T-Duality, fluxes and noncommutativity in closed string theory

Athanasios Chatzistavrakidis

Rudjer Bošković Institute, Zagreb

Mainly: arXiv:1802.07003 with Larisa Jonke, Fech Scen Khoo, Richard Szabo Also: arXiv:1505.05457 with Larisa Jonke, Olaf Lechtenfeld

Matrix Models for Noncommutative Geometry and String Theory @ ESI Vienna

13 July 2018

"Lessons" for the Geometry of Spacetime and Quantum Gravity

\% Geometry is Generalized (Noncommutativity, String, Matrices)

* Geometry is (maybe) Emergent (String, AdS/CFT, Matrices, ...)
* Geometry is (maybe) Doubled (Quantum Mechanics/Born Reciprocity, String/T-duality)

Doubling for Closed Strings

Circle compactifications \rightsquigarrow Momentum and Winding modes with mass $\propto 1 / R$ and R
Large radius limit \rightsquigarrow Only momentum modes probe spacetime, and EFT is supergravity
\rightsquigarrow measure lengths with position operators x

At QG scales, $R \sim \sqrt{\alpha^{\prime}} \rightsquigarrow$ both momentum and winding modes become important
e.g. in the Brandenberger-Vafa early universe scenario
\rightsquigarrow position operators x and dual (to windings) \tilde{x}
Supergravity is certainly not enough here \rightsquigarrow need (some kind of) Double Field Theory e.g. proposals by Siegel '93; Hull, Zwiebach '09; Freidel, Leigh, Minic '15; \&c.

Symmetries

On one hand, we have diffeomorphisms and gauge transformations, as in field theory But for closed strings, also T-duality, exchanging momenta \leftrightarrow windings and $R \leftrightarrow 1 / R$
N.B., T-duality is an asymmetric reflection: $X(\sigma, \tau)=X_{L}+X_{R} \xrightarrow{T} \tilde{X}(\sigma, \tau)=X_{L}-X_{R}$

When multiple (d) circle compactification, the T-duality symmetry group is $O(d, d ; \mathbb{Z})$
\rightsquigarrow The Double Field Theory should enjoy an $O(d, d ; \mathbb{R})$ symmetry
\rightsquigarrow The underlying geometric structure should contain/unify these symmetries

Flux, Duality and Open Strings

For open strings on D-branes

* Turn on B or $F \rightsquigarrow$ noncommutativity Douglas, Hull '97; Chu, Ho '98; Seiberg, Witten' 99

$$
\left[X_{1}(\tau), X_{2}(\tau)\right]=i \theta_{12}, \quad \theta_{12}=-\frac{2 \pi i \alpha^{\prime}(B-F)}{1+(B-F)^{2}} .
$$

\# T-dual frame \rightsquigarrow commutativity \& D-branes at angles.

Lesson: New geometries arise in presence of non-trivial flux backgrounds.

Flux, Duality and Closed Strings

Left and right movers may experience different geometries (asymmetric strings).
T-duality reveals closed string backgrounds which are "non-geometric" (T-folds \& co.) e.g. Hull '04; Shelton, Taylor, Wecht '05; \&c.

$$
H_{j j k} \rightarrow f_{i j}^{k} \rightarrow Q_{i}^{j k} \rightarrow R^{i k}
$$

Generic closed string geometries argued to be noncommutative and nonassociative.
Lüst '10; Blumenhagen, Plauschinn '10; Mylonas, Schupp, Szabo '12

Q-case $\left[X^{i}, X^{j}\right] \sim Q^{i j}{ }_{k} W^{k}$
R-case $\quad\left[X^{i}, X^{j}\right] \sim R^{i k} p_{k} \quad\left[X^{i}, X^{j}, X^{k}\right] \sim R^{i k}$.

Similar to particle in a non-constant magnetic field in QM. Jackiw '85; Bakas, Lüst' 13

Enter Algebroids

* Courant Algebroids: unify Poisson and pre-symplectic structures
- Canonical example: $T M \oplus T^{*} M$, with a natural $O(d, d)$ metric, and fluxes as twists
* Generalized Complex Geometry: unify symplectic and complex structures

Hitchin '02; Gualtieri '04

- g and B on equal footing, Diffs and Gauge trafos as automorphisms of Courant bracket
- Main additional player: a generalized metric:

$$
\mathcal{H}_{l J}=\left(\begin{array}{cc}
g_{i j}-B_{i k} g^{k l} B_{l j} & B_{i k} g^{k j} \\
-g^{k k} B_{k j} & g^{g_{k j}}
\end{array}\right)
$$

Courant Algebroid vs. Doubling of coordinates

* Captures the symmetries, but not the doubling of coordinates
* But if the target is doubled, the symmetry would be $O(2 d, 2 d)$, i.e. too large

Double Field Theory

A proposal for a field theory invariant under $O(d, d)$; T-duality becomes manifest.
It uses doubled coordinates $\left(x^{\prime}\right)=\left(x^{i}, \widetilde{x}_{i}\right)$, and all fields depend on both.
The $O(d, d)$ structure is associated to a (constant) $O(d, d)$-invariant metric

$$
\eta=\left(\eta \eta_{J}\right)=\left(\begin{array}{cc}
0 & 1_{d} \\
1_{d} & 0
\end{array}\right), \quad h^{t} \eta h=\eta, \quad h \in O(d, d),
$$

used to raise and lower $I=1, \ldots, 2 d$ indices.
Derivatives are also doubled accordingly: $\left(\partial_{l}\right)=\left(\partial_{i}, \widetilde{\partial}^{i}\right)$.
The fields are the generalized metric \mathcal{H} and invariant dilaton $d\left(e^{-2 d}=\sqrt{-g} e^{-2 \phi}\right)$, with
Hohm, Hull, Zwiebach '10
$S=\int \mathrm{d} x \mathrm{~d} \widetilde{x} e^{-2 d}\left(\frac{1}{8} \mathcal{H}^{I J} \partial_{I} \mathcal{H}^{K L} \partial_{J} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{I J} \partial_{l} \mathcal{H}^{K L} \partial_{L} \mathcal{H}_{K J}-2 \partial_{l} d \partial_{J} \mathcal{H}^{I J}+4 \mathcal{H}^{I J} \partial_{l} d \partial_{J} d\right)$.

DFT symmetries and constraints

Gauge transformations are included with a parameter $\epsilon^{\prime}=\left(\epsilon^{i}, \widetilde{\epsilon}_{I}\right)$:

$$
\begin{aligned}
\delta_{\epsilon} \mathcal{H}^{\prime J} & =\epsilon^{K} \partial_{K} H^{\prime J}+\left(\partial^{\prime} \epsilon_{K}-\partial_{K} \epsilon^{\prime}\right) \mathcal{H}^{K J}+\left(\partial^{J} \epsilon_{K}-\partial_{K} \epsilon^{J}\right) \mathcal{H}^{\prime K}:=L_{\epsilon} \mathcal{H}^{\prime J}, \\
\delta_{\epsilon} d & =-\frac{1}{2} \partial_{K} \epsilon^{K}+\epsilon^{K} \partial_{K} d,
\end{aligned}
$$

and $L_{\epsilon} \cdot$ is called the generalised Lie derivative. But S is not automatically invariant.
The theory is constrained.

* Weak constraint: $\Delta \cdot:=\partial^{\prime} \partial_{l} \cdot=0$; stems from the level matching condition.
* Strong constraint: $\partial^{\prime} \otimes \partial_{l}(\ldots)=0$ on products on fields.

Strong constraint eliminates half coordinates $\rightsquigarrow D F T \xrightarrow{\text { s.c. }}$ SUGRA

Alternatively, generalized vielbein \mathcal{E} formulation $\mathcal{H}_{I J}=\mathcal{E}^{A}{ }_{l} \mathcal{E}^{B}{ }_{J} S_{A B}$.
Siegel '93; Hohm, Kwak '10; Aldazabal et al. '11; Geissbuhler '11

* Allows to mildly dispense with the s.c. in generalized Scherk-Schwarz reductions

Questions to address

* What is the geometric structure of DFT and its relation to Courant algebroids?
* What is the Sigma-Model that captures the flux content of DFT?
cf. Heller, Ikeda, Watamura '16
* What is the origin/role of DFT constraints and how does noncommutativity appear?

We want to answer these questions in the context of Membrane Sigma-Models

Membranes for Strings: Why?

* Already the familiar NSNS flux (field strength of B) lives in 3D (open membrane)
* Courant Algebroids correspond naturally to 3D Topological Field Theories
* Deformation quantization viewpoint acknowledging private communication with Peter Schupp
- ("Closed") Fields \rightsquigarrow Open Strings (Poisson Sigma-Model)
- Closed Strings \rightsquigarrow Open Membranes (Courant Sigma-Model)
- Closed Membranes $\stackrel{?}{\sim}$ Open Tribranes (LAuth Sigma-Model)

Plan for the rest of the talk

(9) Sigma-Models and Courant Algebroids
(2) Doubled Membrane Sigma-Model
(3) Universal description of geometric and non-geometric fluxes - NC/NA structure

4 (Almost) Algebroid Structures beyond Courant
(5) Epilogue

Warm Up: (Twisted) Poisson Sigma-Model

Topological action for fields $X=\left(X^{i}\right): \Sigma_{2} \rightarrow M$ and $A \in \Omega^{1}\left(\Sigma_{2} ; X^{*} T^{*} M\right)$
Schaller, Strobl '94; Ikeda '94

$$
S_{\mathrm{PSM}}[X, A]=\int_{\Sigma_{2}}\left(A_{i} \wedge \mathrm{~d} X^{i}+\frac{1}{2} \Pi^{i j}(X) A_{i} \wedge A_{j}\right)
$$

Invariant under the gauge symmetry:

$$
\begin{aligned}
\delta X^{i} & =\Pi^{i \epsilon_{j}}, \\
\delta A_{i} & =\mathrm{d} \epsilon_{i}+\partial_{i} \Pi^{j k} A_{j} \epsilon_{k},
\end{aligned}
$$

provided that

$$
\Pi^{l i} \partial_{l} \Pi^{j k]}=0 \quad \rightarrow \quad \Pi \text { is a Poisson 2-vector }
$$

Comments

* May be twisted by a 3-form H (Wess-Zumino term) \rightsquigarrow twisted Poisson structure Klimcik, Strobl '01

$$
\Pi^{[i ;} \partial_{l} \Pi^{j k]}=H_{l m n} \Pi^{i} \Pi^{m j} \Pi^{n k} .
$$

*2D case of AKSZ scheme of topological field theories (for $\mathrm{H}=0$ at least) Alexandrov, Kontsevich, Schwarz, Zaboronsky '95

* Deformation Quantization of Poisson manifolds ~ Perturbation theory of PSM

Courant Sigma-Model

Hofman, Park '02; Ikeda '02

Maps $X=\left(X^{i}\right): \Sigma_{3} \rightarrow M$, 1-forms $A \in \Omega^{1}\left(\Sigma_{3}, X^{*} E\right)$, and 2-form $F \in \Omega^{2}\left(\Sigma_{3}, X^{*} T^{*} M\right)$
$S[X, A, F]=\int\left(F_{i} \wedge \mathrm{~d} X^{i}+\frac{1}{2} \eta_{I J} A^{\prime} \wedge \mathrm{d} A^{J}-\rho^{i}{ }_{l}(X) A^{\prime} \wedge F_{i}+\frac{1}{6} T_{I J K}(X) A^{\prime} \wedge A^{J} \wedge A^{K}\right)$.
E is some vector bundle (here $T M \oplus T^{*} M$), η is the (constant) $O(d, d)$-invariant metric

$$
\eta=\left(\eta_{I J}\right)=\left(\begin{array}{cc}
0 & 1_{d} \\
1_{d} & 0
\end{array}\right)
$$

3D case of AKSZ scheme of topological field theories Roytenberg '06

Gauge Symmetries of the Courant Sigma-Model

The Courant Sigma-Model is invariant under the following gauge transformations keda '02

$$
\begin{aligned}
& \delta X^{i}=\rho_{J}^{\prime} \epsilon^{J}, \\
& \delta A^{\prime}=\mathrm{d} \epsilon^{\prime}+\eta^{\prime N} T_{N J K} A^{J} \epsilon^{K}+\eta^{\prime J} \rho^{i}{ }_{J} t_{i}, \\
& \delta F_{m}=-\epsilon^{J} \partial_{m} \rho^{i}{ }_{J} F_{i}+\frac{1}{2} \epsilon^{J} \partial_{m} T_{L L J} A^{\prime} \wedge A^{L}+\mathrm{d} t_{m}+\partial_{m} \rho^{j}{ }_{J} A^{J} t_{j},
\end{aligned}
$$

where ϵ and t are gauge parameters, provided that

$$
\begin{aligned}
& \eta^{K L} \rho^{i}{ }_{K} \rho^{j}{ }_{L}=0 \\
& 2 \rho_{[I I}^{\prime} \partial_{\underline{I}} \rho_{J}-\rho^{k}{ }^{\prime} \eta^{J L} T_{L I J}=0 \\
& 4 \rho^{m}{ }_{[L} \partial_{\underline{m}} T_{I J K]}-3 \eta^{M N} T_{M[I J} T_{K L] N}=0 .
\end{aligned}
$$

These three conditions have an interesting relation to both physics and mathematics

* Coincide with the fluxes and Bianchi identities in sugra flux compactifications
* Coincide with the local form of the axioms of a Courant Algebroid

Courant Algebroid Axioms

Liu, Weinstein, Xu '95
$(E \xrightarrow{\pi} M,[\cdot, \cdot],\langle\cdot, \cdot\rangle, \rho: E \rightarrow T M)$, such that for $A, B, C \in \Gamma(E)$ and $f, g \in C^{\infty}(M)$:
(1) Modified Jacobi identity $\left(\mathcal{D}: C^{\infty}(M) \rightarrow \Gamma(E)\right.$ is defined by $\langle\mathcal{D} f, A\rangle=\frac{1}{2} \rho(A) f$.)

$$
[[A, B], C]+\text { c.p. }=\mathcal{D} \mathcal{N}(A, B, C), \quad \text { where } \quad \mathcal{N}(A, B, C)=\frac{1}{3}\langle[A, B], C\rangle+\text { c.p. },
$$

(2) Modified Leibniz rule

$$
[A, f B]=f[A, B]+(\rho(A) f) B-\langle A, B\rangle \mathcal{D} f,
$$

(3) Compatibility condition

$$
\rho(C)\langle A, B\rangle=\langle[C, A]+\mathcal{D}\langle C, A\rangle, B\rangle+\langle[C, B]+\mathcal{D}\langle C, B\rangle, A\rangle,
$$

The structures also satisfy the following properties (they follow... Uchino '02):
(4) Homomorphism

$$
\rho[A, B]=[\rho(A), \rho(B)]
$$

(5) "Absence of strong constraint"

$$
\rho \circ \mathcal{D}=0 \quad \Leftrightarrow \quad\langle\mathcal{D} f, \mathcal{D} g\rangle=0
$$

Naive Doubling

In order to incorporate the dual coordinates, we replace M with a doubled space \mathcal{M}.
A "large" CA \mathbb{E} over \mathcal{M} leads to a MSM with action $(I=1, \ldots, 2 d$ and $\hat{l}=1, \ldots, 4 d)$

$$
S[\mathbb{X}, \mathbb{A}, \mathbb{F}]=\int\left(\mathbb{F}_{l} \wedge d \mathbb{X}^{\prime}+\frac{1}{2} \hat{\eta}_{\hat{i} \hat{j}} \mathbb{A}^{\hat{l}} \wedge \mathrm{~d} \mathbb{A}^{\hat{j}}-\rho_{\hat{l}}^{\prime}(\mathbb{X}) \mathbb{A}^{\hat{l}} \wedge \mathbb{F}_{l}+\frac{1}{6} T_{\hat{i} \hat{j} \hat{K}}(\mathbb{X}) \mathbb{A}^{\hat{l}} \wedge \mathbb{A}^{\hat{j}} \wedge \mathbb{A}^{\hat{K}}\right) .
$$

In order to have some metric structure too, we add a general symmetric term on $\partial \Sigma_{3}$

$$
S_{\mathrm{sym}}[\mathbb{X}, \mathbb{A}]=\int_{\partial \Sigma_{3}} \frac{1}{2} g_{i \hat{\jmath}}(\mathbb{X}) \mathbb{A}^{i} \wedge * \mathbb{A}^{j}:=\int_{\partial \Sigma_{3}}\|\mathbb{A}\|_{g} .
$$

* Previously we had $O(d, d)(\eta)$ but d-dimensional target
* Now we have $2 d$-dimensional target but $O(2 d, 2 d)(\hat{\eta})$
* A DFT structure should be "in between", schematically:

Large CA over $\mathcal{M} \xrightarrow{\mathrm{p}_{+}}$DFT Structure $\xrightarrow{\text { strong }}$ Canonical CA over M

Splitting and Projecting

A section $\mathbb{A} \in \mathbb{E}$ is

$$
\mathbb{A}:=\mathbb{A}_{V}+\mathbb{A}_{F}=\mathbb{A}^{\prime} \partial_{l}+\widetilde{\mathbb{A}}_{l} \mathrm{~d} \mathbb{X}^{\prime}=\mathbb{A}_{+}^{\prime} e_{l}^{+}+\mathbb{A}_{-}^{\prime} e_{l}^{-}
$$

where we introduce the following combinations:

$$
\mathbb{A}_{ \pm}^{\prime}=\frac{1}{2}\left(\mathbb{A}^{I} \pm \eta^{I J} \widetilde{\mathbb{A}}_{J}\right), \quad e_{I}^{ \pm}=\partial_{I} \pm \eta_{I J} \mathrm{~d} \mathbb{X}^{J}
$$

This gives a decomposition of the generalized tangent bundle as

$$
E=\mathbb{T} \mathcal{M}=L_{+} \oplus L_{-} .
$$

Then we consider a projection to the subbundle L_{+}with $\mathrm{O}(\mathrm{d}, \mathrm{d})$ vectors

$$
\mathrm{p}_{+}: E \longrightarrow L_{+}, \quad\left(\mathbb{A}_{v}, \mathbb{A}_{F}\right) \longmapsto \mathbb{A}_{+}:=A=A_{i}\left(\mathrm{~d} X^{i}+\tilde{\partial}^{i}\right)+A^{i}\left(\mathrm{~d} \widetilde{X}_{i}+\partial_{i}\right)
$$

Projection of the symmetric bilinear of \mathbb{E}, leads to the $\mathrm{O}(\mathrm{d}, \mathrm{d})$ invariant DFT metric:

$$
\langle\mathbb{A}, \mathbb{B}\rangle_{\mathbb{E}}=\frac{1}{2} \eta_{\hat{\jmath} \hat{A}} \mathbb{A}^{\hat{1}} \mathbb{B}^{\jmath}=\eta_{I J}\left(\mathbb{A}_{+}^{\prime} \mathbb{B}_{+}^{J}-\mathbb{A}_{-}^{\prime} \mathbb{B}_{-}^{J}\right) \quad \mapsto \quad \eta_{I J} A^{\prime} B^{J}=\langle A, B\rangle_{L_{+}}
$$

Projected Bracket

Using the projection, a closed bracket on L_{+}is defined as

$$
\llbracket A, B \rrbracket_{L_{+}}=\mathrm{p}_{+}\left(\left[\mathrm{p}_{+}(\mathbb{A}), \mathrm{p}_{+}(\mathbb{B})\right]_{E}\right)
$$

(N.B.: L_{+}is not an involutive subbundle, thus neither a Dirac structure of \mathbb{E}.)

This agrees with the local formula for the so-called C-bracket, used in DFT
Siegel '93; Hull, Zwiebach '10

$$
\llbracket A, B \rrbracket_{L_{+}}^{J}=A^{K} \partial_{K} B^{J}-\frac{1}{2} A^{K} \partial^{J} B_{K}-\{A \leftrightarrow B\} .
$$

Thus, the map p_{+}sends large CA structures to corresponding DFT structures.

Double Field Theory Sigma-Model

Applying this strategy to the Courant Sigma-Model, we obtain the action agrees with the proposal of A.Ch., Jonke, Lechtenfeld '15

$$
\left.S[\mathbb{X}, A, F]=\int\left(F_{I} \wedge \mathbb{d}^{\prime}{ }^{\prime}+\eta_{I J} A^{\prime} \wedge \mathrm{d} A^{J}-\left(\rho_{+}\right)^{\prime}\right\lrcorner A^{J} \wedge F_{I}+\frac{1}{3} \widehat{T}_{I J K} A^{\prime} \wedge A^{J} \wedge A^{K}\right)
$$

where $\rho_{+}: L_{+} \rightarrow T \mathcal{M}$ is a map to the tangent bundle of \mathcal{M}.
The symmetric term undergoes a rather trivial projection:

$$
S_{\mathrm{sym}}[\mathbb{X}, A]=\int_{\partial \Sigma_{3}} \frac{1}{2} g_{I J}(\mathbb{X}) A^{\prime} \wedge * A^{J}
$$

* Does it describe all types of fluxes in a unified way?
* What is the underlying mathematical structure that replaces the CA?
* What is the relation to the target space DFT and its constraint structure?

Examples: The 3-Torus Flux Chain

Consider a doubled torus as target of the DFT MSM and DFT structural data as

$$
\left(\rho_{+}\right)^{\prime} J=\left(\begin{array}{cc}
\rho_{j}^{i} & \rho^{i j} \\
\rho_{i j} & \rho_{i}^{j}
\end{array}\right) \quad A^{\prime}=\left(q^{i}, p_{i}\right) \quad T_{I J K}=\left(\begin{array}{ll}
H_{i j k} & f_{i j}^{k} \\
Q_{i}^{j k} & R^{j k k}
\end{array}\right) \quad g_{I J}=\left(\begin{array}{ll}
g_{i j} & g_{i}^{j} \\
g_{j}^{i} & g^{j j}
\end{array}\right) .
$$

The goal is to describe the T-duality chain relating geometric and non-geometric fluxes
Shelton, Taylor, Wecht '05

$$
H_{i j k} \stackrel{\mathrm{~T}_{k}}{\longleftrightarrow} f_{i j}^{k} \stackrel{\mathrm{~T}_{j}}{\longleftrightarrow} Q_{i}^{j k} \stackrel{\mathrm{~T}_{i}}{\longleftrightarrow} R^{i k}
$$

Also, to clarify the proposal for NC/NA deformations in non-geometric flux backgrounds

NSNS Flux \& Geometric Flux

Choose

$$
\left(\rho_{+}\right)^{\prime}{ }_{J}=\left(\begin{array}{cc}
\delta_{j}^{i} & 0 \\
0 & 0
\end{array}\right), \quad T_{I J K}=\left(\begin{array}{cc}
H_{i j k} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad g_{I J}=\left(\begin{array}{cc}
0 & 0 \\
0 & g^{i j}
\end{array}\right) .
$$

Then, taking the F-equations of motion, the membrane action reduces to

$$
S_{H}[X]:=\int_{\partial \Sigma_{3}} \frac{1}{2} g_{i j} \mathrm{~d} X^{i} \wedge * \mathrm{~d} X^{j}+\int_{\Sigma_{3}} \frac{1}{6} H_{j j k} \mathrm{~d} X^{i} \wedge \mathrm{~d} X^{j} \wedge \mathrm{~d} X^{k},
$$

which is the standard closed string model with NSNS flux as Wess-Zumino term.
Choose ($f_{i j}{ }^{k}=-2 E^{\mu}{ }_{[i} E^{\nu}{ }_{j]} \partial_{\mu} E^{k}{ }_{\nu}$ structure constants of the 3D Heisenberg algebra)

$$
\left(\rho_{+}\right)^{M}=\left(\begin{array}{cc}
E^{\mu}{ }_{j} & 0 \\
0 & 0
\end{array}\right), \quad T_{I J K}=\left(\begin{array}{cc}
0 & 2 f_{i j}^{k} \\
0 & 0
\end{array}\right) \quad \text { and } \quad g_{I J}=\left(\begin{array}{cc}
0 & 0 \\
0 & g^{i j}
\end{array}\right) .
$$

The resulting action now becomes simply (using Maurer-Cartan $\mathrm{d} E^{i}=-\frac{1}{2} f_{j k}{ }^{j} E^{j} \wedge E^{k}$)

$$
S_{f}[X]:=\int_{\partial \Sigma_{3}} \frac{1}{2} g_{i j} E^{i} \wedge * E^{j},
$$

which is the action with T -dual target the Heisenberg nilmanifold.

The T-fold and Noncommutativity

To describe the globally non-geometric Q-flux frame we choose

$$
\left(\rho_{+}\right)^{\prime}{ }_{J}=\left(\begin{array}{cc}
\delta_{j}^{i} & \beta^{i j}(X) \\
0 & -\delta_{i}^{j}
\end{array}\right) \quad T_{I J K}=\left(\begin{array}{cc}
0 & 0 \\
Q_{i}^{j k} & 0
\end{array}\right) \quad g_{I J}=\left(\begin{array}{cc}
0 & \delta_{3}{ }^{j} \\
0 & g^{i j}
\end{array}\right),
$$

with $g^{i j}=\operatorname{diag}(1,1,0)$ and $\beta^{i j}(X)=-Q_{k}{ }^{i j} X^{k}$ with components $Q_{3}{ }^{12}=Q=-Q_{3}{ }^{21}$.
The same procedure leads, for $m=1,2$, to

$$
\int_{\partial \Sigma_{3}}\left(\mathrm{~d} \widetilde{X}_{m} \wedge \mathrm{~d} X^{m}+Q X^{3} \mathrm{~d} \widetilde{X}_{1} \wedge \mathrm{~d} \widetilde{X}_{2}+\frac{1}{2} \mathrm{~d} X^{3} \wedge * \mathrm{~d} X^{3}+\frac{1}{2} \mathrm{~d} \widetilde{X}_{m} \wedge * \mathrm{~d} \widetilde{X}_{m}\right) .
$$

This is shown to be equivalent to the T-fold action, obtained via Buscher rules

$$
S_{Q}[X]=\int_{\partial \Sigma_{3}}\left(\frac{1}{2} \mathrm{~d} X^{3} \wedge * \mathrm{~d} X^{3}+\frac{1}{2\left(1+\left(Q X^{3}\right)^{2}\right)} \mathrm{d} X^{m} \wedge * \mathrm{~d} X^{m}-\frac{Q X^{3}}{1+\left(Q X^{3}\right)^{2}} \mathrm{~d} X^{1} \wedge \mathrm{~d} X^{2}\right)
$$

The T-fold and Noncommutativity

From a different viewpoint, taking $\Sigma_{3}=\Sigma_{2} \times S^{1}$ and wrapping the membrane:

$$
X^{3}(\sigma)=w^{3} \sigma^{3}
$$

a dimensional reduction of the topological action yields

$$
S_{Q, w}[X, \widetilde{X}]:=\int_{\Sigma_{2}}\left(\frac{1}{2} \mathrm{~d} \widetilde{X}_{m} \wedge * \mathrm{~d} \widetilde{X}_{m}+\mathrm{d} \widetilde{X}_{m} \wedge \mathrm{~d} X^{m}+\frac{1}{2} Q_{3}^{m n} w^{3} \mathrm{~d} \widetilde{X}_{m} \wedge \mathrm{~d} \widetilde{X}_{n}\right) .
$$

The topological sector contains $\theta=\frac{1}{2} \theta^{m n} \partial_{m} \wedge \partial_{n}+\partial_{m} \wedge \tilde{\partial}^{m}$, with Poisson brackets

$$
\left\{X^{m}, X^{n}\right\}_{\theta}=\theta^{m n}=Q_{3}^{m n} w^{3}, \quad\left\{X^{m}, \widetilde{X}_{n}\right\}_{\theta}=\delta^{m}{ }_{n} \quad \text { and } \quad\left\{\widetilde{X}_{m}, \widetilde{X}_{n}\right\}_{\theta}=0 .
$$

$\rightsquigarrow Q$-flux leads to a closed string noncommutative geometry provided by a Wilson line exactly as in Lüst '10

$$
\theta^{i j}=\oint_{C_{k}} Q_{k}^{i j} \mathrm{~d} X^{k}
$$

R flux and nonassociativity

A frame with no conventional target space description in terms of standard coordinates
Realized in the membrane sigma-model upon choosing (with $\beta^{i j}(\widetilde{X})=R^{i k} \widetilde{X}_{k}$)

$$
\left(\rho_{+}\right)^{\prime}{ }_{J}=\left(\begin{array}{cc}
\delta_{j}^{i} & \beta^{i j}(\widetilde{X}) \\
0 & -\delta_{i}^{j}
\end{array}\right) \quad T_{I J K}=\left(\begin{array}{cc}
0 & 0 \\
0 & R^{i k}
\end{array}\right) \quad \text { and } \quad g_{I J}=\left(\begin{array}{cc}
0 & 0 \\
0 & g^{i j}
\end{array}\right) \text {. }
$$

This leads to the action, first proposed in Mylonas, Schupp, Szabo ' 12

$$
S_{R}[X, \widetilde{X}]=\int_{\partial \Sigma_{3}}\left(\mathrm{~d} \widetilde{X}_{i} \wedge \mathrm{~d} X^{i}+\frac{1}{2} R^{i k} \widetilde{X}_{k} \mathrm{~d} \widetilde{X}_{i} \wedge \mathrm{~d} \widetilde{X}_{j}+\frac{1}{2} g^{i j} \mathrm{~d} \widetilde{X}_{i} \wedge * \mathrm{~d} \widetilde{X}_{j}\right) .
$$

$\rightsquigarrow 2$-vector $\Theta^{\prime J}=\left(\begin{array}{cc}R^{j j k} & \widetilde{X}_{k} \\ -\delta_{j}^{j} & 0\end{array}\right)$ on the doubled space, with twisted Poisson bracket

$$
\left\{X^{i}, X^{j}\right\}_{\Theta}=R^{i j k} \widetilde{X}_{k}, \quad\left\{X^{i}, \widetilde{X}_{j}\right\}_{\Theta}=\delta_{j}^{i} \quad \text { and } \quad\left\{\widetilde{X}_{i}, \widetilde{X}_{j}\right\}_{\Theta}=0,
$$

and the non-vanishing Jacobiator, a sign of nonassociativity in X-space,

$$
\left\{X^{i}, X^{j}, X^{k}\right\}_{\Theta}:=\frac{1}{3}\left\{\left\{X^{i}, X^{j}\right\}_{\Theta}, X^{k}\right\}_{\Theta}+\text { cyclic }=-R^{i k} .
$$

Towards the DFT Algebroid

In general, taking a parametrization of the ρ_{+}components to be

$$
\left(\rho_{+}\right)^{\prime}{ }_{J}=\left(\begin{array}{cc}
\delta_{j}^{i} & \beta^{j j} \\
B_{i j} & \delta_{i}^{j}+\beta^{j k} B_{k i}
\end{array}\right),
$$

the relevant local expressions that replace the ones of the undoubled case are

$$
\begin{aligned}
& \eta^{I J} \rho^{K}{ }_{I \rho} \rho_{J}^{L}=\eta^{K L} \\
& 2 \rho_{[I I L}^{L} \partial_{L} \rho^{K}{ }_{J}-\eta^{L M} \rho^{K}{ }_{L} \hat{T}_{M I J}=\rho_{L[I} \partial^{K} \rho^{L}{ }_{J} \\
& 4 \rho^{M}{ }_{[L} \partial_{\underline{M}} \hat{T}_{I J K]}+3 \eta^{M N} \hat{T}_{M[I J} \hat{T}_{K L] N}=\mathcal{Z}_{J J K L} .
\end{aligned}
$$

* Expressions for fluxes and Bianchis of DFT when the strong constraint holds Geissbuhler, Marques, Nunez, Penas '13
* Conditions for gauge invariance of our MSM when the strong constraint holds
* They can be used to reverse-engineer a more general structure than CAs

A Word on the Generalized Metric

In general one obtains on-shell a string sigma-model with doubled target as e.g. in Hull, Reid-Edwards '09

$$
S_{\mathcal{H}, \mathcal{F}}[\mathbb{X}]:=\int_{\partial \Sigma_{3}} \frac{1}{2} \mathcal{H}_{I J} \mathrm{~d} \mathbb{X}^{\prime} \wedge * \mathrm{~d} \mathbb{X}^{J}+\int_{\Sigma_{3}} \frac{1}{3} \mathcal{F}_{I J K} \mathrm{~d} \mathbb{X}^{\prime} \wedge \mathrm{d} \mathbb{X}^{J} \wedge \mathrm{~d} \mathbb{X}^{K},
$$

where

$$
\mathcal{H}_{I J}:=\left(\rho_{+}\right)_{I^{K}} g_{K L}\left(\rho_{+}\right)_{J}{ }^{L} \quad \text { and } \quad \mathcal{F}_{I J K}:=\left(\rho_{+}\right) \iota^{L}\left(\rho_{+}\right) J^{M}\left(\rho_{+}\right) K^{N} \hat{T}_{L M N} \text {. }
$$

\mathcal{H} is then exactly the generalized metric, in various parametrizations, e.g.

$$
\left.\begin{array}{ll}
\mathcal{H}_{I J}=\left(\begin{array}{cc}
g_{i j}-B_{i k} g^{k l} & B_{l j}
\end{array}-B_{i k} g^{k j}\right. \\
g^{i k} B_{k j} & g^{i j}
\end{array}\right), \quad \text { for } \beta=0
$$

A quadruple $\left(L_{+}, \llbracket \cdot, \cdot \rrbracket,\langle\cdot, \cdot\rangle_{L_{+}}, \rho_{+}\right)$satisfying $\left(\left\langle A, \mathcal{D}_{+} f\right\rangle_{L_{+}}=\frac{1}{2} \rho_{+}(A) f\right)$
(2 $\llbracket A, f B \rrbracket=f \llbracket A, B \rrbracket+\left(\rho_{+}(A) f\right) B-\langle A, B\rangle_{L_{+}} \mathcal{D}_{+} f$,
(0) $\left\langle\llbracket C, A \rrbracket+\mathcal{D}_{+}\langle C, A\rangle_{L_{+}}, B\right\rangle_{L_{+}}+\left\langle\llbracket C, B \rrbracket+\mathcal{D}_{+}\langle C, B\rangle_{L_{+}}, A\right\rangle_{L_{+}}=\rho_{+}(C)\langle A, B\rangle_{L_{+}}$,
(c) $\left\langle\mathcal{D}_{+} f, \mathcal{D}_{+} g\right\rangle_{L_{+}}=\frac{1}{4}\langle\mathrm{~d} f, \mathrm{~d} g\rangle_{L_{+}}$.

Notably, the modified Jacobi, homomorphism and kernel properties are obstructed
In general, by relaxing properties one obtains a host of intermediate structures
cf. Vaisman '04; Hansen, Strobl '09; Bruce, Grabowski '16

The DFT Algebroid is an example of pre-DFT Algebroid, for which
Large Courant algebroid $\xrightarrow{\mathrm{p}_{+}}$DFT algebroid $\xrightarrow{(5)}$ Courant algebroid Imposing that the RHS of property 5 is zero is exactly the strong constraint of DFT.

Comments on the Strong Constraint \& Beyond DFT

\% It's too strong. Essentially it merely reduces DFT to supergravity.
\% It's not there in the original DFT and it has no obvious stringy origin.

* It's violated in certain (nonassociative) R flux models.
* It can be relaxed in generalised SS reductions (by a milder closure constraint.)

Options to formulate a sigma-model that goes beyond the standard DFT

* Depart from the constant η metric and consider a dynamical one $\eta(\mathbb{X})$ cf. Freidel, Leigh, Minic '15; also Hansen, Strobl '09
* Make use of the additional symplectic structure related to the term $\omega=\mathrm{d} X \wedge \mathrm{~d} \widetilde{X}$ Vaisman '12; Freidel, Rudolph, Svoboda '17

Dynamical η

* The twist of the C-bracket is modified:

$$
\llbracket A, B \rrbracket_{\eta}:=\mathrm{p}_{+}\left(\left[\mathrm{p}_{+}(\mathbb{A}), \mathrm{p}_{+}(\mathbb{B})\right]_{E}\right)=\llbracket A, B \rrbracket+S(A, B),
$$

where in local coordinate form

$$
S(A, B)=S^{L}{ }_{I J} A^{\prime} B^{J} e_{L}^{+}=\eta^{L K} \rho^{M}{ }_{[/ \partial} \partial_{\underline{M}} \eta_{J K} A^{\prime} B^{J} e_{L}^{+} .
$$

* However, the MSM is not modified, since $\left\langle\llbracket A, A \rrbracket_{\eta}, A\right\rangle_{L_{+}}=\langle\llbracket A, A \rrbracket, A\rangle_{L_{+}}$.
* The gauge transformation of A^{\prime} is modified to

$$
\delta_{\epsilon} A^{\prime}=\mathrm{d} \epsilon^{\prime}+\left(\eta^{\prime J} \hat{T}_{J K L}(\mathbb{X})+S_{K L}^{\prime}(\mathbb{X})\right) A^{K} \epsilon^{L}
$$

*We found that the strong constraint can be avoided provided that

$$
\rho_{[I}^{K} \partial_{K} \eta_{L] J}=\rho_{J K} \rho_{N[I} \partial^{K} \rho_{L]}^{N} .
$$

*We plan to understand this globally and find examples that solve this equation.

Epilogue

Take-Home Messages

* The geometric structure of DFT is between two Courant Algebroids
* A DFT Algebroid as a relaxed-CA structure; interpretation of strong constraint
* Membrane Sigma-Model compatible with flux formulation of DFT
* In principle, more general; with noncommutative/nonassociative deformations

Some Open Questions and Things-To-Do

* What is the theory without the strong constraint? Role of $\eta(\mathbb{X})$ and $\omega(\mathbb{X})$? Perhaps a relation to "Metastring Theory" or "Born Geometry"? Implications for stringy early-universe cosmology?
* One dimension higher? Closed Membranes, Exceptional Field Theory?
* Any relation to Matrix Models? Perhaps dynamical phase space A.ch. ${ }^{14}$

Back-up slide

Alternative definition of a Courant Algebroid

Definition in terms of a bilinear, non-skew operation (Dorfman derivative)

$$
[A, B]=A \circ B-B \circ A,
$$

notably satisfying instead of 1 , the Jacobi identity (in Loday-Leibniz form):

$$
A \circ(B \circ C)=(A \circ B) \circ C+B \circ(A \circ C) .
$$

Axioms 2 and 3 do not contain \mathcal{D}-terms any longer,

$$
\begin{aligned}
A \circ f B & =f(A \circ B)+(\rho(A) f) B, \\
\rho(C)\langle A, B\rangle & =\langle C \circ A, B\rangle+\langle C \circ B, A\rangle .
\end{aligned}
$$

The two definitions are equivalent, as proven by Roytenberg '99

