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AFFINE VARIETIES AND LIE ALGEBRAS OF VECTOR FIELDS

HERWIG HAUSER and GERD MULLER

In this article, we associate to affine algebraic or local analytic varieties their
tangent algebra. This is the Lie algebra of all vector fields on the ambient space
which are tangent to the variety. Properties of the relation between varieties and
tangent algebras are studied. Being the tangent algebra of some variety is shown
to be equivalent to a purely Lie algebra theoretic property of subalgebras of the
Lie algebra of all vector fields on the ambient space. This allows to prove that the
isomorphism type of the variety is determined by its tangent algebra.

INTRODUCTION

Algebraic geometry relies on associating to an affine variety its ideal of vanishing
functions. Hilbert’s Nullstellensatz asserts that this defines a one to one corre-
spondence between affine varieties and radical ideals.

We propose to associate to an affine algebraic or local analytic variety a different
algebraic object, its tangent algebra. This is the Lie algebra formed by all vector
fields defined on the affine ambient space and tangent to the variety.

In the first part of this paper we explore the correspondence between varieties
and their tangent algebra. Various fundamental properties are described. This
leads to a characterization of tangent algebras as subalgebras of the Lie algebra
of all vector fields in purely Lie algebra theoretic terms. Subalgebras satisfying
this Lie algebra theoretic property will be called geometric. Being geometric can
be viewed as an integrability condition on Lie algebras of vector fields: For every
geometric subalgebra there is a unique variety, called the integral variety, with
tangent algebra equal to the given algebra.

Tangent algebras and integral varieties thus define a one to one correspondence
between subvarieties of affine space and geometric subalgebras of the Lie algebra
of all vector fields, the Grobner correspondence. To our knowledge, Grébner in-
itiated the study of tangent algebras of varieties considering vector fields tangent
to projective varieties [10].



310 HAUSER-MULLER

Disposing of the correspondence, one is led to express geometric properties of
varieties through Lie algebra properties of the tangent algebra. In this way we shall
characterize smooth and irreducible varieties or varieties with isolated singularities
in terms of their tangent algebra. Also it is possible to describe the singular locus
and the irreducible components of the variety.

All these results hold true for affine algebraic varieties considering polynomial
vector fields as well as for germs of analytic subvarieties of complex space and
analytic vector fields. The proofs differ only slightly.

In the second part the Grobner correspondence will be applied to prove that two
varieties embedded in the same affine space are isomorphic if and only if their
tangent algebras are isomorphic (in the local analytic case, the tangent algebra is
viewed as a topological Lie algebra, and the ambient space has dimension at least
three.) This type of result has first been established in 1954 by Shanks and Pursell
[23] for compact differentiable manifolds and later on in various other situations by
numerous authors, e.g. [8, 16, 19, 25, 26, 30]. Our result was known to hold true in
the following special cases: Omori [19] treated the case of weighted homogeneous
singularities. A result of Skryabin [26] combined with Proposition 5.3 of part I
shows that cartesian products of analytic germs X = X' x(C, 0) are determined by
the abstract tangent algebra without topology. Similar results but only valid for
weighted homogeneous isolated complete intersection singularities can be found in
articles of Martin and Siebert [17, 24, 25].

In the subsequent paper [15] we shall prove that isolated hypersurface singularities
are determined by the Lie algebra of derivations of their local ring, i.e. vector fields
on the variety. In the algebraic case, this has been proven for normal varieties by

Siebert [25].

In forthcoming work we shall use our main result to prove that analytic hypersur-
face singularities are determined by their infinite dimensional Lie group of embed-
ded automorphisms.

The work on the present paper was motivated by our reading of Omori’s article [19]
which served us as a valuable source of inspiration. Our results were announced
in [14]. The first author thanks the Universidad Complutense de Madrid and the
Universidad de Valladolid, the second author the Universitat Innsbruck for their
hospitality during part of the work on this paper.

PART I: THE GROBNER CORRESPONDENCE

1. RESULTS

Let A" denote the n-dimensional affine space over an algebraically closed field K
of characteristic 0 and (C",0) the germ at 0 of complex affine space. By ID we
shall either denote the Lie algebra of polynomial vector fields on A™ or of germs of
analytic vector fields on (C",0). We identify ID with the Lie algebra of derivations
of the polynomial ring K|[z] or of the convergent power series ring O, respectively.
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By variety we shall always understand an algebraic subvariety of A™ or the germ
of an analytic subvariety of (C",0), both reduced but possibly reducible. Given a
variety X, let I'x denote its ideal of vanishing functions. The tangent algebra ID x
of X of vector fields on the ambient space tangent to the variety equals

Dx = {D e DD, D(Ix) C Ix}.

Let A be a subalgebra of ID. The integral variety X 4 of A is defined as the smallest
subvariety of the ambient space such that all vector fields vanishing on X 4 belong
to A. We shall prove:

Narkissos’ Theorem. Tangent algebras are geometric in ID.

Echo’s Theorem. Every geometric subalgebra of ID is the tangent algebra of a
variety. This variety is unique and given as the integral variety of the algebra.

Being geometric is a property of subalgebras of a Lie algebra which is defined in
purely Lie algebra theoretic terms. It is as follows: A subalgebra A of a Lie algebra
B will be called balanced in B if A contains no non-zero ideal of B but an element
a # 0 such that

[a,BJjC A and [[a,B],B]CA.
It is called geometric in B if every chain
ACA,C...CA =B
with A; C A;-; maximal balanced can be completed to a chain
A=A,C...CArC...CA =B

with all inclusions maximal balanced. For a tangent algebra A = ID x such chains
can be constructed using the irreducible components of X and its singular locus
Sing X, see part (5) of the Theorem below.

The relation between geometric properties of a variety and algebraic properties of
its tangent algebra can be seen from:

Dictionary Theorem. Let X be a non-empty proper subvariety of the affine
ambient space.

1. X is smooth and irreducible if and only if its tangent algebra IDx is mazimal
geometric (= mazimal balanced) in ID.

2. X is irreducible if and only if Dx is mazimal geometric in Dsing x.

3. Assume X irreducible. Then X is singular in 0 and smooth else if and only if
IDx is mazimal geometric in Do, the Lie algebra of vector fields vanishing at 0.

4. Assume X irreducible. Then Sing X equals the integral variety of the uni-
que geometric subalgebra A of ID containing Dx for which Dx C A is mazimal
geometric.

5. The number of irreducible components of X equals the number of geometric
subalgebras A C ID containing IDx as a mazimal geometric subalgebra. Any such
algebra is the tangent algebra of the union of the singular locus of one component
of X with the union of the remaining components.
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Ezample. Let X C A? be the union of the y-axis Y and the cusp Z = {(z,y), =% =
y?}. Then Dx = Dy NIDz, where Dy is generated as K|z, y]-module by 28, and
0y, and ID 7 is generated by the Euler vector field 220, +3yd, and the Hamiltonian
2y0: + 3x26y. There are two chains of maximal balanced subalgebras between ID x
and ID, namely

DxcDycD and DxcDzcIDycD.

Nota. With very few exceptions all results of part I hold true in the algebraic
as well as in the local analytic context. The statements are identical or differ
slightly. To straighten the exposition we shall only treat in this part the local
analytic case. The corresponding assertions and proofs for the algebraic case can
be mostly obtained by obvious minor changes. If not so, explicit mention is made.

2. THE TANGENT ALGEBRA OF AN ANALYTIC GERM

From now on variety shall always mean germ of an analytic subvariety of (C",0).
In this section we describe tangent algebras IDx geometrically (Proposition 2.1),
express them in terms of the tangent algebras of the irreducible components of X
(Seidenberg’s Theorem), reconstruct X from IDx through Fitting ideals (Propo-
sition 2.2) and show how to compute IDx from X in special cases (Aleksandrov’s
and Kersken’s Theorem).

Let D : (C*,0) — C" be an analytic vector field on (C",0), naturally identified
with a C-linear derivation D : O, — O,, of the C-algebra O,,. We shall write

D =(a1,...,an) =3 ai0s;,
Dg =3 ai0;;9 and D(p) = (a1(p),--,an(p)) € C"

for coordinates ¢ = (z;,...,z,) on (C",0), functions g € O, and points p € (C", 0).
We denote by ID = ID,, = Der O, the space of all analytic vector fields on (C",0).
This is an O,-module as well as a Lie algebra (with the usual bracket [D, E] =
DE—-ED.) As an O,-module it is generated by the partial derivatives 9;,, ..., 0z, .
There is a basic identity relating O,-multiplication with the bracket, namely

[Dng] = Dg'E+g : [DaE]a
where D, E € D and g € O,. This identity will be used at various occasions.

For an analytic germ X C (C",0) denote by T,X its Zariski tangent space at a
point p € X. Here point of a germ means point of a suitable representative of X
on a small neighborhood of 0 in C*. We shall say that a property holds for all
_points in X if there is some representative of X on which the property is valid.

We collect some elementary facts about IDx:

Proposition 2.1. (Description of Dx) Let X C (C",0) be analytic.

(a) D € ID is tangent to X if and only if D(p) € TpX for all points p of a dense
subset of X, e.g., for all smooth points p of X.

(b) Dx is a Lie submodule of D, i.e., a Lie subalgebra as well as an Oy -submodule.
The set Ix - ID of vector fields vanishing on X is an ideal of Dx.
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Remarks. (a) For hypersurfaces, Saito [21] interpreted the tangent algebra as
the dual of the module of logarithmic differential forms having poles only on the
variety. He called tangent vector fields logarithmic. See also [2, 6, 27].

(b) We stress that IDx is defined using the embedding of X in (C",0). It must
not be confused with the Lie algebra §x = Der Ox= Der (On/Ix) of vector fields
on X.

(c) For germs of analytic hypersurfaces we can prove that IDx equals the Lie alge-
bra of the infinite dimensional Lie group Autx(C",0) of analytic automorphisms
of (C",0) stabilizing X.

Ezample. Consider the Whitney umbrella X C (C?,0) defined by the polynomial
equation z? — y?z = 0. Its tangent algebra IDx is generated as an O,-module by
the Euler vector fields 220, + y0y + 220, and y0, — 220, and the Hamiltonians
2y20; + 220y, y?0; + 220, y0, — 2yz0,.

Proof of Proposition 2.1. Let f: (C",0) = C™ be a map germ with components
f; generating Ix. Thus T,X can be identified with (Tpf)~1(0) C C". Let D €
D, D =} ai0;;, and p € X. Then D(p) € T,X if and only if

(Z a'iazaf)(?) = (Tpf)(al (P), ey an(p)) =0.

By continuity, this holds for all p of a dense subset of X if and only if Df; € Ix
for all j, which in turn is equivalent to D(Ix) C Ix. This is (a). The first part
of (b) is immediate from the definition of IDx. Finally for D € Dx, E € D and
g € Ix:

(D,gE)=Dg-E+g-[D,E]€lIx -D
proving that Ix - ID is an ideal.

Seidenberg’s Theorem. {22, Thm. 1] (a) Let X C (C",0) be analytic. A vector
field is tangent to X if and only if it is tangent to all irreducible components
X1,y Xm of X:

Dx =) Dx;,.

(b) Let I C O, be an arbitrary ideal with radical /I = {g € O,, g* € I for some
k € IN}. Then D(I) C I implies D(vT) C VT.

Remark. One might possibly want to consider vector fields tangent to non-reduced
analytic space germs. Seidenberg’s Theorem asserts that any vector field tangent
to an analytic space germ is also tangent to its reduction. Actually, it may happen
that a non-reduced germ and its reduction have the same tangent algebra. For
instance, let X C (C",0) be a hypersurface defined by f € O, with prime factor
decomposition f = flkl -+« fkm  Then the reduction of X is defined by g = f1+** fm.
If Dg € (g9) then Df; € (f;) for all ¢ by (a) above. The product rule implies
Df € (f). Hence Dx = ID,eq(x). For this reason we shall only consider reduced
analytic space germs, viz germs of analytic sets.

The following result will be of frequent use (the second assertion does not hold in
the algebraic case.)
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Rossi’s Theorem. (20, Cor. 3.4] Let X C (C",0) be analytic and z; coordinates
on (C",0).

(a) If 8z,y .., 0z, € Dx then X =(C*,0) x (X n(C"*,0)).

(b) If there are Dy,...,Di € Dx such that Dy(0),...,Dk(0) are C-linearly inde-
pendent there is an analytic germ Y such that X = (C*,0) x Y.

(c) If there are Dy, ..., D € Dx such that Dy(0),..., Dx(0) are C-linearly indepen-
dent X has dimension > k.

Having defined tangent algebras one wants to know whether it is possible to recover
the germ X from its tangent algebra IDx? This depends on the type of information
about IDx available. If one knows IDx as an @,-submodule of ID the answer is
yes and goes as follows: Define for arbitrary O,-submodules M of ID and points
p € (C",0) the span M(p) of M in p as the C-subspace of Tp(C",0) = C"
generated by the evaluations Di(p),...,Dm(p) of On-generators Dy,..,Dp, of M.
This definition does not depend on the choice of the D;’s if p is sufficiently close
to 0. We then have:

Proposition 2.2. (Fitting ideals) Let X C (C",0) be analytic, different from
(C*,0), and let d = dim X.

(a) Ix = \/Fn—da—1 = ... = /Fy where F; is the j-th Fitting ideal of the O,-module
D/Dx.

(b) X = {p € (C",0), dim Dx(p) < dim X}.

(c) For irreducible X one has Sing X = {p € (C",0), dim Dx(p) < dim X}.

Remarks. (a) It is necessary to exclude X = (C",0) since § and (C",0) have the
same tangent algebra IDg = ID(gn ¢y =D and Fy = Oy,

(b) Setting V;(IDx) = {p € (C",0), dim Dx(p) < n — j} for the zero set of Fj
one has § = V,(IDx) C ... C Vp(IDx) and the Proposition asserts that

Va—a-1(Dx) =...=Vp(Dx) = X.
And Vacar=1(Dx) = ... = Vp—q(Dx) = Sing X
for d' = dim Sing X and X irreducible.

(c) A description of projective algebraic varieties similar to Proposition 2.2 already
appears in the work of Grobner [10].

Proof. By definition of the j-th Fitting ideal of D/IDx as the ideal generated by
the (n — j)-minors of the matrix defining an O,-resolution

or—-0r-D/Dx —0

the assertions of the Proposition and of remark (b) are equivalent. Let p ¢ X be a
point off X. Choose f € Ix with f(p) #0. Then f0;,,...,f0;, € Ix-ID C IDx are
linearly independent in p. Hence p € Vy(IDx). This gives Vo(IDx) C X. Conversely,
if Vp—q—1(ID x) were strictly contained in X we could find points p € X arbitarily
close to 0 with p € V,,—4—1(IDx). Hence dim Dx(p) > d + 1. Part (c) of Rossi’s
Theorem then implies that X has dimension > d + 1 in p. As p was arbitrarily
close to 0, we get dim X > d + 1, contradiction. This proves (a) and (b).
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For (c) we refer to Proposition 5.1 proven later and independent of Proposition
2.2. It asserts that IDx C Dsing x. Hence we have V;(IDsing x) C Vj(IDx) for all
j. Part (a) above implies

Sing X = Vi—a/—1(IDsing x) C Va—ar—1(IDx).

It remains to show V;_4(IDx) C Sing X. But if p ¢ Sing X one can construct
d vector fields in ID x which are linearly independent in p, see the Lemma below.
Hence p € V,—4(IDx).

Existence Lemma. (existence of vector fields) Let X C (C",0) be analytic and
p a smooth point of X. Let d be the dimension of the component of X containing
p. There ezist d vector fields D; tangent to X which are linearly independent in p.

Proof. Denote Xj,...,X, the components of X and assume that p € X;. Let
f1y.., fm be generators of the ideal Ix, of X; and let k be the codimension of X;.
The matrix

0. fi . O fi

Oeifm o Oofm

has rank < k in every point of X, and Sing X is defined by the vanishing of its
k-minors. As p ¢ Sing X we may assume that the k-minor

azlfl az‘ufl

Oz, fx .. Onfk

does not vanish in p. Moreover one can choose some g € O, vanishing on
X2,...,X, but not in p. Consider the d vector fields (: = k+1,...,n)

By o 0n, Oy
6::1f1 az::fl 6zaf1

D; =g-

O fe oo Oz fr O fi

given by the cofactor expansion along the first row. By the choice of g they vanish
on X, U...UX, and are hence tangent to this union. On the other hand D;(f;) =0
trivially for j = 1,...,k. And for j = k + 1,...,m the functions D; f; vanish on X,
because the resulting (k + 1) x (k + 1)-matrix has rank < k on X;. As the f;’s
generate Ix, we get D; € Dx,. Therefore D; € Dx. By construction Dg41,...,Dn
are linearly independent in p.
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We now ask for the converse: Is it possible to compute IDx from X? In general
this is very hard. Also it is not clear what is meant by ”computing” the infinite
dimensional Lie algebra IDx. Even how to find O,-module generators of D x is
only known in special cases. One has to determine the module of relations between

fr Oni £y Oz, f:

Aleksandrov’s and Kersken’s Theorem. [1, Thm. 6.1, 29, Thm. 2.8] Let X
be a complete intersection of codimension k in (C",0) with isolated singularity at
0 such that Ix can be generated by weighted homogeneous polynomials fy,..., fk
(all w.r.t. the same weights wy,...,w,.) Then Dx is generated as an On-module
by the ideal Ix - ID, the Euler vector field E = Y w;z;0;; and the trivial vector
fields which are zero on f; and given by the cofactor ezpansion along the first row
of the (k + 1)-minors of the matriz

8 .. O,
O fr .. O fi

O fe o Ok

3. ANALYTIC FILES

It will be necessary to consider intersections of tangent algebras, i.e. vector fields
tangent to several analytic germs. These germs may be contained in each other.
Typical examples are vector fields which are tangent to a germ X and to its singular
locus Sing X. When treating collections of germs, Seidenberg’s Theorem allows
to restrict attention to collections of irreducible germs. Since these will appear
frequently a proper terminology is convenient:

A file of analytic germs in (C",0) is a finite set X = {X;,...,Xm} of irreducible
analytic germs in (C",0), possibly contained in each other. We shall usually simply
speak of an analytic file. The X; will be called the components of X. To any file
X we associate its underlying germ |X| = |J X; which is the germ of an analytic
set. The irreducible components of |X| are just the components X; of X which
are not contained in any other.

For an analytic file X = {X4,...,Xm} we define its tangent algebra IDx as the Lie
algebra of vector fields tangent to all X;, i.e. Dx = (|IDx,. This is again a Lie
submodule of ID and Seidenberg’s Theorem yields IDx C ID|x;-

On the other hand, given an analytic germ X in (C",0) its irreducible components
form a file X with |X| = X and Dx = IDx. We agree that the empty germ @ has
no components and hence its file is empty.

The reader is invited to extend suitably the results of the last section to files of
analytic germs.
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4. INTEGRAL VARIETIES

The purpose of this section is to associate to any subalgebra A of ID an analytic
germ X4, resp. an analytic file X4, such that all vector fields in A are tangent
to X4, resp. X4. This will be achieved by the concept of integral variety. In
contrast to the Fitting ideal description of X from IDx of Proposition 2.2, the
present construction will only rely on the assumption that A is a Lie subalgebra
of ID. It does not require that A is an O,-submodule. However, it does involve
the O,-multiplication in ID. Quite generally, we shall consider inclusions A C ID’
where A is a subalgebra of a Lie submodule ID’ of ID. In all applications ID' will
be the tangent algebra IDy of some analytic file Y.

Let ID' C ID be a Lie submodule. For a C-subspace A C ID’ we define analogously
to section 1

IA = IA(]DI) = {g € 0", g-ID' C A}.

As ID' is an O,-module, I4 is an ideal of O, in fact the largest ideal of O,, such
that I4 - ID' C A. The zero set X4 = Xa(D') c (C*,0) of I4 will be called the
integral variety of A relative to ID’. This name is justified by:

Proposition 4.1. (integral variety) Let A C ID' be a subalgebra of a Lie submodule
D' c D. Any vector field in A is tangent to the integral variety X 4:

AcCDxk,.

Proof. It suffices to show that any D € A satisfies D(I4) C I4. For, by Seidenberg’s

Theorem, we then know D(v/T4) C /T4, and \/T4 defines X4. So let g € I4. For
E € D' we have

Dg-E=[D,gE|-g-[D,Elc A
because A and ID' are Lie algebras. Hence Dg € I4.

Remarks. (a) In the next section it will be shown that the integral variety of a
tangent algebra IDx C ID equals the germ X. It is the largest germ strictly
contained in (C",0) to which all vector fields in ID x are tangent.

(b) The integral variety can be trivial, i.e., empty or equal to the ambient space.
These non-geometric cases do not occur if A C ID' is a geometric subalgebra (see
Proposition 6.2 for a proof.)

Proposition 4.2. (codimension) A finite codimensional submodule A of D' has
empty or zero-dimensional integral variety. An infinite codimensional C-subspace
A of D' has positive dimensional integral variety.

Proof. If A has finite codimension in ID', the quotient module ID'/A has finite
length and thus its annihilator I4 has Krull dimension < 1 [18, sec. 12.B]. Con-
versely, if 4 has Krull dimension < 1 it has finite codimension as a linear subspace.
Hence I - ID' and A have finite codimension in ID'.

Ezample. Consider the analytic file X with components X; = {z = 0} c (C%,0)
and X, = {0} C (€%0). Then A = Dx C D is the G;-module generated by
the vector fields 8, z8,, yd,. We have X4(ID) = {z = 0} = X;. The "lost”
embedded component X; can be recovered by iteration: IDx, is the O;-module
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generated by z0;, 9y. And X; = {0} = Xa(IDx,), the integral variety of A
relative to IDx,. Therefore we define:

Definition. (integral file) Let D' C D be a Lie submodule. For a subalgebra
A C ID' define inductively a sequence X of germs of analytic sets in (C",0) by

X} = X,(ID")
Xi:=XaD'n IDX; n..n IDX;-I).
The defining ideals I% of X', are given by
I} ={9€0n, g-(D'NDx; N...N Dyi-1) C A},

If confusion is likely we indicate dependence on ID' by X% (ID'). As the algebras
lD'ﬂIDX}‘ ﬂ...ﬂIDX;q are decreasing the ideals I, increase, the germs X decrease.

Since O, is Noetherian the sequence of X becomes stationary for some k:
Xk =Xxk1 = .

The analytic file X4 formed by all irreducible components of X}, ..., X% will be
called the integral file of A relative to ID'. Proposition 4.1 guarantees that A C
Dx,.

In the example above we have {X;,X,} = {Xa(ID),X4a(Dx,)} = {X}, X3}

5. INVARIANCE AND IRREDUNDANCE

We ask whether different germs or files can have the same tangent algebra. In
general, this is only possible for files: there exist files X' and X contained in each
other (i.e., any component of X’ is one of X) with IDxs = IDx. This signifies that
the components of X not lying in X' have no effect on the tangent algebra. They
are superfluous. We shall study these components more closely.

Definition. (invariance) Given analytic files X and Y in (C",0) we say that X is
Y-invariant if any vector field tangent to Y is also tangent to X, i.e., Dy C IDx.
Analogously, invariant germs are defined.

Of course, § and (C",0) are invariant w.r.t. any file Y. Seidenberg’s Theorem
asserts that the irreducible components of a germ X are X-invariant. Here are
more examples (it is not clear whether the second assertion has an analogue in the
algebraic case):

Proposition 5.1. (examples of invariant germs) Let X C (C",0) be an analytic
germ.

‘(a) The singular locus Sing X of X is invariant w.r.t. X, Dx C Dsingx. More
generally:

(b) Analytic subsets Z of X stable under all automorphisms of (C™,0) stabilizing
X are X -invariant.

Remark. Assertion (b) cannot be reversed: it may happen that an invariant Z is
not stable under all automorphisms of (C",0) which stabilize X. For instance,
if X is the union of the coordinate axes in (C?,0) then (z,y) — (y,z) stabilizes
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X but permutes the components of X. But those are invariant by Seidenberg’s
Theorem.

Proof. (a) This is a special case of (b). Nevertheless we provide a direct proof (for
a purely algebraic proof see [25, Kor. 3.16].) If D € D is non-singular, D(0) # 0,
a change of coordinates in (C",0) allows to assume D = §,,, [5, chap. III, sec.
VII, Lemma 1]. Rossi’s Theorem implies

X =(C,0)x X' with X'=Xn(C",0).
Then Sing X = (C,0)x Sing X' and thus D = §,, is tangent to Sing X.

If D is singular, D(0) = 0, this argument applies to all points p € Sing X where
D(p) # 0 and gives D(p) € Tp(Sing X) for all these p. For the other points
D(p) = 0. Thus D(p) € T,(Sing X) for all p € Sing X.

(b) We assume first that X does not split off a smooth factor: X % (C,0) x X'
for any germ X'. Let D € IDx. Rossi’s Theorem gives D(0) = 0. In this case D

can be integrated to a one parameter group ¢; of automorphisms of (C",0), [28,
sec. 5]. As

f($e(2)) = Tz G(D* f)(z)

for f € O, we see that all ¢, stabilize X. By assumption all ¢; stabilize Z. From
D(p) = 0t¢¢(p)t=0 we conclude that D is tangent to Z.

Secondly, consider the case where X splits off a smooth factor. Choose k£ € IN
maximal such that X 2 (C¥,0)x X' for some X'. We may assume X = (C*,0)x X’
with X' = X N (C"*,0). Points in (C",0) will be written (p, qz according to
(€",0) = (C*,0) x (C*~*,0). For any analytic map germ % : (C"~*,0) — (C*,0)
the automorphism

¢:(C"0) - (C*,0): (,y) = (= + ¥(y), )

stabilizes X. Thus if ¢ # 0 with (0,¢) € Z then (C*,0) x {¢} C Z. This implies
Z = (€*,0) x Z' for some germ Z' C (C"7*,0). Clearly Z' is stabilized by all
automorphisms of (€"~*,0) which stabilize X'. One has TeppX = Ckx T X'
for (p,q) € X and T(p,Z = C¥x T,Z' for (p,q) € Z. Fix p € (C*,0) and let
D € Dy. By restriction to {p} x (C"*,0) and projection to the tangent spaces
T,(C"*,0) one obtains a vector field on {p} x (C"~*,0) tangent to {p} x X'. By
the case discussed before it must be tangent to {p} x Z'. This implies that D is
tangent to Z and proves the assertion.

Proposition 5.1 and Seidenberg’s Theorem are complemented by:

Proposition 5.2. (description of invariant germs) Assume that the irreducible
germ X C (C",0) is invariant w.r.t. some analytic file Y in (C*,0), Dy C Dx.
Then either X = (C",0) or X 1is contained in at least two components of Y or X
18 contained in the singular locus of a component of Y or X equals a component

of Y.

Proof. We assume that none of the first three possibilities holds and prove that
X equals a component of Y. By Proposition 2.2. and since X # (C",0) we
can write X = Vp(IDx). The inclusion Dy C Dx gives Vy(IDx) C Vo(IDy) and
hence X C Vo(Dy). But Vo(Dy) C |Y| because any function f vanishing on |Y]|
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induces vector fields fd;,,..., f0;, tangent to Y and linearly independent off the
zero set of f. Therefore X C |Y|. Being irreducible, X must be contained in some
component of Y, say X C Y;. We shall show X = Y; by comparing dimensions.
Set k = codim Y;.

We assumed that X is not contained in two components of Y nor in the singular
locus of one. This allows to choose points p in X outside Y, U ...U Y, U Sing Y}
and arbitrarily close to 0. By the Existence Lemma of section 2 (extended to the
case of files) there exist n — k vector fields D; in IDy linearly independent in p.
As Dy C IDx they belong to Dx. By Rossi’s Theorem the dimension of X in p
must be greater or equal n — k. Since p was arbitrarily close to 0 we conclude that
dim X > n — k. Together with X C Y] and k = codim Y; this implies X = Y;.
The assertion is established.

Definition. (irredundance) Given analytic files X and Y in (C",0) we say that X is
irredundant w.r.t. Y if deleting any component from X alters Dx y := Dx NDy.
Equivalently, no component Z of X is invariant w.r.t. X~ UY where X~ is the
file obtained from X by deleting Z. For analytic germs we make the analogous
definition.

If X is redundant w.r.t. Y then clearly by deleting some of the components of X
one can obtain a file X® with Dxoy = IDx,y and such that X° is irredundant
w.r.t. Y. It will follow from the next proposition that X° is uniquely determined
by X and Y, namely as the integral file X 4 of A = IDx y relative to IDy.

Ezample. (1) For Y = 0 and any germ X the file X := {(C",0), X, components
of X} is redundant.

(2) For a germ Y the file X := {Y, Sing Y, Sing(Sing(Y))} is redundant w.r.t. Y.
The next result describes the integral file of a tangent algebra:

Proposition 5.3. (integral file of tangent algebra) Given analytic files X and
Y in (C",0) assume that X is irredundant w.r.t. Y. Then the integral file of
A = IDx,y relative to Dy equals X: X4 =X.

Proof. Let X,..., Xk be the irreducible components of the germ |X|. We are going
to show that |X| equals the integral variety of A relative to Dy: |X| = X4.
Repeating the argument with Y replaced by Y* = Y U {Xj,..., Xx} and X by
X~ =X\ {X1,..., Xk} will give the assertion by induction.

Observe first that any g vanishing on |X| satisfies g - IDy C IDx,y = A. Hence
Iix) C In and X4 C |X|. As X is irredundant w.r.t. Y there are vector fields
D; € Dy with D; ¢ Dx; for j = 1,...,k. Hence there are hj € Ix; with Djh; ¢
Ix;. Take an arbitrary g € I4. As the vector fields gD; belong to A by definition
~of I4 and since A C Dx; we obtain gD;h; € Ix;. The X;’s are irreducible and
Djhj ¢ Ix;, thus g € X for all j. We have shown I4 C [)Ix; = I|x|. This gives
IX| C Xa.

Remark. It follows from Propositions 4.1, 5.2 and 5.3 that the integral variety X4
of a tangent algebra A = Dx (as defined in section 1) is in fact the largest germ
strictly contained in (C",0) to which all vector fields in A are tangent.
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6. THE TRANSPORTER SERIES

This section is devoted to the study of balanced subalgebras of a Lie algebra
introduced in section 1. Propositions 6.1 and 6.2 below present key ingredients in
the proof of Narkissos’ and Echo’s Theorem. They establish that tangent algebras
are balanced and describe the integral variety of balanced algebras.

For any inclusion of Lie algebras A C B we define a decreasing series Al of
subalgebras of A, the transporter series of A relative to B, as follows:

AU :={D € 4, [D,B] C A},
Al .= (A[i—l])[ll ={De¢ Ali-1] [D,B] C Ali—ll},
Al .= ) Al

In case confusion is likely we write Al = A%] to indicate dependence on B. The
transporter series allows to characterize balanced algebras:

Lemma. (balanced algebras) Let A C B be Lie algebras.
(i) Al is the largest ideal of B contained in A.
(ii) A is balanced if and only if Al®l =0 and AP £ 0.

Proof. (i) To see that Al is an ideal of B let D € Al*! and E € B. For all i
we have D € Al hence [D, E] € Ali=1 by definition of All. Thus [D, E] € Al*.
Conversely let A’ C A be an ideal of B. Then A’ ¢ Alll. If A’ ¢ Al for some &
then [A',B] C A' C All,i. e. A" ¢ AU+, This proves A' C Al

(ii) This is clear from the definition since [D, B] ¢ AlM is equivalent to [[D, B], B] C
A.

Remarks. (a) The transporter series also appears in the work of Omori {19] as well
as in the theory of Guillemin and Sternberg on transitive Lie algebras [11, 12, 13].

(b) Camacho and Sad [4] prove that any analytic vector field on C? has a separatrix.
By this they mean a possibly singular analytic curve germ through 0 to which the
given vector field is tangent in the sense of the present paper. Gémez-Mont and
Luengo (7] show that such a curve generally does not exist for vector fields on
C®. They do not disprove that a higher dimensional analytic germ, namely a
hypersurface in €3, with this property exists. One is tempted to apply Echo’s
Theorem to prove the existence of "integral varieties” of appropriate dimension
for single vector fields: It would suffice to embed the vector field in a geometric
or a maximal balanced subalgebra of ID. The problem in doing this is related to
the condition Al?l # 0. We can show that if this inequality were automatically
fulfilled for maximal Lie-submodules of ID the existence of integral varieties for
single vector fields would follow.

The condition A% # 0 is automatic in case A is of finite codimension in the infinite
dimensional Lie algebra B (since Al!l is the kernel of the natural map A — End
B/A given by the adjoint representation.) In our situation, however, A will be of
infinite codimension in B.

Before stating the main assertions of this section we prove two auxiliary results.
The first shows how to construct elements in I4 from elements in Al:
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Amemiya’s Lemma. 3, p. 547] Let A be a subalgebra of a Lie submodule D' of
D and A = AQ,. 1f D € A and hD € AW for some h € On then (Dh)? € Ia.

Proof. For arbitrary E € ID' we have Dh - E + h[D,E] = [D,hE] € A and —Eh
D + h[D,E] = [hD,E] € A. Hence Dh-E + Eh- D € A. Replacing E by Eh - D
and Dh - E in turn we obtain Dh- Eh- D € A and (Dh)?E + Dh- Eh-D € A.
This yields (Dh)2E € A for all E € ID', i.e., (Dh)? € I4 proving the Lemma.

Amemiya’s Lemma can be sharpened as follows:

Omori’s Lemma. [19, Lemma 3.4] Let 0 # A C D' be Lie submodules of ID.
Then Al is a submodule too. Moreover AlYl =0 if and only if I4 = 0.

Proof. Consider the equation
[fD,El=-Ef-D+ f-[D,E).

If fe On De AV, E € ID' then [fD,E] € A and fD € All. Next suppose
A = 0. Let f € I and choose D € A, D #0. Then [fD,E] € Aforall E € D',
ie., fD € Al and f = 0. Finally suppose I4 = 0. Let D € AlYl. For all f € O,
we have fD € All. Amemiya’s Lemma gives (Df)? € I4, hence Df = 0. This
proves D = 0 and the Lemma.

The next two results are mutually symmetric. The first asserts that tangent alge-

bras are balanced algebras if the corresponding file satisfies certain conditions. The
second shows that the integral files of balanced algebras satisfy these conditions.

Proposition 6.1. (tangent algebras are balanced) Let X and Y be analytic files
in (C",0) with tangent algebra A = Dx vy considered as a subalgebra of D' = Dy.
Then:

(a) AP £ 0.

(b) Al = 0 provided |X|, [Y| # (C",0) and |X| ¢ [Y].

(c) If IX], |Y] # (C",0) and |X]| ¢ |Y| the tangent algebra IDx y is a balanced
subalgebra of Dy.

Proposition 6.2. (integral variety of balanced algebra) Let D' C ID be a Lie
submodule and A C ID' a Lie subalgebra with integral variety X 4 relative to ID'.

(a) If AP 5£ 0 then X4 # (C™,0).

(b) Assume D' = Dy for some file Y in (C*,0) with [Y| # (C",0). If Al®l =0
then Xa ¢ |Y].

(c) Every balanced subalgebra A of a tangent algebra Dy of some file Y in (C",0)

with |Y| # (C",0) has integral variety X4 different (C",0) and not contained in
Y.

.Ezamples. (1) Concerning Proposition 6.1 (b): Let Y = {z = 0} ¢ (C?,0) and
X ={0}cY, A=Dxy = (28,,28,y9,) and D' = Dy = (28;,9,). Then
Iy - D = (28;,x0y) is an ideal of IDy contained in IDx,y, hence Al £,

(2) Concerning Proposition 6.2 (b): Let Y = {z% + y® = 0} C (C?,0) and A =
Iy -ID = ((2? + 4®)3:, (z® 4+ y*)3, ) be an ideal of Dy. Then Al*l = 4 # 0. Using
that Dy = (328, + 2yd,,3y%d, — 2z28;) by Aleksandrov’s and Kersken’s Theorem
one obtains X4 =Y.
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Proof of Proposition 6.1. (a) We may exclude the case where (C",0) is a component
of X, i.e., assume that the underlying germ |X| of X is different from (C",0).
Choose g € Ijx|, 9 # 0. Then g-ID' C A and hence g € I4. For D, E € D' we
have

[9°D,E] = ¢*|D,E] —2¢g- Eg- D € A,
hence ¢? - D € AY and g% € I ). Omori’s Lemma implies A2 = (A1) £ 0,

(b) We may assume by section 5 that X is irredundant w.r.t. Y. Observe that by
Proposition 5.2 the condition |X| ¢ |Y| persists if superfluous components of X
are deleted.

So let us prove Al = 0. This signifies that for every D € A, D # 0 there exist
vector fields Ey, ..., Ex € Dy such that [...[D, Ey}, ..., Ex] € A.

Case 1: The argument is easy if D does not vanish on X = |X|, i.e. D ¢ Ix - ID.
Choose g € O,, with Dg ¢ Ix. Since X4 = X by Proposition 5.3 and irredundance
of X we have I4 C /T4 = Ix. Therefore Dg ¢ I, i, Dg-E ¢ A for a
suitable E € Dy. If [D,E] ¢ A we are done. If [D,E] € A we use [D,gE] =
Dg-E +g-|D,E] ¢ A proving the assertion.

Case 2: We are left with elements D € Ix - ID. The argument is a bit more
complicated. By (a) it is sufficient to find F,..., Ex € Dy such that

[...[D, E:),..., Ex] € Ix - ID.

The case n = 1 being easy we may assume n > 2. It is convenient to express D
in suitable coordinates on (C",0): Choose a smooth hypersurface H in (C",0) to
which D is not tangent. Such a hypersurface exists for n > 2. Indeed, either D is
not tangent to some linear hyperplane. Otherwise, a simple exercise shows that it
must be of the form D = a- Y 2;0,, with a € Op. Then take H = {z, + z¢ = 0}
with d > 2 such that a does not vanish on H. After changing coordinates we may
assume that H is linear and given by z, = 0. Decompose Dz, = g + z,h with
g € C{z1,...,Zn-1} = Op—1 and h € O,. As Dz, € (z,) by the choice of H
we have g # 0. Changing the first n — 1 coordinates zy,...,Zn—1 linearly we may
obtain ¢(z1,0,...,0) # 0. Thus we have found coordinates on (C",0) for which a
monomial z¢ appears for some e > 0 in the power series expansion of Dz,. Now
use X ¢ |Y| to find an f € O, vanishing on [Y| but not on X. We claim that
the vector field E = fd,, € Dy satisfies [...[D, E), ..., E] & Ix - ID (e-fold bracket.)
Using induction and the product rule one proves for a,b € O, F € ID and m € IN:

(aF)™b=a™ - F™b mod (aFb,...,a™ 1 F™1p).
Applied to a = f, b = Dz,, F = 0;, this gives for the m-fold bracket:
(21, [fOz,, D]..)(zn) = f™OR Dz, mod (fOz, Dzn,..., f""105 ! Dxy).

If the left hand side is not in Ix for some m we are done. If it were in Ix for all
m we could prove inductively f™0]} Dz, € Ix for all m. But 9; Dz, with e as
above is a unit in Oy, hence f¢ € Ix and f € Ix, contradiction. (In the algebraic
case Dz, is a polynomial and one derives until it becomes a non-zero constant.)

(c) Follows from (a) and (b) by definition of balanced algebras.
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Proof of Proposition 6.2. (a) We have to construct a non-zero element in I4. It
is not possible to apply Omori’s Lemma by using the weaker assumption Al!l % 0
since we do not know whether Al!l is a submodule. Instead we refer to Amemiya’s
Lemma. Take D € Al¥, D # 0. Then the differential operator D? obtained by
composing D with itself is non-zero. Choose ¢ € O, with D?g # 0. We have
D € AM and Dg- D = [D, ¢D] € Alll. Amemiya’s Lemma gives (D%g)? € I4.

(b) We have to show Iy ¢ /T4 for Y = |Y|. Otherwise I} C I for some k € IN.
For g € I¥ and D, E € Dy one has

[gD’E] =-Eg-D+g- [DvE] € I)k/ ‘Dy.
Hence I,", -IDy C I4 - Dy C A is a non-zero ideal of Dy, contradiction.
(c) Follows from (a) and (b) by definition of balanced algebras.

7. VISIBLE ALGEBRAS ARE TANGENT ALGEBRAS

In this section we formulate and prove Echo’s Theorem of section 1 for analytic

files. A subalgebra A of a Lie algebra B is called visible, if there is a chain
A=AnC...CA =B

with A; C A;—1 maximal balanced for all . Of course, geometric implies visible.

Echo’s Theorem. (visible implies tangent, file version) Let Y be an analytic
file in (C*,0) with [Y| # (C",0). Every visible subalgebra A of Dy is a tangent
algebra A = IDx,y where X 1s an analytic file in (C",0) with no component of X
contained in [Y|. The file X is unique if assumed irredundant w.r.t. Y and then
gwen as the integral file X4 of A relative to Dy.

Proof. Uniqueness of X in the irredundant case follows from Proposition 5.3. To
prove existence we proceed by induction. By definition, A admits a chain

A=A,C...CA CA =Dy

with A; C A;_; maximal balanced. In particular, A; is maximal balanced and
hence maximal visible in IDy. If we show existence for A;, say A; = Dx y for
some file X, we may replace Y by Y+ = X UY and consider

A=A,C...CA; =Dvy+.

The length of the chain having dropped, the induction hypothesis applies and gives
the assertion. Thus we may assume from the beginning that A C IDy is maximal
visible. In this situation, the existence of a file X with A = IDx,y can be described
more explicitly:

Proposition 7.1. (maximal visible implies tangent) Let Y be an analytic file
in (C",0) with [Y| # (C",0). Every mazimal visible (= mazimal geometric)
subalgebra A of IDy s a tangent algebra A = Dx y where X is an irreducible
analytic germ different (C",0) and not contained in |Y| but with Sing X C [Y].
This germ X is unique and given as the integral variety X of A relative to Dy.



HAUSER-MULLER 325

Proof. Uniqueness follows again from Proposition 5.3 for X is irreducible, # (C",0)
and not contained in [Y]|, hence irredundant w.r.t. Y. To prove existence note
that by Proposition 6.2 X 4 is different from (C",0) and not contained in |Y|. To
see that A = IDx,,y choose an irreducible component X of X4 not contained in
|Y|. Proposition 4.1 and Seidenberg’s Theorem yield inclusions

ACDx,yCDxy.

By choice of X Proposition 6.1 applies. It shows that IDx,y is balanced in Dy. In
particular Dx y # IDy. Then A C Dx,y C Dy implies A = IDx,y because 4 is
maximal visible, hence maximal balanced in IDy. As X is irreducible and strictly
contained in (C",0) Proposition 5.3 applies again and gives X4 = X. Hence X4
itself is irreducible and A = Dy, y. All properties except Sing X4 C |Y]| are
shown. To prove this inclusion, a similar argument as for X4 works. Assume that
Sing X4 ¢ |Y|. Choose an irreducible component Z of Sing X 4 not contained in
|Y|. Proposition 5.1 and Seidenberg’s Theorem yield

IDXA;Y - IDSingXA,Y C IDZ,y.

By Proposition 6.1 IDzy C Dy is balanced. Then A =Dx,,y C Dzy C Dy
implies A = IDzy for A is maximal balanced in Dy. We get Dx,,y = Dzy.
Uniqueness of X 4 gives Z = X 4 and contradiction to Z C Sing X 4. This concludes
the proof of the Proposition and of Echo’s Theorem.

Remark. Echo’s Theorem implies in particular that every visible subalgebra of
a tangent algebra must also be an O,-submodule. This will be a central point
in proving that up to analytic isomorphism a singularity is determined by the
isomorphism class of its tangent algebra.

8. TANGENT ALGEBRAS ARE VISIBLE

In this section we formulate and prove Narkissos’ Theorem of section 1 for analytic
files.

Narkissos’ Theorem. (tangent implies visible, file version) Let X and Y be
analytic files in (C",0) with no component of X contained in |[Y|. Then the tangent
algebra IDx y i3 a visible subalgebra of Dy.

Proof. We shall use double induction. The first one is on the number of components
of X. Let the components X; of X be numbered such that X; ¢ X; for: > 2. Set
Yt=YU {Xl}, X~ = X\ {Xl} Then

IDx,Y = le-,y+ CDy+ =Dx,y C Dvy.

Since visibility is transitive, induction reduces to the case where X consists of a
single irreducible germ X. We have to show that IDx,y is visible in Dy. Consider
the iterated singular loci Sing*X = Sing(...(Sing(X))...) of X. They form a
strictly decreasing sequence of analytic subsets of X. As X ¢ |Y| by assumption
there is a maximal integer k = kx such that Sing*X ¢ [Y|. The second induction
now goes simultaneously on k and on the number [ of components of Sing*X not
contained in |Y|. Take such a component Z ¢ [Y| of Sing*X. Proposition 5.1
gives Dx C IDz and hence Dx = Dy, z. Setting Y+ =Y U {Z} we get
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Dx,y =Dxy+ CDy+ and Dzy =Dy+C Dy.

In the first inclusion the number of components of Sing*X not contained in Y|
is smaller than I In case it has become zero one has Sing*X C |Y¥| and there
is some m < k maximal with Sing™X ¢ |Y*|. Thus either ! has dropped and
remained positive or k has dropped. In the second inclusion the irreducible germ
Z satisfies Z ¢ |Y| but Sing Z C Sing(Sing®(X)) C |Y|. This corresponds to
kz =0.

Using transitivity of visibility induction on pairs (k,!) ordered lexicographically
now allows to reduce to the case k = 0 and ! = 1. In this situation the visibility
of Dx vy in Dy follows from:

Proposition 8.1. (tangent implies maximal visible) Let Y be an analytic file in
(€C",0) and X an irreducible germ different (C",0) with X ¢ |Y| but Sing X C
|Y|. Then the tangent algebra Dx y is a mazimal visible (= mazimal geometric)
subalgebra of Dy .

Proof. By Proposition 6.1 A = IDx,y is balanced in IDy and we only have to test
A for maximality. So let B C IDy be balanced with A C B. Proposition 6.2
implies that the integral variety Xp of B is different (C",0) and not contained in
|Y]. Choose an irreducible component Z of Xp with Z ¢ |Y|. Proposition 4.1
and Seidenberg’s Theorem yield inclusions

A=DxyCBCDx,yCDgzy.

Proposition 5.2 implies that Z C Sing X or Z = X. The first is impossible since
Z ¢ |Y| but Sing X C |Y|. Thus Z = X and A = Dx y = B proving maximality
of A.

Proof of Dictionary Theorem. The first three assertions follow from Proposition
7.1 and 8.1 with Y = @, Y the file formed by the components of Sing X and
Y = {0}. The last two will be proven in the next section.

9. THE GROBNER CORRESPONDENCE
All ingredients are collected to prove the results announced in the first section.

Narkissos’ and Echo’s Theorem. (germ version, relative case) For any ana-
lytic file Y in (C",0) the Grébner correspondence relative to Dy 13 a bijection:

{X € (C",0) analytic germ, X; ¢ |Y|} «— {A C Dy geometric subalgebra}
’ X — Dxy
X4~ A

Remark. Specialisation to the absolute case Y = ), viz Dy = IDy = ID, gives
Narkissos’ and Echo’s Theorem of section 1. In case Y is an irreducible analytic
germ Y C (C",0) one can even characterize Lie algebra theoretically the tangent
algebras ID x,y for all germs X C (C",0) having possibly components contained in
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Y but not in Sing Y: By (4) of the Dictionary Theorem DDsjng v can be characteri-
zed Lie algebra theoretically as a subalgebra of ID in terms of Dy. As ID x singy is
a geometric subalgebra of IDgjng v the intersection IDxy = IDx singy N IDy gives
the characterization.

Proof. (a) The correspondence is well defined: Let A = IDx,y be the tangent
algebra associated to some germ X in (C",0) and to Y and assume that no
component of X is contained in |Y|. By definition of geometric algebras, we have
to show that A is visible in every visible subalgebra B of IDy containing A. The
file version of Echo’s Theorem gives B = IDz y for some analytic file Z in (C",0).
We may choose Z irredundant w.r.t. Y. Now assume that there is a component
X1 of X contained in |Y| U |Z|. Then X; C Z, for some component Z, of Z
and, in particular, Z; ¢ |Y|. Proposition 5.2 applied to Dx y C IDz, implies
X1 = Z, for there cannot be strict inclusions between the components of one
germ. But then we can delete X; from X and Z and add it to Y without altering
the inclusion IDx,y C Dy, z. Note that this change does not effect the condition
of no component of X being contained in |Y].

This argument can be repeated until no component of X is contained in [Y|U|Z|.
Then the file version of Narkissos’ Theorem implies that

A=Dxy=DxyzCDyz=B
is visible. Therefore ID x,y is geometric in Dy.

(b) Injectivity: Follows from Proposition 5.3. since X having no component in |Y|
is irredundant w.r.t. 'Y by Proposition 5.2.

(c) Surjectivity: Let A C Dy be a geometric subalgebra. As A is then visible in
Dy the file version of Echo’s Theorem yields an analytic file X in (C",0) with no
component contained in [Y| and such that A = IDx,y. Of course we can choose X
irredundant w.r.t. Y. We have to show that X has no "embedded” components,
i.e., that X equals the analytic file associated to its underlying germ X := |X]|.
If this were not the case irredundance of X would imply that A = IDx,y were
strictly contained in B = IDx,y. This latter is a visible subalgebra of IDy by the
file version of Narkissos’ Theorem. As A is geometric in IDy it is visible in B.
And being different from B there exists a balanced subalgebra of B containing A.
This implies that A cannot contain a non zero ideal of B. But Ix - IDx vy is such
an ideal of B contained in A4, contradiction. Therefore X is the file of irreducible
components of X = |X| and A = Dx,y = Dx,y. This proves the Theorem.

Proof of Dictionary Theorem. We are left to show the last two assertions. Observe
that (4) is a special case of (5). Let X~ denote the union of the singular locus of
one component, say X;, with the remaining components Xa,...,Xm. Of course,
A = Dx- is geometric in ID. The components of X~ are X3,..., X/ together
with those components of Sing X; which are not contained in X; U ... U Xp,.
By Proposition 5.1 and Seidenberg’s Theorem we have IDx = IDx, x-. Since
X1 ¢ X~ but Sing X; C X~ Proposition 8.1 implies that IDx = Dx, x- is
maximal geometric in IDx-.
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Conversely, let A C ID be geometric containing IDx as a maximal geometric sub-
algebra. We know by Echo’s Theorem that A = IDy for some proper subvariety ¥’
of (C",0). By deleting suitably components of X we can obtain a germ X; C X
with Dy, y = Dx,y = Dx and such that X isirredundant w.r.t. Y. Then X is
the integral variety of ID x relative to IDy, see Proposition 5.3. Now Proposition
7.1 shows that X is irreducible with X; ¢ Y but Sing X; C Y.

It remains to show that Y equals the germ X~ corresponding to the component
Xi1. Apply Proposition 5.2 to the components Y; of ¥ and to the remaining
components Xs,...,Xm of X. Then Dx C Dy; yields: Yj is contained in two
components of X or Y; is contained in the singular locus of a component of X or
Y; equals a component of X. And IDx, y C Dx, for k > 2 yields: Xj is contained
in a component of Y. Combining these informations we conclude that each Xk,
k > 2,is a component of Y. Let Y; be one of the remaining components of Y. Such
a Y; cannot be contained in any of the Xi, k > 2, and X; ¢ Y implies Y; # X;.
Hence Y; C Sing X;. All this together with Sing X; C Y givesY = X,U...UX,,U
Sing X; = X~. This proves the Theorem.

PART II: VARIETIES ARE DETERMINED BY THEIR TANGENT
ALGEBRA

1. THE LOCAL ANALYTIC CASE

Let X,Y C (C",0) be two germs which are analytically isomorphic: X — Y.
The isomorphism can be extended to an analytic automorphism ¢ of (C",0):
X S v
! !
(c"0 % (C,0).
The corresponding algebra automorphism
@*:O0p—=0p:f—fop

maps Iy onto Ix. It induces a Lie algebra automorphism (interpreting vector
fields as derivations of Oy,)

®:D—->D:D—p*oDo(p*)!

which maps IDy onto ID x by definition of tangent algebras. We thus obtain a Lie
algebra isomorphism

ot =& : Dy = Dy.

Now consider O, with the topology of coefficientwise convergence of power series.
It thus becomes a topological C-algebra and the automorphism ¢* : On — Oy, is
continuous. Identifying ID with the free module O by taking the coefficients of a
vector field, ID is provided with the induced topology.
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Fact 1. D is a topological Lie algebra. Indeed, for D = Y a;0;; and E = Y b;0,;
in ID, their bracket [D, E] = Y ¢0;, is given by

ci= Z(akaz,,bg — bk 0z, ai).
k

Taking partial derivatives is a continuous map from O, to O, and the assertion
follows.

Fact 2. For p € Aut(C",0), the induced automorphism & = ¢! : ID — ID is
continuous. Indeed, for D = Y a;0;; = a - 9; in D, its image is given by

&(D) =(aop)-(8p)~" - Os,

where Oy denotes the jacobian matrix of ¢ and 9, the column vector of components
Oz;. This shows that the tangent algebras of isomorphic germs are isomorphic as
topological Lie algebras. We assert that the converse is true as well:

Theorem. Let X and Y be reduced analytic germs in (C",0) different from 0.
Assume that n > 3. Then X and Y are analytically isomorphic if and only if
DDx and Dy are isomorphic as topological Lie algebras. More precisely, for every
1isomorphism ® : Dy — IDx of topological Lie algebras there is a unique automor-
phism ¢ of (C",0) mapping X onto Y and such that & = ¢!,

Comments. (a) One has to assume that X and Y are reduced as it may happen
that a non-reduced germ and its reduction have equal tangent algebra, see part I,
section 2.

(b) The cases X =0 or Y = { are excluded since § and (C",0) have equal tangent
algebra. One may equally allow X, Y = 0 but exclude X, Y = (C",0).

(c) The assumption n > 3 is used in two places of the proof (Proposition 3.1 and
4.1). We do not know whether the Theorem becomes false for n = 2.

(d) Denote by IDx o the subalgebra of ID x of vector fields vanishing in 0, Dx o =
IDx NIDg. The Theorem also holds true with IDx and IDy replaced by IDx ¢ and
Dy,o. However, one has to assume X and Y different from @ and (C",0). Compare
the remark at the end of section 5.

(e) The choice of topology on O, and hence on ID is rather arbitrary. For instance,
the analytic topology on O, defined by pseudonorms [9, Kap. I] works as well.
Again ID becomes a topological Lie algebra with continuous automorphisms ¢ =
¢! : ID — ID. The statement of the Theorem remains valid for this topology.
Actually, the only properties of the topology on O, which are used are that the
units are dense in O, and that O, is Hausdorff, see the proof of Proposition 4.1.
We do not know whether the Theorem still holds true if we omit completely the
topology and consider only the abstract Lie algebra structure of IDx.

(f) Observe that the Theorem contains as a particular case that any bicontinuous

Lie algebra automorphism @ : ID — ID is induced from an analytic automorphism
¢ : (C*,0) - (C",0).
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2. OUTLINE OF PROOF

For a given analytic automorphism ¢ : (C",0) — (C",0) it is easy to construct the
Lie algebra automorphism @ = ¢! : ID — D by defining ®(D) = ¢* 0o D o (*)™.
The problem is to do the converse: Given ® : ID — ID construct a ¢ : (C*,0) —
(C",0) such that ® = ¢!. Even in case that one knows that & is induced from
some ¢ as above, it is not clear how to recover this ¢ from ®. Namely, write
(D) =¢*oDo(p*)! as

®(a-08;)=(aop)- (8p)™" -0,

where D = a-0,. This equation is explicit in &, but implicit in ¢, actually a partial
differential equation in ¢. One gets stuck. But for ® = ¢! there exists another
identity relating ® and ¢ which makes things much easier: Take a power series
f € O, and a vector field D € ID. Then $~!(D) € D and hence f-®~!(D) € D.
As & = ¢! and ¢* is an algebra homomorphism we obtain

&(f- 271 (D) =" o(f-((¢*) o Dogp*))o(¢*)™! = ¢*(f) - D.
This is now an identity implicit in ® but quite explicit in . As a first thing it
shows - since ID is a free O,-module - that there can only be one ¢ inducing ®.
Moreover it indicates how one may try to construct ¢ for an arbitrary topological
Lie algebra automorphism ® of ID. Define a C-linear map Twistg, 5 : ID — ID by

Twiste, f(D) := ®(f - 271(D)).

Then, for f € On, ©*(f) should be given as the factor by which D is multiplied
when one applies Twiste, s to D. This attempt for recovering ¢ involves several
obstacles one has to overcome. These are:

(1) Given ®, f and D, why should Twists (D) be a multiple of D?

(2) Assume it is. Why should ¢(f, D) in Twistg,s(D) = ¢(f, D)- D be independent
of D?

(8) Assume it is. Why should the map ¢* : O,, = O,, defined by ¢*(f) = ¢(f,D) =
¢(f) be a C-algebra automorphism?

(4) Assume it is. Why should the argument work as well for topological Lie algebra
isomorphisms @ : Dy — IDx and then induce an isomorphism ¢ : X — Y7

The affirmative answers to these four questions cover the next three sections. We
start directly with & : Dy — IDx. Since Dy is an O,-submodule, f - (D)
again belongs to IDy and Twistg, s : IDx — IDx is well defined. Question (1) is by
far the hardest part and requires the whole characterization of tangent algebras
as geometric subalgebras of ID developped in part I. With this the argument for
(1) is geometric and consists in studying the effect of Lie algebra isomorphisms
on proportional vector fields (section 3). Once this is settled a comparison test
allows to establish (2): One has to choose carefully different non proportional
vector fields to show that ¢(f, D) actually does not depend on D (section 4). Here
the continuity assumption gets involved. The proof of (3) will be a quite forward
computation. Finally, to show that indeed ¢(X) = Y, the concept of integral
variety is used (section 5).
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3. LIE ALGEBRA ISOMORPHISMS RESPECT PROPORTIONA-
LITY

Let & : Dy — IDx be a Lie algebra isomorphism, f € O, a power series and
Twiste, s : Dx —» Dx : D — &(f - @~1(D))

the associated C-linear map. Our aim in this section is to show that Twiste, ¢(D)
is a multiple of D. Observe that if we knew that ®~! maps the O,-module (D)
generated by D onto a submodule of Dy this were immediate. Indeed, f-®~1(D)
would then also belong to this submodule and @(f - ~1(D)) € (D) would follow.
But there is no a priori reason for a Lie algebra isomorphism to send modules to
modules, i.e. to be “compatible” with the 0,-module structure of ID.

Actually, we shall be able to prove this statement for certain submodules of ID x,
but the argument makes some detour before arriving there. We give a brief heuri-
stic description valid for nonsingular vector fields D, i.e. D(0) # 0. Then E € (D),
say E = a - D with some a € O,, if and only if E is proportional to D on some
neighborhood of 0 in €. By this we mean that for p € C" close to 0, the evalua-
tions D(p) and E(p) point in the same direction as vectors of C" .

Now assume that we can show that ® maps proportional vector fields onto propor-
tional vector fields. As ®~1(D) and f-®~!(D) are trivially proportional, it would
follow that D = ®(®~1(D)) and Twiste,s(D) = &(f - ~!(D)) are proportional.
For nonsingular D we could conclude that

TWiStQ,f(D) € (D)

as required. Therefore one is led to investigate whether Lie algebra isomorphisms
preserve proportionality of vector fields. The idea is that two nonsingular vector
fields D, E are proportional if and only if they are tangent to the same collection
of subvarieties Z C (C",0) :

{Z - (Gnao)» De lDZ} = {Z C (C",O), Ee€ IDz}

Hence it would be useful to know whether the image of a tangent algebra IDz
under a Lie algebra isomorphism & is again a tangent algebra, ®(IDz) = Dz
For this purpose we use the characterization of tangent algebras proven in part I,
section 9, and conclude:

Corollary. Let X,Y,Z C (C",0) be analytic germs, ® : Dy — IDx an isomor-
phism of Lie algebras. If no component of Z is contained in Y there is a germ
Z' C (C",0) with no component contained in X such that

(I’(]Dy,z) = ]Dx,z/.
In particular, ®(Dy,z) is a submodule of Dx.
The statement of the Corollary is crucial for our argument. In order to prove that
Twiste, (D) € (D) we shall combine this result with the following description of

principal modules: Denote by Hp the set of all irreducible hypersurfaces Z C
(€™, 0) to which D is tangent:

Hp = {Z c (C",0) irreducible hypersurface with D € Dz}.
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Proposition 3.1. Assume n > 3. Let X C (C",0) be an analytic germ and
D € Ix -ID a reduced vector field, i.e. D = g-D' with g € Ix without multiple
factors and D' € ID with D'(0) # 0. Assume that D' is not tangent to any
component of the zero set V of g in (C",0). Then

(D) = ﬂ Dy, z.
ZeHp

Note that this is false for n = 2. Take e.g. D = 0;,. Then Z = {z; = 0} is the
only hypersurface to which D is tangent, Hp = {Z}. But E = z; - 0,, is tangent
to Z, E € Dz, whereas E ¢ (D).

The proof will show that it suffices to take in the intersection above for Z only
the irreducible components of V' and smooth hypersurfaces. Before proving Pro-
position 3.1 we deduce:

Corollary. Assume n > 3. Let X,Y C (C",0) be analytic germs different from
(C",0) and ® : Dy — IDDx an isomorphism of Lie algebras. Let D € Ix - ID
be as in Proposition 3.1 and M = (D) C IDx the submodule generated by D.
Then ®~1(M) is a submodule of DDy. In particular, for all f € O, one has
Twiste,¢(D) € (D).

Proof of Corollary. If some Z € Hp is contained in X, it must be a component
of X by comparison of dimensions and since X # (C",0). But a vector field is
tangent to a germ if and only if it is tangent to all of its components. Therefore
IDx,z = Dx and Z can be dropped from the intersection in Proposition 3.1. The
assertion now follows from the Corollary preceding the Proposition applied to ®~1.

Proof of Proposition §.1. We only have to show that

(| Dzc (D).

ZeEHp

(a) Let ¢ = g1 - * - gm be the decomposition into prime factors and V = JV;
the corresponding decomposition into irreducible components. We first prove that
h- D' € Dy, for some h € O, implies h € (g). But h- D' € Dy, signifies that

h-D'gi € (gi).
As D'g; ¢ (gi) by assumption on D we obtain h € (gi). Thus k € [\(gi) = (g), for

¢ has no multiple factors.

(b) By (2) and since all V; € Hp we are reduced to prove that

(| Dzc (D).
Z€EHp
As D'(0) # 0 a change of coordinates in (C",0) allows to write D' = 0,, (5, chap.
111, sec. VII, Lemma 1]. Take any E € ) zen, Dz and an arbitrary irreducible
hypersurface Z' C (C"*~',0). Clearly D' = 8,, is tangent to Z = (C,0) x Z', thus
D € Dz, Z € Hp and consequently E € IDz. Restricting E to {p} x (C"*™',0) for
p € C close to 0 and projecting onto its tangent space one obtains a vector field E'
on (C"~1,0) which is tangent to Z’. As this holds for all Z’ the assumption n > 3
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forces E' to be 0, see part I, section 6. For this argument it suffices to consider
only smooth hypersurfaces. But p € € was arbitrary. Hence E € (8;,) = (D') as
required.

4. INDEPENDENCE

In this section it is shown that Twiste s(D) is a multiple of D with factor inde-
pendent of D.

Proposition 4.1. Let X,Y C (C",0) be analytic germs different from (C",0).
Assumen > 3. Let ®:IDy — Dx be an isomorphism of topological Lie algebras.
For every f € O, there is an element ¢ = ¢(f) € O, such that for all D € Ix - ID:

Twiste ¢(D) = c- D.
Proof. Choose generators gi,...,gm of Ix without multiple factors and coor-
dinates z1,...,z, such that none of the coordinate axes is contained in any of
the hypersurfaces V; defined by ¢;. Rossi’s Theorem shows that none of the vector
fields 8;,,...,0;, is tangent to any of the components of the V;’s. By the Corollary

of Proposition 3.1 the modules M;; generated by ¢;0;; are mapped by Twists s
into themselves. Hence for every unit u € O, there are unique c;j(u) € O, with

Twiste, f(ugi0z;) = cij(u) - u - gi - Oz;.

We shall show that c;;(u) does not depend on ¢,j and u. So let us write D;j; =
9i0z;. Choose k # j and consider

D=u-D;j, E=a-Dy with ue O}, a€cC*,

D'=u-0;, E'=a-0,.

We claim that there is an a € C* such that D'+ E' is not tangent to any component
of V;. Indeed, otherwise D' 4+ E' were tangent to the same component of V; for at
least two different values of a. Taking differences, E' were tangent contradicting
our choice of coordinates. Thus the Corollary to Proposition 3.1 can also be applied
to D+ E = g;(D' + E'). All together we get:

Twistq,,f(D) = c,-j(u) -D, TWistq;,f(E) = c;k(a) -E,

TWiStQ,f(D + E) € (D + E)

As D, E are linearly independent over O, one deduces (see the Lemma after the
proof) that

cij(w) = cik(a).

As a € C* and Twistg, s is C-linear we get cit(a) = cix(1). Hence c;j(u) is
independent of j and u:

Twiste, ¢(u - Dij) = ¢ - u - Dyj.
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But Twistg, ¢ is continuous, the units are dense in O, and O,, is Hausdorff. The-
refore

Twistq>,f(h . D,'j) =ci-h-Djj
for all A € O,. In particular, setting h = gi for k # ¢ we see that c; does not

depend on i. The Proposition is proven.

Lemma. Let L : Dx — Dx be C-linear, D,E € Dx linearly independent over
O,. Assume

L(D)=cp D, L(E)=cg-E, LD+E)=cpig-(D+E)
with coefficients in On. Then cp = cg = cp+E.

Proof. Linearity gives (cp —cp+g):D = (cp+e—cg) - E. Then cp = cp+g = cE
as D, E are linearly independent.

5. X AND Y ARE ISOMORPHIC
The proof of the Theorem of section 1 is now completed by

Proposition 5.1. Let X and Y be reduced analytic germs in (C*,0) different
from (C",0). Let ® : Dy — IDx be an isomorphism of Lie algebras. Assume
that for every f € O, there are elements af,cy € On such that

Twiste, f(D) =ag- D
TWiStq,—-l,f(E) =cCf- E
foralDeIx-ID and all E € Iy - ID. Then f — ay and f — c5 define mutually

inverse automorphisms of O,. The corresponding analytic automorphism ¢ of
(C™,0) maps X onto Y and induces ® as & = b,

Proof. (a) Let a : O, — Op be the map given by a(f) = ay. Clearly a is C-linear
and injective, since Ix # 0. It is an algebra homomorphism, since for f,g € O,
and D € Ix - ID computation gives a(f - g)- D = a(f) - a(g) - D.

(b) a is bijective: Let v : Op — Op be the map defined by v(f) = c¢5. For
0#E €Iy D and 0 # g € Ix one Has
0#D:=g-®E)elIx-D and & '(D)=19(g)-E€ly D.
For f € O, we get by computation
f-D=a(x(f))-D
- proving vy = a” !,

(c) ® is induced from a: Choose any D € Ix - D, D # 0. For arbitrary E €
Dy, f € O, we have

&([E,f-271(D))) = [®(E), &(f - 27*(D))]
= [®(E), a(f) - D]
= &(E)(«(f)) - D + off) - [2(E), D].
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On the other hand

®((E,f-27'(D))) = ®(Ef-27'(D) + f - [E, @7} (D)])

o(Ef)- D+ ®(f - 7 ([2(E), D))

o(Ef)- D + o(f) - [2(E), D].

For the last equality note that [®(E), D] € Ix - ID since Ix - ID is an ideal of Dy,

cf. Proposition 2.1 of part I. We conclude that ®(E)oa = a o E for all E € Dy
as claimed.

1l

(d) It remains to show that ¢(X) =Y. We shall use Proposition 5.3 of part I. To
apply this result in our situation, let X’ = ¢~}(Y). Then Dx: = ®(IDy) = Dx.
Setting Y = { in the Proposition gives X' = X.

Remark. Assume that X and Y are different from @ and (C",0). Then Proposition
5.1 holds true with IDx and Dy replaced by IDx,¢ and Dy,. Indeed Ix - ID is
an ideal of IDx ¢ since X # @ and the remainder of the proof remains unchanged.
For (d) only note that ¢(X) = Y is easily seen if both X and X' = ¢~!(Y) are
different from 0, apply Proposition 5.3, part I, with Y = {0}. In case X = 0 and
X' # 0 we have Dx/ 9 = IDx,o = IDg¢ and the same Proposition yields X' = 0
contradiction. The case X = X' = 0 is trivial.

6. THE AFFINE ALGEBRAIC CASE

Theorem. Let X and Y be reduced non-empty algebraic subvarieties of affine
space A™ over an algebraically closed field K of characteristic zero. For every
isomorphism ® : Dy — IDx of abstract Lie algebras there is a unique algebraic
automorphism ¢ of A™ mapping X onto Y and inducing ®.

Proof. Again we may assume that X and Y are different from A™. To a point p €
A" associate the Lie algebra ID x , of vector fields tangent to X and vanishing in p.
By Propositions 4.2, 7.1 and 8.1 of part I this sets up a one to one correspondence
between the points outside X and the maximal geometric subalgebras of IDx
having finite codimension. Hence for any p in the complement of X there is a
unique point ¢ = ¢(p) in the complement of Y such that ®(Dy,,) = IDx,p. This
defines a bijection ¢ : A™ \ X — A"\ Y. We claim that ¢ is the restriction of a
biregular map @ : A® — A™. One first shows that ¢ is regular on A"\ X. Taking
up an argument already employed by Shanks and Pursell [23] and Omori [19], let
z; denote the coordinate functions on A™ and let D € IDx. Set

D; = Twistq;,x,.(D) = (I>(:v; . (IT_I(D)).
Then $~1(D; — ¢i(p) - D) = (zi — vi(p)) - @~1(D).

This vector field vanishes in ¢ = (p), i.e. belongs to Dy,,. Hence, if p is outside
X, its image D; — pi(p) - D lies in Dx p. Setting D = Y b;0;;, Di = ) ai;0y;
with b;, a;; € K[z] and varying p in A™\ X we obtain that a;j = ¢;-bj on A"\ X
for all 7, 5.

For any point p in the complement of X one may choose b € Ix not vanishing in p.
Since D = b-0;, is contained in IDx this shows that ¢ is regular on A”\ X. If X has
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codimension > 2, ¢ extends to a regular map @ : A® — A™. The same argument
applied to ¢! proves that ¢ is biregular, i.e. an algebraic automorphism. It is
then clear that ¢ maps X onto Y and induces ®.

In general, X is the union of a variety X of codimension > 2 and a hypersurface
X2 = {h = 0}. Choosing b € Ix, the vector fields b-(9;; h- 0z, — 0z, h-0:;) belong
to IDx, NIDx, = IDx. Taking these for D one concludes that ¢ is the restriction
of a regular map on A" \ (X; U Sing X3). But as X; U Sing X, has codimension
> 2 one can proceed as before.
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