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Introduction

Motivation

@ expect quantum structure of space-time at Planck scale

due to \ Gravity <+ Quantum Mechanics\

@ fine-tuning problems (cosm. const. etc.)
@ “dark matter, dark energy” ... ??

= perhaps gravity is modified ?

pre-geometric theory of gravity:

Matrix Models — noncommutative space-time & gravity
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Introduction

Outline:

@ geometry from matrix models:

NC branes
effective geometry
dynamics
examples

@ gauge theory point of view
@ quantization

@ curvature, etc.

review: H.S., arXiv:1003.4134
D. Blaschke, H. S. arXiv:1003.4132, arXiv:1005.0499
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Matrix Models

Matrix Models

candidate for quantum theory of fundamental interactions
S = T (IX%, X°UX¥ , X0 Inagnpey -+ VT[Xa, ])

X2 € Mat(oo,C), a=1,..,10
(IKKT Model 1996)

@ no geometrical pre-requisites, extremely simple
NC space-time
. . emerge
metric (=gravity)
nonabelian gauge fields
gravitons
@ well-behaved under quantization
new perspectives for dark energy / dark matter

} ... fluctuations of NC space

Ishibashi, Kawai, Kitazawa and Tsuchiya 1996, ff
Rivelles 2002, Yang 2006, H-S. 2007 ff, =.
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Matrix Models

Space-time & geometry from matrix models:

eom.:. 6S=0 = [X%[X¥ X||naw =0
Q (X3, Xb) = ip3b1, rank 920 = 2n
separate X2 = (X", ®'), u=1,...2n

[Xk, X" = i1 ...“quantum plane” R2"
o =0
— as 3+1-dimensional

- Xt
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Matrix Models

Space-time & geometry from matrix models:

eom.. 0S=0 = [X[X? Xnaw =0
solutions:
Q (X2 XP| =91, rank 63 = 2n
separate X2 = (X*,®"), u=1,..,2n
[XH, XY = 0" ...“quantum plane” R2"
o =0

Q (X2 XP| = i97(X) ~ i63P(x) ...generic quantum space

— space-time as 3+1-dimensional brane solution M* c R0

X3 = (Xm o),  u=1..4 XH ~ Xt
o = Pi(XH) i

- Xt
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Matrix Models

1) Moyal-Weyl quantum plane R}

[X“,X”] = jg* A1, wrv=1,..,4
¢ =0
.. Heisenberg algebra, interpreted as space of functions on Rg
uncertainty relations Ax*Ax” > |9"|

relation with classical R*:

C(RY) 5 d(x / Atk ek o / d*k e X" . &(X) € Mat(so,C)

note:
Xt € Mat(co,C) ... quantized coordinate functions on R}
d(XH") € Mat(oco, C) ... general function on R}

(XK, ®] =: 08, ~ i0"8,¢(x) — NC field theory



Matrix Models

2) Noncommutative spaces and Poisson structure

(M, 67 (x)) ... 2n-dimensional manifold with Poisson structure
Its quantization M, is NC algebra such that
Z:CM) — A= Mat(oo,C)
f(x) — f(X)
X X ok s gikX

suchthat  [f(X),3(X)] = Z(i{f(x),g(x)}) + O(6?)

(“nice”) ¢ € Mat(oo,C) <> quantized function on M ]
furthermore:
@rE TH(6(X)) ~ [ d*xp(x)o(x)
p(x) = Pfaff(@;l])... symplectic volume

(cf. Bohr-Sommerfeld quantization)
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Matrix Models

Interpretation of X2 in matrix model:

X3 = (X", ¢'(X*)): M*— RP . (quantized) embedding function
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Matrix Models

Effective geometry of NC brane:
consider scalar field coupled to Matrix Model (“test particle”)

use [XH, @] ~ 0" (x)8,p = orr = {x", x"}

Slel = Tr[X2 ¢][X°, ¢ nan (U(H) gauge inv.!)
~ [ d** /]G] G (X) Dupdp
G (x) = e_HH‘J’"I(X)QWI(X) g (x)  effective metric (cf. open string m.)
9uw(X) = 0,x30,xPna  induced metric on M3 (cf. closed string m.)
IP .
e’ = |Gl = 19,0 for dm(M) =4

g’

© couples to metric G (x), determined by 6/*(x) & embedding ¢"(x)J

same for gauge fields, fermions
... quantized Poisson manifold with metric (M, 6*”(x), G,.. (X))
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Matrix Models

so: all matter couples to dynamical metric G,, = effective gravity
however: metric is not fundamental d.o.f. | '
rather: matrices X?@ resp. (¢', 0"") resp. (¢, F..)
= dynamics of gravity NOT given by Einstein equations

turns out to be different from GR (long distances!)
may be close enough to observation (?)

note: D = 10 just enough to describe most general g,,..(x) (locally)
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Matrix Models

result:

(M, w) symplectic manifold, w = 36, dx" A dx”
x?: M < RP ... embedding in R
induced metric g,.,, and G*” as above. Then:

(x4 {x% o} = €’Ogp
Vé(e"@;J) = G,, 0" (€7789,n + 0,x3 06X nap)
for ¢ € C>°(M), Vg ... Levi-Civita, g ... Laplace- Op. w.r.t. G,
and :
n(x) = 7€ GGy

(H.S., 2008)
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Matrix Models

in particular:
matrix e.o.m: [X2 [X?, X¥||nae =0 <—

Agd' = 0, Agxt=0
) = e 7G,00un

no = ;1190 Guyg;w

VH(e7d,,)

... covariant formulation in semi-classical limit

in particular:

is harmonic embedding (w.r.t. G,.)

M* — RP
minimal surface
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Dynamics of gravity

dynamics of NC structure 6+

Sy = — THX?, X?][X2, X°] ~ / d*x \/Ge—n

Euclidean case: at p € M, diagonalize g,,, = (1,1,1,1)
using SO(4) — standard form

0 —«a 0 0
2 (e} 0 0 0
0" =0 0 0 +a!

0 0 Fa! 0
effective metric G* = (a?,a?, a2, a72)
Note

%GWQW = 9707] = %(042 + a,Q) > 1
w = tw e e n=1%s G =0 < Syw minimal

minimum of Syy < 0 (A)SD < G, = 9. J
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Dynamics of gravity

special class of solutions:

g/m = G,U.V7
Agdl = 0
v = 0

holds for (anti)self-dual symplectic structure 9;,},

6~ Euclidean
*(0~") = +ip~'  Minkowski (Wick rotation X° — it )

S ~ X XEX X7 = [ d*x\/lg,u)

... same structure as vacuum energy, “brane tension”.

>*
—~
]
\:
Il

then
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Dynamics of gravity

Dynamics of emergent NC gravity

effective action
S= [ d'xv/Igl (~2A* + 3R) + S
leads to
68 = [ad*x\/]9]0gu (—N*g" +8aTH — N3GH)
—2 [6¢'0,(\/19] (=N\*g"” + 8xTH — N2GHV))D, ¢
since g, = Ny + 0,0'0, ¢’
@ “Einstein branch”

NG + N3GH = 8 TH

@ “harmonic branch”
N*Og¢ = (87 TH — N3G*)V .0, 6
prototype: flat space R c R'?, even for A >> 0!
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Dynamics of gravity

1) harmonic branch

.. (NC) minimal surfaces M c RP, deformed by matter

@ prototype: flat space Rf c R'°
insensitive to vacuum energy (minimal surface) !
@ interesting “near-realistic “ cosmological solution
(FRW, big bounce) D. Klammer, H.S. arXiv:0903.0986, PRL 102
compatible with type la supernovae without fine-tuning
@ matter — deformed "gravity bags*“, Newtonian gravity
H.S:, arXiv:0909.4621
(but post-newtonian corrections probably not acceptable)
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Dynamics of gravity

2) Einstein branch

example: Schwarzschild geometry (Blaschke, H.S. arXiv:1005:0499)

embedding M C R’, asymptotically flat (harmonic), e — const
t

rcossin
rsinsin
r cos
wy/ecos(w(t+r)) |’

w\/?sin(w(ﬂr r)

I
w r

with 0z = (—, +, +, +, +, +, —).

X2 =

central singularity: embedding — oo
(presumably modified e.g. via fuzzy sphere ...)
with complexified SD symplectic form
L #~' — const for r — oo
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Gauge theory

alternative interpretation of M.M: NC gauge theory

parametrize matrices as fluctuations around R¢:
Xt =X+ 0" A, X*...Moyal-Weyl
[(Xe, X¥] = 0 0 (0, Ay — Dy A + [Au, Al + i1
— g v’ F;ﬂu’ +igm
Fou(X) ... u(1) field strength
action:
Sym ~ / d4X(F,w + /é;J )(F/L/U/ + ié;/L/)é,U«lL, G

... NC U(1) gauge theory on R}
however:

@ U(1) sector does not decouple from SU(n) sector, ...

@ one-loop: UV/IR mixing, except in N' = 4 SUSY case: finite (!?)

.... understood in interpretation in terms of emergent gravity.
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Quantization

Quantization

Quantization of matrix model:
Z= / dX3dw e~ SXI=SVT — g~ Sen

2 interpretations:

@ NC SYMonR$: UV/IRmixing  (U(1) sector only!)
except for IKKT model (V' = 4 SUSY, D = 10): perturb. finite !(?)

© U(1) absorbed in ##(x) — gravity, induced E-H. action
S ~ /d“x Gl (A* + cA2RIG] +...)
(R[G] due to UV/IR mixing in NC gauge theory)
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Quantization

Quantization

Quantization of matrix model:
Z= / dX3dw e~ SXI=SVT — g~ Sen

2 interpretations:

@ NC SYMonR$: UV/IRmixing  (U(1) sector only!)
except for IKKT model (V' = 4 SUSY, D = 10): perturb. finite !(?)

© U(1) absorbed in ##(x) — gravity, induced E-H. action
S ~ /d“x Gl (A* + cA2RIG] +...)
(R[G] due to UV/IR mixing in NC gauge theory)

@ explanation for UV/IR mixing & U(1) entanglement
@ D =10 required for quantization (maximal SUSY)
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su(n) gauge fields:  same model, new vacuum

yao (Yo X et
= yi = ¢ @1,

include fluctuations:

X" ®1,
Y3 = (14 A0,) ( )

& @1, + o
where
AP = —0"A, @AY, XY € su(n)
o = O @A

= effective action:

Sy = [d*xVGe” G G"'tr Fuy Fur +2 [(X) tr FAF

(H.S., JHEP 0712:049 (2007), JHEP 0902:044,(2009) )
.. su(n) Yang-Mills coupled to metric G*¥(x)
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Quantization

higher-order terms, curvature

Heb = 31X X X, XL
T i HE - pmH,  H = H®n = [XE, XX, Xl
OX = [X2,[X, XI]

result:

for 4-dim. M c RP with g, = G,..:

T (2T*0X.0X, — TE0Hap) ~ 25 [d*x/G e R
Tr([[X, X°], [Xe, XP11[Xa, Xp] — 20X300X4)
~ gy JA*x /G & (37701100 Ry — 2R+ D08, 0)

(Blaschke, H.S. arXiv:1003.4132 )

(cf. Arnlind, Hoppe, Huisken arXiv:1001.2223)
=- Einstein-Hilbert- type action for gravity as matrix model
pre-geometric version of (quantum?) gravity, background indep-!
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proof: (assume g = G)

H® = L[IX3 XL X, Xl ~ —67 G ,x°0,x0 =7 7 PP,
Tab _—  pHab _ %nabH ~ e% Pﬁlb

Pn, Pr ... projector on normal / tangential bundle vof M ¢ RP. note

Ry/z,)\m - Pﬁlb (*amauxaa)\auxb + amall,xa(?ya)\xb)
= —V.V.XxqVV, . Xa+ V.V, X3V, ViXs

(i.e. Gauss-Codazzi theorem) and
TP[X2, [Xa, Thel]] ~ €27PPV, VI (€7 npe — €79" Xp0y Xc))
= e ((D —4)0e” - 2P50(effanxbvﬂayxc))
=% <(D —4)0e° — 2e”wa“xav;,ayxa)
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further comments:

@ generalization for g # G:
still find M.M. terms with purely tensorial meaning (M, G, 6"")

obtain
So = [ \@eZ”R[G] +Ve9Vgg+ ...
~ [+/ge*(Rlg] +3R"h,,),
b = —€(07'9F)u — € (FG0™ ") — 59 (0F)
Sa=8m = [(VG+(F—xgF)xg(F—xgF))
0.0 = 0.)+F., *0 1 =461

nv nv

... work in progress (with D. Blaschke)

@ probably (I?!) F, resp. 6., should be integrated out
@ 3 “extrinsic* terms TrCx2[x?, depend on embedding M C RP

(minimal surfaces preferred ... )
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Quantization

fermions

natural (only?) action
S[V] = Tryq,[XE V]
~ [ X p(xX) Vi 00 ()0, { vt = 2G
note:
@ naturally SUSY — IKKT model
@ couple to G,,,,, but non-standard spin connection (submanifold!)
@ quantization induces E-H action plus additional terms

v = 47T2fd4x 91(2n* +A%( - §Rlg] + J0u00m0
&7 RlGlupr 0" 67 + §(Cgx®) (Cgx®)nap) + O(log A)).

@ precise matching with UV/IR mixing (checked in D = 4)

(D. Klammer, H.S., arXiv:0901.2322, arXiv:0909.5298)



Quantization

Summary and Conclusion

@ matrix-model Tr[X2, X?|[XZ, X?'] 1)aa 1ipny

dynamical NC spaces «+ emergent gravity & gauge thy
@ notsame as G.R., long-distance corrections (extrinsic geometry)

@ intriguing cosmological solutions,
physics of vacuum energy different from GR

@ suitable for quantizing gravity !
(IKKT model, N =4 SUSY in D = 4)

@ ... more work is needed !
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Quantization

Deformations of Moyal-Weyl plane: gravitons

dynamical X" = dynamical (6""(x), G"(x)) J

parametrize fluctuations
Xt =Xt 0 A,

igr(x) o~ [XF XY
= i (DA — B A + [Aur, A) + 1M
L Sy (L
G (x) = 7" —hv  (+O(F?))
Fou(X) ... u(1) field strength

therefore

h/z,u - ﬁyu’éylp Fp;t + 7_]/1,/#9_”/7] Fnl/ - %ﬁ;w (épn,:pn)

... linearized metric fluctuation (cf. Rivelles [hep-th/0212262])
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e.o.m for fluctuations of Moyal-Weyl plane (linearized):

[Xu, [)(u7 X/Ll]]nuu/ _
= 0"FL,
= R,.[G] =

0
0
0 (0"h,, =0...harm. gauge)

cf. Rivelles [hep-th/0212262]
while R,,,, # 0 ... nonvanishing curvature

=- on-shell d.o.f. of gravitational waves on Minkowski space

i.e.: trace-U(1) photons on R{ are actually gravitons
NC U(1) does not decouple, couples like graviton
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Relation with string theory: branes in background B field

brane M c R in B-field background:
DBI action: Spg ~ [ d*x \/det(gu, + (B + Fu))

where g,,,, ... closed-string metric (pull-back from bulk)
G* ~ B B*' g, ... open-string metric on M
(OF neglected...)

here:
@ NO 10-D bulk ! fields only live on brane
@ U(1) field strength F absorbed in
0,00 (X) = By + Fu
(splitting is unphysical)
eff. metric for nonabelian gauge fields etc. on M:

G ~ o (X)el/ul (X)Gpr
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Quantization

Cosmological solution

D. Klammer, H. S., PRL 102 (2009)
assume: vacuum energy A* > energy density p
= look for harmonic embedding Ax? = 0 of FRW metric
ds® = —dt? + a(t)?(dx? + sinh?(x)dQ?),

Ansatz

sinh(x) sin# cos ¢
cos v(t) >® sinh(x) sin @ sin ¢

alt) ( 4 .
xX3(t,x,0,¢) = ( sin(t) ilonshh((xx))cosa c R0

xc(t)

(cf. B. Nielsen, JGP 4, (1987) )

Evolution a(t), W(t), x;(t) determined by Ax? = 0
solution of M.M + leading term [ d*xv/GA* in T1_o0p J
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harmonic embedding Agx? = 0 leads to

analog of Friedmann equations

2

H*=% = —pPa'+d?at- L.
2 = -—3d%a®+4pPal.

xc 0.0

largely independent of detailed matter/energy content
aslongas A* > p

k = —1 (negative spatial curvature) most interesting

H. Steinacker Emergent Geometry and Gravity , from Matrix Models



Quantization

Implications:

1) early universe:

@ big bounce: a=0fora=au, ~b'/*
(3 bound for energy density p vs. vacuum energy A%)
@ inflation-like phase a(t) ~ t2, ends at a(t.;) = \/gg
geometric mechanism (no scalar field required),
no fine-tuning

1.57
1 15
10; 10
at) | H()
] 5
0.57
B LI 1 Ot REEEEEREE) T 1
0.4 0.0 0.4 00  0.05 0.1 0.15
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2) late evolution (now):  a—1

approaches Milne-like universe (k = —1, spatial curvature),

ag - ACDN
aff] - Mile Universe p—

Scakfactor - aft)

in remarkably good agreement with observation
(age 13.8 - 10° yr, type la supernovae)
different physics for early universe (recombination etc.)
A. Benoit-Levy and G. Chardin, [arXiv:0903.2446]
CMB acoustic peak argued to be at correct scale (?)

no fine-tuning of cosm. const., no need for dark energy ! J
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