional case from before. Intersect X in A
2

and Xg in the y-chart of W ′ with the hyperplane x = 0. You get the ideals I1 =
(yk) respectively I ′1 = (yk−m) in one-dimensional affine space A

1. There, the order has
dropped. Nevertheless, this could just be by chance.

Now comes the clue: Possibly, I ′1 is the transform of I1 under the blowup of 0 in A
1 as in

example 1. Then the drop would have been forced, and hopefully lend itself to a similar
argument in higher dimensions.

Obviously, I ′1 is not the strict transform of I1 (which is the ideal (1)) nor the total
transform. But I ′1 can be obtained from the total transform I∗1 of I1 by factoring a
prescribed power of the exceptional component. More precisely, I ′1 = I−m

E · I∗1 with
m = ordZI and IE the principal ideal of the exceptional divisor E. Observe that m ≤
ord0I1 = k. This leads to defining the controlled transform I ! of an ideal I with respect
to c ∈ N under the blowup with center Z more generally as I ! = I−c

E · I∗ for any control

c ≤ ordZI.

Let us conceptualize this very rough proposal in a diagram for ideals I in a regular ambient
space W . Let W ′ → W be the blowup with center Z contained in top(I). Let H be a
hypersurface of W containing Z, with induced blowup H ′ → H.
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Exercise 8: Show that H ′ is the strict transform of H under the blowup W ′ → W .
Moreover, it coincides with the weak transform of H.

Assume now that we dispose of a sophisticated construction which associates to I an
ideal I− in H, i.e., in one variable less. We will work here always locally at a given point
a ∈ Z ⊂ H. For plane curves this was just the passage from I to I1. The commutative
diagram

W ′ ⊃ H ′

↓ ↓

W ⊃ H

gives rise to an incomplete diagram

Ig
 I?

?

↓ ↓

I  I−

Here, the lower curly arrow denotes the descent in dimension, associating to I the ideal
I−. In the upper horizontal row, we would like to replace I?

? in the upper right corner by
the ideal (Ig)− associated to Ig. Similarly, in the right vertical column, we would like to
replace I?

? in the upper right corner by the controlled transform (I−)! of I−. So we have
two choices for I?

? to complete the diagram, and we don’t know which one is better. Best
would be if we had equality (Ig)− = (I−)!, because then the diagram would commute.

Unfortunately, equality does not hold. In general, the two ideals have nothing to do with
each other, (Ig)− 6= (I−)!.

Exercise 10: Verify this by a concrete example.

Yet another clue: Recall that in E, we are only interested in equiconstant points a′, say
orda′Ig = ordaI. Locally at such points, there exists a hypersurface H ′ in W ′ which
contains all equiconstant points. As H ′ is transversal to E, its image H in W under π is
again regular, locally at a.

Fact: Choosing such H and H ′, then, for any equiconstant point a′ above a, we have the

desired equality (Ig)− = (I−)!.

Hence, at equiconstant points, we may write I ′ for Ig and I ′− for (Ig)− = (I−)! and get
the commutative diagram

I ′  I ′−

↓ ↓

I  I−

This is really very pleasant. Therefore we repeat it: If the order of the weak transform
did not decrease, we may descent in dimension if we allow there the controlled transform
instead of the weak transform. In H and H ′, we may apply induction on the dimension on
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any assertion we would like to prove – provided it holds in dimension 1 and is compatible
with descent.

This principle is called – for obvious reasons – cartesian induction.

The descent in dimension can be performed in various ways and has been a common
procedure in resolution of singularities since the work of Jung. Geometrically, one often
takes a generic projection to a hypersurface and there the discriminant, see the survey
of J. Lipman [Lp 3] for more details. Algebraically, Hironaka introduced the coefficient
ideal as an ideal in one variable less. Although it is less suggestive than the discriminant
it is easier to work with. All known proofs in characteristic 0 and for arbitrary dimension
use one or the other form of coefficient ideals, cf. [EH] or [EV].

Encouraged by the perspective of nice commutative diagrams we apply induction on the
dimension to show that we can resolve I− inside H by a sequence of blowups with centers
in H. If we are lucky, the centers are also contained in top(I) so as not to increase the
order of I. Stop! The ideal I− does not pass in this process to its strict or weak transform,
but to its controlled transform, and, as we have seen many times, its order may increase.

This is not a big deal, in view of what we learned in the 1.5 introductory examples of
this chapter. There, the ideal I− corresponded to the monomial yα, and we saw that
once I− is a monomial (if defined correctly), the drop of the order of I can be forced
by choosing centers of maximal dimension. So, in the general situation, we will try to
transform I− into a monomial – instead of making the associated variety regular. With
this new objective in mind, taking the controlled transform of I− makes no harm: we
just factor after each blowup the maximal exceptional power Ir

(E∩H′) from I !
−, so that

the remaining factor is the weak transform of I−. Now, induction applies: Its order will
drop eventually to 0. Therefore, vice versa, the final controlled transform of I− will have
become a monomial.

In the course of this argument it is essential that the centers are chosen transversally
to the already existing exceptional locus, otherwise the normal crossings property of the
exceptional divisor is not ensured.

Pause: Before proceeding, please recapitulate what was said, read the last paragraphs
again in order to digest well the various aspects of the reasoning.

Exercise 11: Check whether the reader followed the preceding advice.

Why do we need a break here? Simply, because there is another obstruction to come, the
most serious one. If this (last) one would not occur, we would have outlined a proof of
resolution of singularities in arbitrary characteristic, despite the fact that characteristic
p > 0 is still wide open.

So where is the trap we have overseen? It lies in the choice of the local hypersurface H.
We have found H by projecting the hypersurface H ′ of W ′ (which is not unique) down
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to W , getting a regular hypersurface H there. Then we take I− in H and lift it to H ′,
getting I !

−.

Now, most probably, the order of I will not drop also in the subsequent blowup, say
W ′′ → W ′. At least, this cannot be excluded and actually does happen. So the argument
and the construction of the commutative diagram with the descent in dimension have to
be repeated. For a′′ an equiconstant point for I ′ in W ′′, choose H ′′ in W ′′ at a′′ and
project it to a regular hypersurface in W ′ containing the center Z ′ chosen there. This
hypersurface of W ′ will in general be different from H ′, so that the right vertical columns

of our diagrams do not match. In W ′ we will have to choose a new hypersurface H̃ ′, and
consequently we lose any control on I ′−, which may switch to anything under the change.
That this really happens show examples in positive characteristic.

Lucky stroke: It is not completely clear who was the first to observe that in characteristic

zero this change of hypersurfaces is superfluous: There exists a hypersurface H in W at
a whose successive transforms H ′, H ′′, ... under blowup in centers Z ⊂ H, Z ′ ⊂ H ′, ...
contain all equiconstant points a′, a′′, ... above a. Wonderful!

Such hypersurfaces are called hypersurfaces of maximal contact by Hironaka, and Tschirn-

haus transformations by Abhyankar. There is an explicit construction of them.

Abhyankar says that the concept appears first in a paper of his with Zariski, and that
it has been discussed, investigated and exploited during a four day visit of Hironaka and
Nagata to his house at the end of the fifties. Quote: “Hironaka did not stop asking
questions, and if I possibly understood better the situation at the beginning, I am not
sure if it was not him who did at the end.”

That’s it! The way was open to the proof of resolution of singularities in any dimension
over fields of characteristic zero. The rest are “technicalities”.

In the next and thus last lecture we will give the precise statement for the resolution of
singularities in characteristic zero. The proof we shall present is based on the concept of
mobiles and setups as developed by Encinas and the author in [EH]. These two data allow
to define the resolution invariant elegantly and are then used to establish the required
induction.

7. The resolution theorem and its proof

Let X be a reduced singular scheme. A strong resolution of X is, for every closed em-
bedding of X into a regular ambient scheme W , a proper birational morphism εδελβεις
from a regular scheme W ′ onto W subject to the following conditions.

Explicitness. Eδελβεις is a composition of blowups of W in regular closed centers Z
transversal to the exceptional loci.

Embeddedness. The strict transform X ′ of X is regular and has normal crossings with
the exceptional locus in W ′.
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Excision. The morphism X ′ → X does not depend on the embedding of X in W .

Equivariance. Eδελβεις commutes with smooth morphisms W− → W , embeddings
W → W+, and separable field extensions.

Equivariance implies that Eδελβεις is an isomorphism outside the singular locus of X
and commutes with group actions. The resolution commutes with open immersions,
local and global isomorphisms and taking cartesian products with regular schemes. The
smooth morphisms of equivariance need not be defined over the ground field. Passage to
the completions implies resolution of formal schemes. One may add effectiveness: The
centers are equal to the top locus of an upper-semicontinuous invariant ia(X) on W given
by the local rings of X.

Theorem. (Hironaka 1964) Reduced schemes of finite type over a field of characteristic

zero admit a strong resolution.

The existence of resolutions satisfying explicit- and embeddedness was established by Hi-
ronaka. His aproach was in part motivated by earlier work of Zariski and Abhyankar.
Villamayor in 1989 and 1991 and Bierstone-Milman in 1997 described constructive res-
olution algorithms satisfying in addition excision, equivariance and effectiveness. The
resolution process of Villamayor was implemented in Maple and Singular by Bodnár and
Schicho in 2000. W lodarzcyk simplified in 2005 the descent in dimension by taking a
different notion of coefficient ideal. Weak resolution theorems in characteristic zero have
been established with different methods by Abramovich-de Jong, Abramovich-Wang and
Bogomolov-Pantev.

In the following, we shall present an outline of the proof for the existence of strong reso-
lution in characteristic 0 based on the concept of mobiles. This notion was introduced by
Santiago Encinas and the author in [EH]. Mobiles allow to clarify substantially the struc-
ture of the induction argument of the various resolution proofs. Essentially all nowadays
existing proofs (depending on the counting this is a theme with up to eleven variations)
use explicit or implicitly mobiles – the only difference being that the transformation rules
of the mobile under blowup may vary.

We wish to emphasize that all constructions and arguments below are very much inspired
by the earlier proofs of Villamyor and Bierstone-Milman, which in turn, rely on Hironaka’s
work and ideas.

Throughout, we fix a regular ambient scheme W , always assumed to be of finite type
over a field. By a divisor in W we shall mean an effective Weil divisor D. A closed
subscheme D of W has normal crossings if it can be defined locally by a monomial ideal.
The subscheme V meets D transversally if the product of the defining ideals of V and D
defines a normal crossings scheme.

A stratified ideal in W is a collection of coherent ideal sheaves each of them defined on
a stratum of a stratification of W by locally closed subschemes. A stratified divisor is
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defined by a stratified principal ideal. All ideals and divisors will be stratified without
notice, except if said to be coherent.

A shortcut of a normal crossings divisor M in W is a divisor N obtained from M by
deleting on each stratum of the underlying stratification of M some components of M .
The divisor M is labelled if each shortcut N comes with a different non-negative integer
lab N , its label. The empty shortcut has label 0.

A handicap on W is a sequence D = (Dn, . . . ,D1) of stratified normal crossings divisors
Di of W .

A singular mobile in W is a quadruple M = (J , c,D,E) with J a coherent nowhere zero
ideal sheaf on W , c a non-negative constant associated to W and D and E handicaps
in W with D labelled and E reduced. We call c the control of J , and D and E the
combinatorial and transversal handicap of M.

A strong resolution of a mobile M = (J , c,D,E) in W with J a nowhere zero ideal in
W is a sequence of blowups of W in regular closed and equivariant centers Z transversal
to the exceptional loci such that the ideal J ′ of the final transform M′ = (J ′, c′,D′, E′)
of M in W ′ (as defined later) has become the locally principal monomial ideal defining
D′

n in W ′.

Theorem. (Encinas-Hauser 2002) Singular mobiles defined over a field of characteristic

zero admit a strong resolution.

This result implies the result of Hironaka by taking for J the ideal defining X in W ,
as control c the supremum of the orders ordaJ of J on W and empty handicaps D
and E. Varying suitably the definition of the transform of a mobile, different resolution
algorithms can be obtained.

The resolution of mobiles is found by associating to the mobile M in W and to each point
a ∈ W a local upper-semicontinuous invariant ia(M) in a well ordered set Γ. Its top locus
top(M) is shown to be closed, regular and transversal to the divisors of E. Taking it as
the center of blowup in W , one obtains the transform M′ of M in W ′. It is shown that
for a ∈ Z and M unresolved at a the invariant drops at any point a′ ∈ W ′ above a,

ia′(M′) < ia(M).

It reaches therefore in finitely many steps its minimum. This, in turn, implies that the
final transform of the mobile is resolved in the sense defined above.

The invariant ia(M) will be a vector of non-negative numbers defined through a local
analysis of the mobile. We shall therefore work from now on with the stalks of the ideals
at a given point a ∈ W , denoted by roman characters. For purposes of the induction
we add subscripts indicating the dimension of the ambient space in which the objects
are defined (with the exception of handicaps where the subscripts indicate the dimension
where the divisor is used).
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A local flag at a is a decreasing sequence Wn ⊃ . . . ⊃ W1 of closed i-dimensional regular
subschemes Wi of a neighborhood U = Wn of a in W . We shall define, for each mobile
M = (J , c,D,E) in W and each chosen local flag at a, several ideals Ji, Ii, Pi, Qi, and
Ki, related to each other by various constructions. All together will form a setup of M
at a.

Before giving the construction, we motivate the procedure by recalling the objectives of
the resolution invariant ia(M). Its role is two-fold: First to define the center of blowup
as the locus where it attains its maximum, second to decrease under blowup. Actually,
these two tasks could also be fulfilled by two different invariants. Here, we will accomplish
them simultaneously.

In the sequel, all constructions will be local in a sufficiently small neighborhood of a point
a, respectively a point a′ above a.

We start with Jn the stalk of J at a. Several blowups have already occurred, so Jn will
factor into a product Jn = Mn · In with Mn a prinicipal monomial ideal supported by
the exceptional locus (which we denote by F ) and an ideal In. We use here that F is a
normal crossings divisor because we always chose the centers regular and transversal to
the existing exceptional locus.

Our purpose is to simplify In by further blowups (until In = 1 and Jn = Mn is a monomial
ideal). Therefore our center Z should lie inside the top locus top(I) of In consisting of
those points where In has maximal order. It is hence natural to define the first component
of ia(M) as the order on of In at a and to consider the vector ia(M) with respect to
the lexicographic order. In this way the top locus of ia(M) will be contained in top(In)
locally at a.

Next, we wish to ensure that the center is transversal to the already existing exceptional
locus F . If we neglected this requirement, we could complete by descending induction
on the dimension the construction of the further components of the invariant (see below)

and would get for the center its top locus Z̃ which, then, might not be transversal to
F . Inspection shows that the locus Z̃ is, however, always transversal to some of the
components of F , namely those which appeared in the last few blowups (which can be
determined explicitly). The intersection with the other components of F is unknown and
could be non-transversal. The first divisor En of the exceptional handicap E of M collects
precisely these suspicious components.

As our final choice of the center Z has to be transversal to all exceptional components,
the simplest though brute way is to require Z to lie locally at each point a inside the
intersection of the components of En going through a. If we introduce the transversality
ideal Qn of M as the ideal defining En in Wn, its local top locus at a point is the
intersection of the components of En there. Take then the order qn of Qn as the second
component of the invariant

ia(M) = (on, qn, . . .).
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With this agreement, the top locus of ia(M) is contained in top(In) and in all components
of En it meets, locally at a.

It turns out that In passes to its weak transform under blowup, so its order does not
increase. If its order remains constant, the determination of the new suspicious exceptional
components E′

n shows that also Qn passes to its weak transform under blowup. So its
orders does not increase in this case. Put together, the first two components of ia(M) do
not increase lexicographically,

(o′n, q′n) ≤lex (on, qn).

Up to now, neither the center is specified nor the defined portion of the invariant must
drop under blowup. The next step will be to descend in dimension. Consider the product
Kn = In · Qn at a and its coefficient ideal Jn−1 in any local hypersurface Wn−1 of Wn

through a. Later on, In will have to be replaced in the product by a slightly modified
ideal Pn. We do not bother here how the coefficient ideal is constructed in reality, we
shall only use its properties. For those who wish to see the details we refer to [Ha 3].

We have seen in the last chapter that the hypersurface Wn−1 can be chosen so that its
strict transform W ′

n−1 contains all equiconstant points of Kn, i.e., the points a′ above a
where the order of K ′

n has remained constant. Moreover, we can achieve that it maximizes
the order of Jn−1 over all choices of hypersurfaces. And, finally, it is shown by a separate
argument that then top(Jn−1) is contained in top(Kn) = top(In) ∩ top(Qn).

Therefore, even though Jn−1 depends on the choice of Wn−1, its order does not. As we
have mentioned in the last chapter, coefficient ideals commute with blowup at equicon-
stant points, provided that we take their controlled transform. In the present case, the
control for Jn−1 will be cn = ordaKn = on + qn.

As Jn−1 passes under blowup to its controlled transform (at equiconstant points of Kn,
the other points need not be considered since there (on, qn) has already dropped), we will
have again a factorization Jn−1 = Mn−1 · In−1 (in Wn−1 locally at a) with a monomial
exceptional factor Mn−1 and an ideal In−1. It is the second entry Dn−1 of the combi-
natorial handicap D of M which prescribes the monomial factor, i.e., Mn−1 is the ideal
IWn−1

(Dn−1 ∩ Wn−1) defining Dn−1 in Wn−1. Of course, this is only a monomial ideal
if Dn−1 is transversal to Wn−1. The transversality will be ensured by the transformation
rules for Dn−1 and Wn−1. They are chosen so that the second factor In−1 of Jn−1 passes
under blowup to its weak transform Ig

n−1.

The story now repeats: The order of In−1 will not increase at the points where (on, qn) has
remained constant, so on−1 = ordaIn−1 is the correct candidate for the third component
of the invariant

ia(M) = (on, qn, on−1, . . .).

Taking this portion of the invariant, there will be again suspicious exceptional components
to which the foreseen center of blowup Z̃ could be non-transversal. They are collected in
the second entry En−1 of the transversal handicap, yielding an ideal Qn−1 in Wn−1. Note
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here that En−1 is defined globally in W = Wn (though it is a stratified divisor), whereas
Qn−1 is defined only in the local hypersurface Wn−1 at a. Setting qn−1 = ordaQn−1 we
get

ia(M) = (on, qn, on−1, qn−1, . . .),

form the product Kn−1 = In−1 · Qn−1 and take the coefficient ideal Jn−2 of Kn−1 in a
local hypersurface Wn−2 of Wn−1 at a. This yields by induction on the dimension the
complete invariant

ia(M) = (on, qn, on−1, qn−1, . . . , o1, q1) ∈ N
2n.

As all ideals Ii and Qi pass under blowup to their weak transforms at points where the
prior portion (on, qn, on−1, qn−1, . . . , oi+1, qi+1) has not dropped, we can conclude that

ia′(M′) ≤lex ia(M).

So the invariant never increases lexicographically. Assume it remained constant. Then
it remained constant also in dimension 1, (o′1, q

′
1) = (o1, q1). But we saw in chapter V

that the order of the weak transform of an ideal in one variable always drops to 0. So it
could only remain constant if it was already equal to 0, say I1 = 1 (Q1 can be discarded
because it equals always 1 – in one variable there is no transversality problem). Now,
I1 = 1 signifies that J1 = M1 is a monomial ideal.

Two cases: If M1 = 1, then J1 = 1 and K2 is generated by a power of a variable, by the
very definition of coefficient ideals. In this case, either K2 = 1, o2 = q2 = 0 and we go one
dimension higher as before, or not both o2 and q2 are simultaneously zero, with a forced
drop of the order by the form of K2 (to prove this could be an exercise if we wanted).

To conceptualize, let d be the maximal index so that od = . . . = o1 = 0. It can be shown
that the transversality ideals Qd, . . . , Q1 are all trivial and can therefore be discarded. As
od = 0, the coefficient ideal Jd = Md of Kd+1 is a principal monomial ideal. In this case
we saw at the beginning of the last chapter (example 11

2 ) that if we choose the center
of maximal possible dimension, we can make the degree of this monomial drop until the
order of Kd+1 has dropped. In this case, also our invariant will have dropped, so that
induction applies.

In example 1 1
2 there occurred this ambiguity about symmetry. We now show how it is

taken care of (again, not in the most economic way). Recall that Jd = Md is defined in Wd

by restricting the combinatorial handicap Dd to Wd. As Dd is a collection of exceptional
components, and as it is labelled, each of its shortcuts Nd comes with a different label
(usually, the labels chosen for single components of D are just their birth date in the
resolution process). Once the labels are chosen (and there is a prescibed rule how to do
it when passing from D to D′), they are intrinsic information and respect any symmetry
of the original mobile we wanted to resolve. Therefore, selecting the shortcut of Dd with
maximal label among those whose order is ≥ the order of Kd (again, locally at a) and
which do not have any proper shortcut of order ordaKd is a well defined process which is
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compatible with the requirements of equivariance. This maximal tight shortcut Nd of Dd

has regular top locus top(Nd) which will form our desired center Z.

By the choice of the shortcut, Z has maximal dimension as a regular subscheme of
top(Kd+1), so the degree of Md will drop after blowup, with an eventual drop of the
order of Kd+1 (if not one of the earlier components of ia(M) has already dropped). The
center is transversal to the existing exceptional locus F , because it lies in top(Qn) ∩
. . . top(Qd+1) so that it is contained in all suspicious exceptional components. It lies in
top(In) ∩ . . . ∩ top(Id+1) by the presence of the orders on, . . . , od+1 in the invariant.

In all this we use the inclusions

top(Ii) ⊃ top(Pi), top(Ei) = top(Qi) ⊃ top(Ki) and

. . . ⊃ top(Ki+1) ⊃ top(Ji, ci+1) ⊃ top(Pi) ⊃ top(Ki) ⊃ . . . ⊃ Z,

where ci+1 = ordaKi is the control for Ji and top(Ji, ci+1) denotes the locus of points
where Ji has order at least ci+1. The ideal Pi is the companion ideal of Ii. It is almost
always equal to Ii, except in case when the order of Ii has become too small. Then it is
introduced as a technical device to ensure the inclusion top(Pi) ⊂ top(Ji, ci+1), and Ki

is defined as Pi · Qi instead of Ki = Ii · Qi. Its precise definition is

Pi = Ii + M
oi

ci+1−oi if 0 < oi = ordaIi < ci+1,

Pi = Ii otherwise

(don’t worry about the rational exponent). The product Ki is called the composition

ideal.

The invariant is intrinsic (i.e., does not depend on any choices), mainly, because the local
flag Wn ⊃ . . . ⊃ W1 is chosen so as to maximize the orders of the induced coefficient
ideals. We say that Wi has weak maximal contact with Ki+1.

Adding the pair md consisting of the order and the label of the maximal tight shortcut
Nd of Md to our invariant ia(M), we conclude that its top locus Z = top(ia(M)) has all
the required properties to be chosen as center. It is independent of any choices, regular,
transversal to the exceptional locus, and satisfies the requirements of equivariants. So
blow up Z in W , say π : W ′ → W .

Taking the transformed mobile M′ = (J ′, c′,D′, E′) of M = (J , c,D,E) in W ′ (where
the ideal J passes to the controlled transform J ! of J with respect to c, c remains
constant and D and E transform so as to capture the exceptional monomial factors of
Ji respectively the suspicious exceptional components in each dimension) it follows from
the various aspects described above that the invariant drops,

ia′(M′) <lex ia(M),

until it equals its minimal value (0, . . . , 0). In this case the mobile has reached its final
parking position and the seat-belt signs will be switched off, Jn = Mn = IW (Dn).
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All this was for motivations. It remains to define the objects systematically. For further
details, see the paper [EH] of Encinas and the author, or [Ha 3].

A punctual setup of M at a is a sequence (Jn, . . . , J1) of stalks of ideals Ji in a local flag
(Wn, . . . ,W1) of W at a satisfying for all i ≤ n

(1) Ji = Mi · Ii with Mi = IWi
(Di ∩ Wi) and Ii an ideal in Wi at a.

(2) Mi defines a normal crossings divisor in Wi at a.

(3) Wi−1 has weak maximal contact at a with the composition ideal Ki = Pi · Qi in Wi

of (Ji, ci+1,Di, Ei). Here, ci+1 is the control of Ji on Wi, given for i < n as the order of
Ki+1 in Wi+1 at a, and setting cn+1 = c.

(4) Ji−1 is the coefficient ideal of Ki in Wi−1.

Setups depend on and are determined by the choice of the local flag subject to the above
conditions. They commute with the operations described in equivariance.

Let M = (J , c,D,E) be a mobile in W . Assume that M admits locally on W punctual
setups (Jn, . . . , J1). Set

ia(M) = (tn, . . . , t1) ∈ N
4n

with ti = (oi, ki,mi) the tag of (Ji, ci+1,Di, Ei) at a, oi = ordaIi, ki = ordaKi =
ordaIi + ordaQi and mi the order and label of the maximal tight shortcut Ni of Mi of
order ≥ ci+1 (mi is set equal to (0, 0) if i 6= d for d maximal with od = 0). Equipping N

4n

with the lexicographic order this vector satisfies the following properties.

ia(M) does not depend on the chosen setup of M at a and commutes with the oper-
ations described in equivariance.

The map a → ia(M) is upper-semicontinuous on V . The induced stratification of V
refines the stratification underlying D and E.

The top locus Z of ia(M) is regular. Locally, Z lies in the top loci of all Ii, Pi, Qi

and Ki. It only depends on the restriction of ia(M) to the support of J .

Z is transversal to all Di and Ei.

We have seen above that then, for the transform M′ of M under blowup, our resolution
invariant drops

ia′(M) < ia(M)

as long as M is not resolved. Done!
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Birkhäuser 2000.

[Co 4] Cossart, V.: Contact maximal en caractéristique positive et petite multiplicité.
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