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Introduction

In the two parts of this paper we propose to study singularities of complex-analytic
varieties and mappings. The first part investigates singularities of germs of
complex-analytic varieties in (C”, 0) under analytic isomorphism and their relation
to the singular subspace of the variety. The second part presents a characterization
of analytic mappings under .«7/-equivalence, i.e., coordinate changes in source
and target.

Part I

Let (X, 0) and (Y, 0) be two germs of complex-analytic varieties in (C", 0). Assume
they are smooth; then they are isomorphic, if and only if they have the same
dimension. Assume they are singular; then they are isomorphic, if and only if ...!

The purpose of Part I is to provide the dots with a syntactic, and the singular
locus of (X, 0) with an analytic structure, such that the first characterizes via the
second the initial structure of the variety (X, 0).

For an embedded hypersurface (X,0)S(C"0) of equation f(x)=0, let
Sing(X, 0) denote the singular subspace of (X, 0) defined by the ideal (1) +j(f) of
0, (j(f)=jacobian ideal of f). Sing(X, 0) being an analytic invariant of the variety,
it is natural to ask to what extent it determines the variety (X, 0), i.e., whether
Sing(X, 0) =~ Sing(Y, 0) implies (X, 0)x(Y, 0)?

Answers to this question have been found in special cases: Benson and
independently Shoshitaishvili could affirm the question for homogeneous (resp.
quasihomogeneous) hypersurfaces with isolated singularity [B], [Sh]. Then
Mather and Yau extended these results to arbitrary isolated hypersurface
singularities [M-Y].

In PartI we propose the study and complete answer of the question for
arbitrary varieties (X, 0) in (C",0).
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The answer is “Yes” for varieties of isolated singularity type. By definition,
(X,0) has isolated singularity type (I.S.T.), if Sing(X,0)2 Sing(X,a) for a0
varying in a sufficiently small neighborhood of 0 e C".

not IST

IST

The answer is “No” for varieties which are not of isolated singularity type: we
shall give the example of a family of hypersurfaces (X, 0), ¢ € (C, 0), with constant
singular subspace Sing(X,,0)=Sing(X,,0) but varying analytic type (§4). This
shows in particular that even the continuous version of the question, i.e., (X,0)
varying in a local family, has a negative answer.

However, if one replaces Sing(X, 0) by a slightly bigger subspace of (X, 0), the
answer turns again to the affirmative: more precisely, let S be a submanifold of C"
and Z < C" a manifold whose coordinates form a set of equations for S. Let jg(f)
and j,(f) denote the ideal of partial derivatives in direction of S and Z, and

Singg(X,0) the subvariety of (X,0) defined by (f)+m, js(f)+i/f)
(2, =maximal ideal of 0,)

Theorem. For all manifolds SCC" containing the stratum XCC" along which
Singg(X, 0) is trivial (i.e., a product), the analytic type of (X,0) is determined by
Singg(X, 0).

By the example of § 4, the assertion is sharp. As a special case one obtains, that
Singen(X, 0) defined by TK(f)=(f)+,-j(f) always characterizes (X, 0).

The Theorem will be generalized to the non hypersurface case defining
Singg(X, 0) by the analytic module

ORI - O + - js(F) +i2(f)

(f=(f1, ..., f,) € O} defining equations of (X, 0)) and introducing a category of
generalized analytic varieties defined by analytic modules.

Yau has informed us, that he and Mather have found that TK(f) determines
(X,0) for (X, 0) complete intersection with isolated singularity. In the same case,
Martin [Ma1] shows that Sing,(X,0) determines (X,0). On the other hand,
Dimca proved an analogous result using the ideal of minors of the jacobian
matrix in the case of 0-dimensional or homogeneous complete intersections [D].

The first part concludes with the mentioned example and, as an application of
the techniques used, an extension of Saito’s result [Sa] characterizing quasi-
homogeneous polynomials.

Part I1

In Part II we prove analogues of the main theorems of Part I for map germs.
Two map germs f,g e OF are </-equivalent if there are coordinate changes in
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source and target, say r and [ such that [o for=g. We let .« denote the group
formed from pairs of coordinate changes on source and target. The object that
plays the part of the tangent space to the .o/-orbit of f at f is mz,jca(f) + f*(s22,07),
denoted T</(f). Given Partl, it is natural to conjecture that Te/(f)
=T (9)=f 9.

If f has finite singularity type (i.e., V(f) is a complete intersection with isolated
singularity or V(f)is anisolated point) then this conjecture is true, and is proved in
Part B of the Theorem.

Just as there is a geometric interpretation of O5/TK(f) in Part I, so there is
also a geometric interpretation of O5/T/(f). This ¢ -module (via f) can be
viewed as the stalk of a sheaf on the target € (the construction of a related sheaf is
given by the proof of Part A of the theorem). The support of this sheaf is just the
locus of instability in the target. This consists of all y € C” such that the germ of f at
S=f"!(y) is unstable. Since two stable germs are .«/-equivalent if they are
K-equivalent, it is precisely over the locus of instability that the more complicated
behavior of the map takes place.

If the behavior of a map germ at the origin is different from its behavior at
nearby points, following Part I it is natural to conjecture that if T.of,(f)=jcn(f)
+ f*(0%) = T (g), then f and g are «/-equivalent. We prove this in Part A of the
Theorem with the additional hypothesis that f is finitely determined ie.,
Tl (f) 20" for some k, but f not stable.

Unfortunately, it is not clear how to prove the precise analogue of the
corresponding theorem of Part I, because the sheaves in the &/ case are more
difficult to work with (they involve direct images). In actually classifying germs, the
finitely determined case is the most important and the one in which our theorem
will be most useful.

The proofs of our theorems also illustrate some of the advances in technique of
recent years. In their paper, Mather and Yau used the notion of finite determinacy
to reduce to lie groups acting on jet spaces. The advantage of this method is that
algebraic problems are reduced to ones involving finite dimensional vector spaces.

However, this limits the generality of the results that can be obtained. This
paper shows that sufficient algebraic techniques exist to work with germs which
are not finitely determined so that jets can be dispensed with. Thus, we can handle
arbitrary varieties and map germs which are of finite singularity type. It even turns
out that the algebra is strong enough to reduce everything to questions about finite
dimensional vector spaces and linear maps between them again.

Lemma 3 is of independent interest to singularists for it shows that the module
structure of T/ (f) is “convex” in some sense. It implies that if T.o/(f)= T.¥(g)
then To/(f) is an f*(¢,-module for all ¢, where f,= f +t(g— f).

1. Deformations

Let K denote the group K= GI,(0,) x Aut(C",0) acting on OF via (L,¢)-f
=L-(f-¢).For fe @?let(f)denote theideal of O, generated by the components f;
of f and (X, 0) the complex-analytic variety in (C",0) of local ring Oy o= 0,/(f).
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Lemma 1. ([M], p. 136) The fibers of the map

n: OF —{isomorphism classes of analytic varieties}
[, 0]

(respectively t : OF —{analytic varieties}, f —(X,0)) are the K-orbits (respectively
Gl,(0,)-orbits) in OF. In particular, the fibers of t contain with any two elements
f>g € O? all elements except a finite number of the complex line l= f +C(f —g)C OF
through f and g. Asthe fibers of T are connected, any two isomorphic varieties can be
joined by a family of isomorphic varieties.

Definition 1. A map from an analytic manifold T to a free ¢,-module, f:(T,0)
—(02, f,), is called analytic at a point OeT, if the induced map-germ
F:(TxC" 0)->C? defined by F(t,x)=f(t)(x) is analytic. For given f,e®?,
f:(T,0)—>(02, 1) is called a deformation of f,; f is K-trivial, if its images f,: = f(¢)
lie for t close to 0e T in the K-orbit of f,, ie., for any te(T,0) there exists
(L., #,) € K with L, (f;> ¢,)= f,. Geometrically speaking, a deformation h: (X,0)
—(T,0) of (X,,0)=(h~1(0),0) is trivial, if all its fibers (X,, 0) are isomorphic to
(Xo,0).

Proposition 1. (Ephraim, [E2]) If f:(T,0)—>(0O%, fy) is trivial, there exists an
analytic map (L,¢):(T,0)~(K,e), e=(1,Iden) €K, such that L,-(f,c¢,)=fo.
Equivalently, a trivial deformation h:(X,0)—(T,0) of (X,,0) is a product

X,0)—=—— (X, xT,0)

(T,0)

Proposition 2. Let f:(T,0)— (02, f,) be a deformation.

(a) f is K-trivial, if and only if for any coordinate s on (T,0) and any point
t € (T, 0) the tangent-vector 0, f,: = %Z;(t) € OF to the path f, belongs analytically to
the tangent-space TK(f):=(f) - OP+m,-j(f,) of the K-orbit of f,, ie., by
definition, there exist analytic mappings M :(T,0)—(M(0,), M,) and y:(T,0)
(0", o), w,(0)=0€eC", with

O, fi=M,- fi+vy,-0.fr (x=(xy,...,x,) coordinates) .

(b) Let G denote the group G=Gl,(0,); then f is G-trivial, if and only if 0,f,
belongs analytically to (f,)- 0% for te(T,0).

Proof. To simplify notation, we assume (7, 0)=(C,0). For given deformations
L:(T,0)-(GI,(0,),1) and ¢:(T,0)—(Aut(C",0),Ids.) the equation f,=L,
-(f;o ¢,)is equivalent to 0=0(L, - (f; - ¢,) for some coordinate s on T. By chain and
product-rule we obtain

0=0,L;- (fio¢)+ Ly 0p:- (0xfi09) + Ly~ (05 fro ) € OF. (*)
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Multiplication from the left by L, ! and composition from the right with ¢, ! give
05 Ji€ (f)) - OF+ om0 j(f) = TK(f) (**)
analytically in t € (T, 0). Conversely, assume (#*): then
Osfi=M, fi+v,- 0. fie TK(f) (**+)

with deformations M :(T,0)—(M,(0,),M,) and y:(T,0)—(0Op,y,) with y,0)
=0¢eC". The differential equations

b=y, 4, $o=Id¢n
OLy=L,-(M,o¢) Lo=1

admit analytic solutions ¢ : (T, 0)—(Aut(C",0),1d¢.) and L: (T, 0)—(Gl,(0,), 1) by
integration of vectorfields. By substitution in (***) we get (*) and hence the
K-triviality of f. This proves (a) and (b) follows similarly.

Remark. Note that in the above proof, y(0) =0 implies ¢,(0) =0. This assures, that
the varieties X, and X, defined by f; and f, are actually isomorphic at the origin,
(X, 0)~(X, 0). The weaker assumption

Osfi€(f) - On+i(f)

might allow ¢,0)=a,+0€C" and would only imply (X,,a,)=(X,,0) but not
necessarily (X,,0)=(X,,0).

The following result shows that in certain cases, the hypothesis of Proposit-
ion 2, J,f,€ TK(f;) analytically in teT can be weakened to J,f,€ TK(f,)
pointwise:

Lemma 2. Let g,: (T, 0)—>((0?)4, g,) be an analytic map and M, be the submodule of
OF generated by the q components of g,.
If {M},c(r,0 is a flat family over (T,0), then for any analytic map h,:(T,0)
_')((95, hO)
h,e M, pointwise for te(T,0)

implies
h.e M, analytically in te(T,0).

This holds in particular for families M,= M constant.

Proof. By [Ha], Th. 1,ch. 1.2, (cf. also [Ga] and [Hi]), {M,},(r, 0, is flat if and only
if
M@4(My)=0; for te(T,0), (*)

where 4(M,) is a complement of M, in ¢F given by the Division Theorem for
modules:
M,®A(My)=0".
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Note that the equality (*) holds analytically in ¢ (loc. cit. Th. 2, A II). Division of h,
by M, gives
h,=h,mod M,

analytically in ¢t with h,e A(M,). As h,e M, pointwise, h,e M,n4(M,)=0, ie.,
h,=0 and therefore h, € M, analytically in ¢.

The singular subspace of a variety

Definition 2. For a manifold S in €" and f'€ ¢? we denote js(f) the submodule of
OF generated by the partial derivatives of f in direction S:

jS(f)z(aslfa ’askf)g(pg

for a coordinate system s =(sy, ..., s;) on S. Note that js(f) does not depend on the
choice of coordinates. We then define

Tsf =(f)- On+mn-js(N) +j(NIEOR

where ZC " denotes any complement of S in €, § x Z=~C", whose coordinates
form a set of equations of S. The module Ty f does not depend on the choice of Z. In
the special cases S=C" and S=0 we get Tg.f = TK(f) and Tp f =(f) - O2 +j(f).
Let (X,0) be the variety defined by f. We denote by Singg(X,0) and call the
singular subspace in direction S of (X,0) the set of singular points of (X,0)
provided with the analytic structure of the module ¢2/Tyf. Even though
Singg(X, 0) is not a variety in the strict sense, if (X, 0) is not a hypersurface, we
consider it as a subvariety of (X, 0). In the appendix we shall indicate how one
could extend the notion of analytic varieties and morphisms between them to
varieties defined by analytic modules instead of local rings.

For two varieties (X, 0) and (Y, 0) in (C", 0) and two manifolds S, S’ CC" we say
that Singg(X, 0) and Singg. (Y, 0) are isomorphic, if there exist a coordinate change
¢ :(C",0)—(C",0) sending S to §’ and an O,-linear isomorphism L: O — " such

that .
Tyg=Tys(L-(fod™ ")EOE.
where f and g e 07 denote defining equations for (X, 0) and (Y, 0).

Lemma 3. The singular subspace Singg(X,0) is an analytic invariant of (X, 0).
More explicitely, if ¢:(C" 0)—(C"0) is an isomorphism sending (X,0) to (Y,0),
then Singg(X,0) and Sing,s,(X, 0) are isomorphic in the above sense.

The proof follows immediately from the definitions.

Remarks. For $ =0 C" we mostly write Sing(X, 0) instead of Sing, (X, 0). If (X, 0)
is a hypersurface, Sing(X, 0) is the usual singular subspace defined by the ideal
() +j(f). If (X,0) is not a hypersurface, the singular subspace defined by the
minors of the jacobian matrix of f and the singular subspace defined here are
actually different. As it turns out, our proof needs the module structure of O2/T; f
on the singular locus of (X, 0) to be able to recover (X, 0) from it.

Note that for SCS” one has Singg(X, 0) < Singg. (X, 0).
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The analytic and the singular stratum of a variety

Definition 3. The analytic stratum of a variety (X, 0) in (C", 0) is the set-germ A4 of
points in (C",0) along which a representative X of (X, 0) is trivial:

A={ae(C",0),(X,a)=(X,0)}<(C",0).

We say that (X, 0) has isolated analytic type, if 4=0, i.e., (X,a)%(X,0)forain a
neighborhood of 0 e C".

Theorem. (Ephraim, [E2]) Let (X,0) be a variety in (C",0).
(1) The analytic stratum A of (X,0) is the germ of a submanifold of (C",0).
(2) The variety (X,0) is a product along A:

(X,00=(Xo,0)x 4,
for some variety (X, 0) in (C",0).

Definition 4. For a manifold S CC" we define the singular stratum in S-direction of
(X,0) as the stratum X=X in (C",0) along which Singg(X, 0) is trivial. This is
again a manifold as Ephraim’s Theorem extends to analytic modules (cf.
appendix). We say that (X, 0) has isolated singularity type, if >,=0, i.e.,

Sing(X, a) & Sing(X, 0)

for a in a small neighborhood of 0eC". Obviously, (X,0) being of isolated
singularity type implies (X, 0) of isolated analytic type. The converse is not true in
general: in §4 we shall construct a variety (X,0) in (C"x C,0) with constant
singular type along (0 x C,0) but varying analytic type.

Examples.

(1) Whitney Umbrella: (X,0)<(C3,0): x*z—y*=0.
Sing(X,0): (x%,xz,y)C 05, LS.T.

(2) Cone over the Tacnode: (X,0)<(C3,0): x* + y* —xyz?=0.
Sing(X,0): (4x> —yz?,4y® — xz2, xyz) C 05, LS.T.
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(3) Vanishing node: x3+ x2z% —y? =0.
Sing(X,0): 3x? +2xz2%, y, x?z), LS.T.

?z

-

Here some other examples of varieties with isolated singularity type:

(4) The product of two cusps with perpendicular tangentlines at 0.
(5) Cusp deforming along a cusp to a parabola.

(6) The Peak: Cusp walking along cusp with same tangentline, stretching as 0
approaches.

(7) The Thorn: Product of two cusps with same tangentline at O:
x=s5>+12, y=s3, z=1>
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Remark. For different SCC” the stratum X along which Singg(X,0) is trivial,
might vary. However, one should expect that the stratum becomes smaller as S
increases:

Proposition 3. Let SCS’ be two manifolds in C" and X, 2’ the corresponding singular
strata of (X,0). Assume (X,0) is a hypersurface. If X285, then £2%".

Remark. We don’t know, if X2 X" in general. For hypersurfaces, setting S =0 and
§’'=2,itfollows that S'2 X”. This will be useful in applications of the theorem of the
next section.

Proof. Letg=(yg;,...,9,) and g'= (g}, ..., g,) denote systems of defining equations

of Singg(X,0) and Singg (X,0). Choosing a decomposition §’'x Z~C" and
coordinates x of €", s of S, (s,s") of $" and z of Z we can write

g = (f_; xasf’ xas‘f’ azf’ 6s’f) and g’ = (.7: xasfa xas’f’ azf’ 0)

with the obvious notation. For t € €", we set h,(x) =g(x +t), hj(x)=g'(x +t). After
a suitable coordinate change in C", we can assume by Ephraim’s Theorem that
Sings(X, 0) is constant along X. As S’C X, Proposition 2(b) gives

Js(h) S (hy)- 05 1)
analytically in ¢t € §’. By part (a) of Proposition 2:
Je(h) S (hY) - O+ ey () @)
analytically in t € 2”. We have to show that Singg(X,0) is trivial along 2", ie.,
Je(h) E(he) - O+ sy jenl(hy) (€)
analytically in t € 2”. This will follow from (2) if one can prove that
Jv(h)=jy(h) mod(h)- Oy @

analytically in ¢t e 2" and for any submanifold V of C".
Let v be a coordinate on V. Comparing h, and h; componentwise, it becomes
clear that it is sufficient to show

0,05 f;=0mod(h,)

analytically in t € 2’, where f(x)=f(x+t). For v=s or v=ys’, this follows directly
from (1). For v=z, write 0,0, f =0,0,f and again (1) applies. This proves the
Proposition.

2. Characterization of varieties by their singular subspace
Theorem. Let (X, 0) and (Y, 0) be two germs of complex-analytic varieties in (C”,0).

Let SCC" be a manifold containing the stratum X CC" along which the singular
subspace Singg(X,0) of (X,0) is trivial.
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The varieties (X,0) and (Y,0) are isomorphic if and only if their singular
subspaces Singg(X,0) and Sing, (Y,0) are isomorphic via an isomorphism

h=(L, ).

Remarks. (1) The theorem fails over R or a field of positive characteristic. It also
fails if the manifold S does not contain the stratum X (cf. the example, §4).

(2) The assertion becomes stronger the smaller a manifold S satisfying S2 %
can be chosen.

(3) For practical computations, the most interesting case occurs, when (X, 0)
and (Y, 0) are reduced hypersurfaces: the singular subspaces are then varieties of
smaller dimension and have usually simpler equations.

Example. The Whitney umbrella (X,0)<(C3,0) defined by x*>—y?z=0 is of
isolated singularity type and hence determined by Sing(X, 0) =Sing,(X, 0), i.e., the
ideal (x, yz, y?)C 0,. Therefore in order to check that a variety (Y,0)<(C3,0) is
isomorphic to (X, 0), it is sufficient to show that the ideal defining Sing(Y, 0) is
isomorphic to (x, yz, y?).

Particular cases. (1) Take S =C": The analytic type of (X, 0) is always determined
by the largest singular subspace Singg.(X, 0).

(2) Assume SCC" contains both the strata along which Singg(X,0) and
Sings(Y, 0) are trivial: then (X, 0)=~(Y,0) if and only if Singg(X, 0) = Singg(Y, 0).

(3) The geometrically most interesting case occurs perhaps when (X, 0) and
(Y, 0) are of isolated singularity type (def. 4): (X, 0)= (Y, 0) if and only if Sing(X, 0)
=~ Sing(Y, 0) (S=0).

(4) Let S be now the stratum of Sing(X, 0)-triviality of a hypersurface (X, 0).
Then by Proposition 3 and the remark following it, S contains the stratum of
Singg(X, 0)-triviality. Let S” denote the corresponding stratum for the hypersur-
face (Y,0), then (X,0)~(Y,0) if and only if Singg(X,0)=Sings.(Y,0). This
provides a way to find a manifold S strictly smaller than €" such that Singg(X, 0)
characterizes (X, 0).

(5) Suppose (X,0) is of isolated singularity type. If (X,0) is also of finite
singularity type (dim¢(0%/T, f < o), then the analytic type of (X,0) is deter-
mined by the finite-dimensional vectorspace Oginox,0)=05/Tof and its
0,-modulestructure. Example: (X,0) is a complete intersection with isolated
singularity.

(6) Let (X,0) be a hypersurface. As Sing(X, 0) is then defined by an ideal, we
can consider Sing(Sing(X, 0)) (cf. appendix for the non hypersurface case and the
iteration of passing to the singular subspace). If for instance Sing(X, 0) has isolated
singularity type (and consequently (X,0) as well), (X,0) is characterized by
Sing(Sing(X, 0)), which for Sing(X, 0) finite singularity type, would be again finite
dimensional.

(7) Let (X,0) be arbitrary and SCC" containing the Singg(X, 0)-stratum of
triviality. Then (X, 0) is a product (Y x Z,0) with (Z,0) smooth, if and only if
Sings(X, 0) is a product along (Z, 0).

(8) The theorem also provides an extension of Shoshitaishvili’s result on right-
equivalence [Sh]: Let f and g € 0, define hypersurfaces of isolated singularity type.
Assume f weakly quasihomogeneous (cf. Prop. 4, §4). Then f and g are right
equivalent if and only if 0,/j(f) and 0,/j(g) are isomorphic as C-algebras.
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Remark. Leti: 0,— 0% be a C-linear map such that the subvariety C(X, 0) of (X, 0)
=(f"40),0), f€0,, defined by the components of i( /) is an analytic invariant of
(X,0). Then if Singg(X,0)CC(X,0)S(X,0) with S22 =Singg(X, 0)-stratum,
C(X, 0) determines the analytic type of (X, 0). This combined with the example of
§ 4 illustrates, that in general Singg(X, 0) with S2 X5 is the “smallest” subvariety of
the hypersurface (X, 0) which characterizes the analytic type of (X, 0).

Proof of the Theorem. If (X,0)=(Y,0), then Sings(X,0)=Sing,s,(Y,0) by
Lemma 3. To prove the inverse implication, we shall proceed in several steps:

(1) Reduction to the case Singg(X,0)=Sings(Y,0): The isomorphism
h=(L, ¢) between Singg(X, 0) and Sing,s,(Y, 0) is induced from ¢ € Aut(C",0) and
Le GI,(0,). Replacing (Y,0) by ¢~ '(Y,0) and the system of equations g€ O? of
¢~ '(Y,0) by (L™ > ¢)- g, one checks immediately that Singg(X,0) = Singg(Y, 0).

(2) Set fi=f+tlg—f)eO?, teC, f,ge0® equations for (X,0) and (Y,0):
Then the family {(X,, 0)},.¢ defined by f, describes a deformation from (X, 0) to
(Y,0).

(3) Singg(X,,0)=Singg(X,,0) for te TCC Zariski-open: Let h and k e (0?)
be defining equations for Singg(X, 0) and Singg (Y, 0) derived from f and g in the
obvious way. Then h,: = h+ t(k — h) defines Singg(X,, 0) and Lemma 1 proves the
equality (cf. also Lemma 1’ of appendix).

(4) Reduction to the assertion: For any ¢, € T, the deformation {(X,, 0)},c(r.+,)
of (X,,, 0)is trivial: I {(X,, 0)} is locally trivial at any t, € T, it will be globally trivial
over any compact subset of the connected set T, hence (X, 0)=(X,0) and (X, 0)
=(Y, 0) will be isomorphic. (This argument fails over R or for char >0, as then T
need not to be connected.)

(5) The deformation {(X,, 0)},¢(r,.,) Of (X,,, 0)is trivial for any t, € T: By (3), . f,
=g—feTif,=Tsf =Tggforanyte T. By Lemma 2, this inclusion is analyticin t.
We can therefore apply Proposition 2 with TK(f;) replaced by Tgf, to the
deformation f, and obtain isomorphisms ¢, : (C",0)—(C", a,), a,=¢,0), sending
(X, a,) to (X,,,0). As mentioned in the remark following Proposition 2, ¢, may not
send origin to origin:

We claim that the initial hypothesis on the manifold S, namely that S contains the
Sings(X, 0)-triviality stratum, will insure that ¢, actually does preserve the origin.
Hence a,=0€ C" and (X,,0)=(X,,,0) for all te (T, ¢,).
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Notice first that from the way Tgf; is defined and enters in the proof of
Proposition 2, the S-coordinates of a, must be 0. Therefore, if a, moves with ¢, it
must move off S.

Second, the established isomorphism between (X, q,) and (X,,0) implies
Singg(X,, a,) = Singg(X,,,0) and by (3): Sings(X,, a,) = Singg(X,, 0). This suggests
that a, belongs to the Singg(X,,0)-stratum X,=2. As X CS by assumption, a,=0
would follow. However, one might imagine the following phenomena:

Here, Singg(X,, a,) = Singg(X,, 0) does not imply a, € 2. In order to show that this
type of coalescing cannot arise for the family {(X,, 0)}, represent the situation on a
small open neighborhood U of 0 e C". By Lemma 1’(b) of the appendix, there exists
DCT open, t,e D, such that for U sufficiently small and representatives X, of
(X;,0) on U, Singg X,=Sings X, holds on U for t € D. This implies that the strata
X, coincide on U, X, =2, fort e D. Furthermore, reducing eventually U again, one
can assume that X,C S on U. But then Singg(X,, a,) =~ Sings(X,, 0) implies for a,e U
and te D that a,e Z,CS. As a, was not allowed to move inside of S, a,=0, and
(X, 0)=(X,,,0). This establishes (5) and concludes the proof of the theorem.

3. Appendix: Generalized analytic varieties

In this section we describe briefly a category of generalized analytic varieties in
which the singular subspace of a variety as defined in § 1 is again a variety and an
extension of the theorem of §2 holds.

Definition 1. A germ of a (generalized) analytic variety (X, 0) in (C",0) is a couple
(Xa O) =((X7 O), (OX,O)

such that

(1) Ox,o=0y/1is a quotient module of Oy': = 0} @y, ... ® , Oy* = Oy~ ™ for
some d-tuple m=(m,, ..., m;) € N°.

2) (X,0)={(X,,0)},.y is a collection of germs of subsets (X,,0) of (C",0)
defined by

(X, 0)={x€e(C",0), rk(f (x)) =1}
for some presentation

02-L 0> 04 0—0 (peN)
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of Oy . The rank of an element A=(A4,, ..., 4,) € (C™)? is the maximal number of
C-linearly independent components A4; of A. The germs (X,, 0) do not depend on
the choice of the presentation f.

Remark. As OF=~0r®0,&...Q0,, one can identify varieties with analytic
modules 0™/ and O7/I, where ri is obtained from m by adding 1’s, = (m,, ..., m,,
1,...,1), and T is the image of I in O™

On the other hand, for m, m’ € N? with m <m’ component by component, we
shall identify ©™/I and O™/I x 0, where I x 0 denotes the image of I under the
canonical injection O™ ¢, O™

This signifies that we won’t distinguish between varieties, whose modules differ
only by free components (we are interested in the image of the presentation f but
not in the cokernel). Therefore, whenever we compare two varieties (X,0) and
(X,0), Ox.o=0m1, Oy o=07/I', we may tacitly assume that m=m'e N
Obviously, the underlying sets (X,,0) are not affected by these identifications.

Morphisms. Any analytic map-germ ¢:(C" 0)—(C",0) induces for arbitrary
me NY a morphism
¢*: Oy - 07

sending geoy to o*(g)=g- 9. Second, any matrix
LeM,(0,):=M, (0,)x ... xM,, (0, defines an O,-linear map

L:07-0y
multiplying component by component.

Definition 2. A morphism h: O} — O} is a couple h=(L, ¢) with underlying map
Lo ¢*: 07— 0. As ¢* o M =¢*(M)o ¢* for any M € M,(0,), the composition of
morphisms is well defined.

Let (X,0) and (Y,0) be two varieties in (C",0) with Oy (=0,/I and
Oy.o=0r/J,me N, m e N*. As described above, we may assume m=m’e N°.
We say that two morphisms h: 0} -0, and h': O, - 0%(l,I'e N%) are equivalent
on (X,0), if for any ke N* with k> I, ', m (by components) the image of the
induced map

h—h: 00k

lies in 1 £ O% (more precisely, if Im((h, 0) — (h’, 0)) €I x 0C (0%). A morphism h : (X, 0)
—(Y,0) is the equivalence class over (X,0) of a morphism H:0%— 0% (k=m)

satisfying HU)CIC 0k

In particular, h induces a map h: Oy (—>0x o.

The composition of two morphisms is well defined — we can talk of isomorphic
analytic varieties: (X,0)=(Y,0) if and only if there exist ¢:(C", 0)=(C",0) and
L:0r>»@", LeGl,(0,), such that h=Log¢*:0y—0; induces a bijection
h:0y =0y 0.

Definition 3. Let (X,0) and (X”, 0) be two varieties in (C",0), Oy =0}/l and Oy. ,
="' /I'"We may assume m=m’. We say that (X’, 0) is a subvariety of (X, 0)if Oy. ,
is a quotient of Oy o, say , ICT'.
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A morphism h:(X,0)—(Y,0) is an embedding, if it induces an isomorphism
from (X, 0) onto a subvariety of (Y, 0).

In the so defined category one may carry out the usual operations, in
particular, show that the fiber-product of two varieties over a third exists.

We shall now indicate, how one has to modify the statements and proofs of the
preceeding sections in order to obtain the analogue results for generalized analytic
varieties.

For me N? and pe N, let K denote the group K = Gl (0,) x Aut(C", 0) with
Gl,,(0,)=Gl,(0,) x Gl (0,) =G, (0,) x ... xGl, (0,) xGl,(0,), acting on
Op?:= 07 ®,0,0% component by component. We have:

Lemma 1'. (a) The fibers of the map
7 O'P— {isomorphism classes of analytic varieties}
[-IX,0)]
(respectively 1 : On?—{analytic varieties}, f—(X,0)) given by
0P L5 07— 0y ,— 0

are the K-orbits (respectively Gl,(0,)-orbits) in O}F.

(b) For any family {(X,,0)},cr,0) of varieties such that (X,,0)=(X,,0)
(respectively (X,,0)=(X,,0)), there exist open neighborhoods D of 0€ T and U of
0e@" with representatives X, of (X,,0) on U such that X,~X, (respectively
X,=X,) on U forteD.

Proposition 1 holds as it stands.

Proposition 2'. Let f:(T,0)— (0", fo) be a deformation.
(@) f is K-trivial, if and only if for any coordinate s on (T,0), 0,f, belongs
analytically in t € (T, 0) to

TK(f)= X Mn(0,) i+ MO frt+ oy J(f)SOF" .
(b) fis G-trivial (G=Gl,(0,)), if and only if 0, f,€ M (0,) - ;S O analytically.

Definition 2". Set Tsf =3 M, (0,) - f+M(O,) - f +my-js(f)+j(f) SOy and
Sings(X, 0) = the singular subspace of (X, 0) defined by Ty f. It is obvious from the
definitions, that Singg(X, 0) is a generalized analytic variety and a subvariety of
(X,0).

Lemmas 2 and 3, Definitions 3 and 4, and Ephraim’s Theorem remain valid in
the generalized context as they are. We don’t know if Proposition 3 extends.

Theorem. Let (X,0) and (Y,0) be two germs of generalized complex-analytic
varieties in (C",0). Let SCC" be a manifold containing the stratum X CC" along
which the singular subspace Singg(X,0) of (X, 0) is trivial.

The varieties (X, 0) and (Y, 0) are isomorphic if and only if the singular subspaces
Singg (X, 0) and Sings,(Y, 0) of (X, 0) and (Y, 0) are isomorphic via an isomorphism
h=(L,9).

The proof of the theorem can be translated word by word from the proof of the
theorem of §2.
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Remarks. The procedure of passing to the singular subspace can now be iterated,
looking at Singg(X, 0), Singg.(Singg (X, 0)) etc. It might happen that after a certain
number of steps, the corresponding singular subspace is defined by a finite
dimensional vectorspace, which, in turn, will therefore determine together with its
0,-module structure the analytic type of the original variety (X, 0).

Example. Sing(X,0) is a complete intersection with isolated singularity.

4. Example

We shall construct a family of hypersurfaces (X, 0), t € C, with constant singular
subspace Sing(X,, 0): = Singy(X,, 0) =Sing, (X y, 0) (for ¢ & + 1) but varying analy-
tic type (X,, 0)& (X, 0).

This shows that the singular subspace Sing,(X,,0) need not determine the
analytic type of the variety, which, in turn, illustrates, that the assumptions made in
the theorem, §2, are actually necessary.

Let h:(C" 0)—(C,0) be any function satisfying h¢j(h) < 0,. Define a family
(€ xC"xC,00»(C,0) by filx,y,2)=h(x)+(1+z+1t)-h(y), and let
(X,,0)S(C?"*1,0) be the hypersurface defined by f,.

We claim that Sing,(X,, 0)=Sing,(X, 0) for t+ +1: Computation gives

JS)=Uth()) +jh(y) + ()] - Oy -

Hence
Ty fi=[(h(x)) + (h(y)) +j(h(x)) +j(h(Y)] - Ozp s 1 -

On the other hand, the family {(X, 0)},.¢ is not trivial: For, if { f;},.¢ Were trivial,
we would have by Proposition 2, §1,

0, fr=h(y) € (f)+means1i(f)
=(f) +mans 1 J(WX)) + 1354 1 J(H(Y)) + 22211 - (WD) -

Solving for h(y) implies either h(y)ej(h(y)) or h(x)ej(h(x)) contradicting the
assumption on h.

Proposition 4. (cf. [Sa] for notations and the isolated singularity case). Let fe 0,
define a hypersurface (X, 0) which is of isolated analytic type (def. 3). Then fe€j(f)
=jen(f) if and only if f is K-equivalent to a weakly quasihomogeneous g € 0,

Proof. If f is weakly quasihomogeneous with respect to weights d,, ..., d, € Z on
coordinates x,, ..., x, on C", Euler’s formula says

des() 1= 3. dioxir ()€

Assume conversely f €j(f). Note that the proof of 4.1 in [Sa] is valid for any f € 0,,
provided f€j(f) implies f € s, - j(f) by means of 3.3. It will be therefore sufficient
to show that f isolated analytic type implies fem, - j(f). Write f = }" a;- 0, f with
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a;€ 0,. If for at least one i, a;=c;—b; with b,e », and c;eC, ¢;+0, the vector
c=(cys...,¢,) €C" would be non-zero. By a C-linear coordinate change, one can
achieve ¢c=(0, 1,0, ...,0), ie.,

axzf:f+ Zbi'ax,—f'

By Proposition 2(a) it follows that (X,0) is trivial along the x,-axis and hence
(X, 0) not of isolated analytic type.

5. Part II: o/-equivalence theorems

One of the principal tools for our results on .o/-equivalence will be C*-level
preserving maps. These are maps of the form F:C"x C*—>C? x C*, F(0)=0,
F(x,u)=(f(x,u),u). If f=f(x,0) has particular importance, we may call F an
unfolding of f. We first define some objects for C-level preserving maps, analogous
to the «/-tangent spaces for map germs.

Definition 1. Let F:(C"x C,0)—(C? x C,0) be a C-level preserving map germ.
Then jea(F) is the O, ,-module generated by 0

ox;’

a) To/(F)=m,: jo(F) + F*(m,05,,)C O}, ,

b) T/ (F) =jn:n(F)+F*((9$+ JEOR 1

In this section the exponent of an ideal indicates a power of the ideal, while the
exponent on @, ; indicates Cartesian product. The ideal generated by the p x p
minors of the jacobian matrix of f is denoted J(f).

We say a level preserving map germ is trivial in a region BCC if there exist
C-level preserving biholomorphic germs H of (C"xC, 0xB) and K of
(C? x €, 0 x B) such that

KoFoH=fx1.

We now give some well known criteria for triviality.

Proposition 1. (Thom-Levine) a) Suppose B is a region of C. A C-level preserving
map germ F : (C" x C, 0 x B)—(C? x €, 0 x B) is trivial iff 3,F*€ T/ F* forallae B.
(Here F° denotes the germ of F at (0,a).)

b) Suppose B=0, then F is trivial iff 6,F° € T.o/,F° (cf. [duP] p. 113 for a) and
[M] p. 8 for b)).

Throughout this section f: (C”, 0)—(C?,0) will be a complex analytic germ of
finite singularity type. If g:(C",0)—(C?,0) is any other holomorphic germ, let
G(x, t)=(f(x)+t(g(x)— f(x)), t) be the level preserving germ linking f and g. We
wish to show under various hypotheses on f and g that G is trivial, using
Proposition 1. Our method of attack is to compare T.«/(G) with T.«/(F), where
F(x,t)=(f(x),t). The key technique in this comparison is to study the various
module structures of T.o/(F) and of T'.«,(F). We begin with a lemma which shows
that the module structure of T.«/(F) has a certain convexity property.

In what follows, let H(x, t) = (f(x), g(x), t) € 022} 1.
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Lemma 1. a) Suppose T (f)=Ts(g), then T/ (F)2H*((%,.,) and TL(F) is
an H*(0,, . )-module.
b) Suppose T (f)=TZg) then T (F) is an H*(O,,, . ,)-module.

Proof. a) Itis obvious that j¢a(F) is closed under multiplication by H*(0,,, , ). It
suffices to consider H*(s23, 4 1) - F*(#,05 1 1). Our method of proof will also show
H¥(myp O3, )ETA(F).

Note that T (f)STA(F), and that this implies
(F*O,+ 1) (g*(m,07)) S T/ (F). In particular, g, - ¢,=a, ;o F +r, ;0. F, where ¢, is
a canonical basis of CP. Hence, A,(x,y)=x.e;—a,(y) has the property that
Ay, (g, )€ my-jeuF.

Suppose B(x,y,t)€m;,.,. Consider (BoH)-(DoF)=3 (DoF)(BoH)e,
De0?b, . By the Division Theorem for modules we can write B(x,y,1)e
= kZ O.ii(x, ¥, 1) - Ai(x, ¥)+ Cy(y, t). Then (Bo H)e,= C,o F mod s, - jcnF. Hence,

(D, F)- (B H)e e T/(F).
If B€ m,,, then C(y,t) € me,- O, ,, thus (Bo H)e, € T.o/(F) also. This implies
H*(se5,- 05, 1) S T(F). The proof of b) is similar.

Remark. The above proof gives the following useful fact. Suppose h € 0, such that
h-e;e TA(f) or To(f) then, ToA(f) (resp. T/, (f)) is an @, -module via
(h, f).

A key assumption in what follows is that all our germs have finite singularity
type, or F.S.T. (ie. TA(f)2#k - OF for some k). It is obvious that if T/(f)
=TsA(g), and f has F.S.T. then so does g. Does the equality T<Z,(f)=T«,(g)
imply the same result?

Proposition 2. Suppose T (f)=T<A,(g) and f has F.S.T. Then g has F.S.T. also.
Proof. Let R be the ring of all functions A such that h- T.o/,(9) C T.<Z,(g). Let M be

theideal of all such functions vanishing at zero. Thenif he M, l—j—h isin R also. For
1

Toh T (g) lies in h*(0,) - T/ ,(g), and the above remark shows thatif hisin R,
T/ (g)is an h*O,-module,so h*0, - T/,(g)isin T/ (g). Since he M implies 1 +h
is a unit in R, Nakayama’s lemma can be applied to R-modules. We have that

T (9)
T</(g) T (g) T</(9)
(g

moj(g)
check that - is a R-submodule of —%=~. Since dim
m,(9) m,j(9) T</(g)

follows by a variant of Nakayama’s lemma that M"*?*!. T.o/ (g) C T/(g). This
implies that T (g)> T#/(g)- 0,>M"*?*1. 2. We have

ML O8S(f, g, J(O) P O8>y OF

is a finitely generated R-module, for R contains g*@ . Further, it is easy to

Sn+p it

for some k, since f has F.S.T., and M contains f;, g;, and the generators of J(f).
Thus, T (g) D wk- OF and g has F.S.T.

The next result shows that we can lift the hypotheses of Lemma 1 concerning
the equality of tangent spaces from the level of germs to the level of unfoldings. We
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compare T.o/(G*) which may vary with a, to T.«/(F®) which is constant with a. This
will allow us to show that for most a values T.o/(G") is constant, and will imply that
0,G" € T/ (G*) which we need to apply Proposition 1.

Proposition 3. Suppose f has finite singularity type.

a) If TA(f)=TL(g), then Tt (G*)=TA(F?) for all ac T except a finite
number of values.

b) If T (f)=T(g), then ToA,(G*)=T.oA,(F* forall except a finite number
of values.

Proof. a) As noted before T (f)=TA(g)=>TH (f)=TH (g9). Thus, g has
F.S.T., and by our results on J"-equivalence, G* has F.S.T. for all except at most a
finite number of values of a.

Further, it follows that if J(f)+ f*(s,) 0,2 wdy and J(f)+ f*(s2,) 0, 2 2x " 1,
then the analogous statements are true for G* except for the finite number of a
values.

For we know the G* are /£ -equivalent except for the odd a values; hence the
ideals J(G) + G**(#2, 1) O, +, are right equivalent for all values of a, apart from
the above finite number.

It is easy to see that T«/(G)CT4(F), for by Lemmal,
G“*(mp0§+,)gH*(mzp(inH)gTszi(F). We also have that m, - jea(G*) S T/ (F)
for me, - jen(g) € Tt (f) S T (F).

We now must show that T.o/(G*)= T.</(F) for all except a finite number of
values of a. The next lemma gives us an easy to apply criterion for equality.

Lemma 2. Suppose T (G*)+H*(my,.,) TA(F)=TA(F), then T(G*

= Tot/(F).

Proof. We first show that T/(G%) + G**(#,+,) T/ (F)= T/ (F). Consider
T4(F)

T (G + G*(my 1) T (F) *)

this has the structure of an H*(0,, . ,)-module. For,
H*(@Zp-i' 1) (e jenG* + Ga*(mp@§+ )+ Ga*(mp+ 1) TM(F))
CTA(G*) + G™(mp 1 1) TH(F) + H*(O2p 4+ 1) (G*(,0} 4 1))
C Tl (G)+ G™*(mps 1) Tt (F) + H () (G™*(om, 03 1)
CTA(G*)+ G™*(m,.,) TH(F), since H*(m,,)e,CTA(F).

Further T (G*) + G*™*(sm,+,) T (F) contains #e,(J(G*) + G**(m, 4+ 1)) jen(F),
and except for a finite number of a values, this contains s, (s, ;) jenF.

This is important, for F*(s,05 . ) is always finitely generated as an H*(0,, . ,)
module, but j.(F) may not be. The above inclusion shows that all but a finite
number of the elements of jg.F are already contained in the denominator of (*).
Thus (*) is a f.g. H*(0,,. )-module, so by Nakayama’s lemma (*) is zero.

_ Given that T/ (F) = T/(G") + G**(s, . ) T#/(F), we now want to show that
T (F)
T<4(G%

(pn+1

#,j cn(G”)

is a finitely generated G**(@,,.. ,;)-module. For good values of a,
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T/ (F)
2y, c"(_Gu)
T/ (F)
T(G)

is f.g. as a G**(0,, ;)-module, hence is finitely generated also since

G**(0,.,) is Noetherian. Consequently, is finitely generated, and

Nakayama’s lemma again applies.
Returning to the proof of Proposition 3, we now show that checking the
hypothesis of Lemma 2 is a finite, algebraic problem. Let

Tt (F)

A ) j o)+ H¥Ggy 2 1) T (F)

where  wek CI(f)+ f*(,) O,

Notice that «/ is finite dimensional as a C-vector space, and ToA(G%
+H*(mp+ 1) TM(F)gmﬁ+ 1(chn(F))-

(For mﬁ +1(mjen(F)) E (Ga*(mp+ 1) +J(G*) #5jen(F)
Cwy jor(G) + G*TA (F)).

Further, wel, (#jen(F))+H*(s5,4 1) T/ (F) contains  we2% (s, jen(G))
+ Ga*(mp+ 1(mp(0£+ 1))

Consider the polynomial map of finite dimensional vector spaces induced by
a ax : : 73U+ 1 mp(95+1
D, (G*) + G**, which maps the direct sum N I Oy g
The above remarks ensure this mapping is well defined. The map is linear for fixed a,
and surjective at a iff the hypothesis of Lemma 2 is satisfied. It is easy to check that
the map is surjective at a=0, 1. By the lemma T.o/(G“) = T.o/(F°) for all except a
finite number of a values.

The proof of Part b) is similar. As before we have that T.eZ,(F) 2 T.«/,(G*) and
that T (F) is an H*(0,, . ,)-module.

Claim. Suppose T (G*) +(G**(sm, + 1) + H*(s5, 1)) T F =T F then T/, (G%)
=Tt (F).

The proof is similar to the proof of 3.1 in [G1]:

The map that we consider in this case is induced by D (G®) + G** with domain

On+ s OF+1 T (F)

Ao, Ooatior,, M B B B G ) T !
refers to the power of #, . ; which lies in (J(G") + G** 2, ) 0,, + , for generic a. (We
can ensure 1 is in this generic set.)

It is easy to check that D (G + G** surjects iff the hypothesis of the claim
holds, and that it surjects for a=0, 1. Hence, except for a finite number of bad
values, T/, (G®) = T/ (F).

We now develop the notion of morphism for the «/-case; in what follows we
call h e (¢® a generating map for T.o/(f) if T/ (h) = T/ (f). (Similarly for T.Z,(f).)

Our notion of morphism must be modeled on the change that T</(f)
undergoes as we pass from T.oZ(f) to Te/(l- f o r). At the same time, the notion of
morphism ought to be independent of the mapping which gives rise to TZ(f).

or or

Definition 2. Suppose M = s, M,= .
A pp T2 M= T, ()

into 4.
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A morphism with domain M (resp. M,) is given by a triple (r, L, h) where
re Aut(C",0), L is a p x p invertible matrix with entries in 0, such that L= DI for
some /€ Aut(C?,0), and h is a generating map of T.o/(f) (resp. T.Z,(f)). The
morphism is given by é—(Lohor)(Eor), where £ € M. It is easy to see that this

p
gives a well defined mixed module homorphism between M and @% (resp.

or Lo . . .
M, and W) which is an isomorphism of mixed modules.

Before we give our main theorem, recall that f is a stable germ if Tiet,(f) = (2,
and f is finitely determined if T.oZ,(f)2mE@? for some k.

Theorem. Suppose f and g are complex analytic map germs f:(C",0)—(C?,0),
g:(C",0)-(C>,0). Suppose f has F.S.T.

or or
A) If f is finitely determined, but not stable, then L~ —iff f~g.
VU fiieely T7(7) " Tl /7
B S
>~ ) ~d.
T(f) ~ Tsl(g) * &7
Oy ay

~

T(f) ~ T(9)

Proof of B). If

=Tol(lohor).

It follows from the Propositions 1 and 3 that we can choose a path connecting
lohorwith g and a path connecting hand f such that the family of mappings given
by these paths are .o/-equivalent to h and l-hor. Hence f is .&/-equivalent to g.

we can find & such that T.oZ(f) = T/ (h), T4 (g)

Proof of A). By a preliminary coordinate change we may assume T.oZ(f)
=Tsl,(g9). Thus T/ (G*)= T/, (F) for all a values off some Z-closed subset of
C.

By Proposition 1 and the compactness of our path connecting f and g, we can
cover this path by a finite set of open intervals I; with distinguished points x; such
that the unfolding G given by (I}, x;) is trivial. We must show that the families of
trivializing diffeomorphisms that occur are origin preserving in source and target.

Since f is finitely determined, T/, (f)2#*0? for some k, hence
Tt (F)2 k0P, ;. Thus Tl ,(G*)2#X0P ., for all a values along our path. This
0£+ 1
jerG
The assumption that f is not stable implies it does have support there. This implies
P

implies that the target sheaf G,

/ G*(% . | has support only along the t-taxis.

0

that the sheaves g,*j @
t

in a neighborhood of our curve in €. This forces the trivializing diffeomorphisms

to be origin preserving so f and g are equivalent.

Acknowledgements. Discussions with Max Benson, Robert Ephraim, Karl Knight, and Frank-Olaf
Schreyer have contributed to the development of this paper; the graphics were done by Daniel Wilson.

g+ 0% on C” have support only at the origin, for all ¢ values
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