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“Lessons” for the Geometry of Spacetime and Quantum Gravity

« Geometry is Generalized (Noncommutativity, String, Matrices)
« Geometry is (maybe) Emergent (String, AdS/CFT, Matrices, ...)

« Geometry is (maybe) Doubled (Quantum Mechanics/Born Reciprocity, String/T-duality)



Doubling for Closed Strings

Circle compactifications ~~ Momentum and Winding modes with mass « 1/R and R
Large radius limit ~~ Only momentum modes probe spacetime, and EFT is supergravity
~~ measure lengths with position operators x
At QG scales, R ~ Vo' ~ both momentum and winding modes become important
e.g. in the Brandenberger-Vafa early universe scenario
~~ position operators x and dual (to windings) X

Supergravity is certainly not enough here ~ need (some kind of) Double Field Theory
e.g. proposals by Siegel *93; Hull, Zwiebach '09; Freidel, Leigh, Minic '15; &c.



Symmetries

On one hand, we have diffeomorphisms and gauge transformations, as in field theory
But for closed strings, also T-duality, exchanging momenta <> windings and R < 1/R

N.B., T-duality is an asymmetric reflection: X(o,7) = X, + Xr N 5((0, T)=XL— Xr

When multiple (d) circle compactification, the T-duality symmetry group is O(d, d; Z)
~+ The Double Field Theory should enjoy an O(d, d; R) symmetry

~» The underlying geometric structure should contain/unify these symmetries



Flux, Duality and Open Strings

For open strings on D-branes
<« Turnon Bor F ~ noncommutativity Douglas, Hull '97; Chu, Ho '98; Seiberg, Witten '99

2ria/(B — F)

[X1(7')7X2(T)] = i012 5 012 = —m .

« T-dual frame ~~ commutativity & D-branes at angles.

Lesson: New geometries arise in presence of non-trivial flux backgrounds.



Flux, Duality and Closed Strings

Left and right movers may experience different geometries (asymmetric strings).

T-duality reveals closed string backgrounds which are “non-geometric” (T-folds & co.)
e.g. Hull '04; Shelton, Taylor, Wecht '05; &c.

Hyg — ff — Q¢ — R¥

Generic closed string geometries argued to be noncommutative and nonassociative.
List '10; Blumenhagen, Plauschinn '10; Mylonas, Schupp, Szabo '12

Q-case [X', X ~ Q" w*
Rcase [X, X]~R¥pc X, X, X"~ R".

Similar to particle in a non-constant magnetic field in QM. Jackiw '85; Bakas, Liist '13



Enter Algebroids

« Courant Algebroids: unify Poisson and pre-symplectic structures
Courant '90; Liu, Weinstein, Xu '95

» Canonical example: TM @ T*M, with a natural O(d, d) metric, and fluxes as twists

« Generalized Complex Geometry: unify symplectic and complex structures
Hitchin '02; Gualtieri '04

» g and B on equal footing, Diffs and Gauge trafos as automorphisms of Courant bracket
» Main additional player: a generalized metric:

ki kj
_ (9i—Bkg"“B; Bikg"
Hiy = ( _glk Bkj g// :
Courant Algebroid vs. Doubling of coordinates

+ Captures the symmetries, but not the doubling of coordinates

+ But if the target is doubled, the symmetry would be O(2d, 2d), i.e. too large



Double Field Theory

Siegel "93; Hull, Zwiebach '09

A proposal for a field theory invariant under O(d, d); T-duality becomes manifest.
It uses doubled coordinates (x') = (x', X;), and all fields depend on both.

The O(d, d) structure is associated to a (constant) O(d, d)-invariant metric

0 1
n=ew)= (7, §). Hun=n, heo.q),

used to raise and lower | = 1,...,2d indices.
Derivatives are also doubled accordingly: (/) = (8;,9").

The fields are the generalized metric £ and invariant dilaton d (2% = ,/=ge—2%), with
Hohm, Hull, Zwiebach '10

S= / dxdxe*z"( HY O H O Hu — 1H/J8/HKL8L’HKJ—28/d8JH/J+4H/J8/d8Jd) .



DFT symmetries and constraints

Gauge transformations are included with a parameter ¢/ = (¢',)):

SHY = KoxHY + (8'ek — okeYH + (87ex — ke YH" = LAY,
bed = 1ok +fokd,

and L. is called the generalised Lie derivative. But S is not automatically invariant.
The theory is constrained.
+ Weak constraint: A- := 9'9,- = 0; stems from the level matching condition.

« Strong constraint: 8 ® d;(...) = 0 on products on fields.

Strong constraint eliminates half coordinates ~ DFT 3 SUGRA

Alternatively, generalized vielbein & formulation Hy = £4/£8,Sas.
Siegel '93; Hohm, Kwak '10; Aldazabal et al. '11; Geissbuhler '11

+ Allows to mildly dispense with the s.c. in generalized Scherk-Schwarz reductions



Questions to address

« What is the geometric structure of DFT and its relation to Courant algebroids?

« What is the Sigma-Model that captures the flux content of DFT?

cf. Heller, lkeda, Watamura '16

« What is the origin/role of DFT constraints and how does noncommutativity appear?

We want to answer these questions in the context of Membrane Sigma-Models



Membranes for Strings: Why?

« Already the familiar NSNS flux (field strength of B) lives in 3D (open membrane)

« Courant Algebroids correspond naturally to 3D Topological Field Theories

+ Deformation quantization viewpoint acknowledging private communication with Peter Schupp

> (“Closed”) Fields ~ Open Strings (Poisson Sigma-Model)

» Closed Strings ~~ Open Membranes (Courant Sigma-Model)

> Closed Membranes > Open Tribranes (LAuth Sigma-Model)



Plan for the rest of the talk

ﬂ Sigma-Models and Courant Algebroids
e Doubled Membrane Sigma-Model
e Universal description of geometric and non-geometric fluxes — NC/NA structure

0 (Almost) Algebroid Structures beyond Courant

e Epilogue



Warm Up: (Twisted) Poisson Sigma-Model

Topological action for fields X = (X') : ¥, -+ Mand A € Q'(Xo; X* T*M)
Schaller, Strobl '94; Ikeda 94

SesulX, A = /

(A, AdX + 1NT(X)A A A,)
P

Invariant under the gauge symmetry:
sX' = ﬂ”e,- ,
0A; = de+ 8,-I'IjkA,-ek s
provided that o
nign® =0 — Nis a Poisson 2-vector
Comments

« May be twisted by a 3-form H (Wess-Zumino term) ~~ twisted Poisson structure
Klimcik, Strobl "01
o = Hm,n"n™n™ .
# 2D case of AKSZ scheme of topological field theories (for H = 0 at least)
Alexandrov, Kontsevich, Schwarz, Zaboronsky '95

« Deformation Quantization of Poisson manifolds ~ Perturbation theory of PSM
Kontsevich '97; Cattaneo, Felder '99



Courant Sigma-Model
Hofman, Park '02; lkeda '02

Maps X = (X') : ¥3 — M, 1-forms A € Q'(Z3, X*E), and 2-form F € Q?(Z3, X*T*M)
SIX,AF] = / (F,- AAX 4 InuA  AdAY = p(X)A A Fi+ L Tu(X)A A AT A AK) .

E is some vector bundle (here TM @ T*M), n is the (constant) O(d, d)-invariant metric

n=(m) = (10d 10d> :

3D case of AKSZ scheme of topological field theories Roytenberg ‘06



Gauge Symmetries of the Courant Sigma-Model

The Courant Sigma-Model is invariant under the following gauge transformations ikeda ‘02
§X' = pfje‘j ,
SA = de' + N Taw A’ + 1Vl st
8Fn = —€0mp yFi + 3’ 0nTisA' N A" + ditm + Ompl yA'S;
where e and t are gauge parameters, provided that
nKLprij -0
20y’ g — o™ Tuw =0
40™10.0m Ty — 30" Taa Tegn = 0.

These three conditions have an interesting relation to both physics and mathematics

#« Coincide with the fluxes and Bianchi identities in sugra flux compactifications
« Coincide with the local form of the axioms of a Courant Algebroid



Courant Algebroid Axioms
Liu, Weinstein, Xu '95

(ESM,[-,],(,-),p: E—= TM), such thatfor A, B,C € T(E) and f,g € C>=(M):
@ Modified Jacobi identity (D : C**(M) — I'(E) is defined by (Df, Ay = L p(A)f .)
[[A B],C] +c.p. = DN(A,B,C), where N(A,B,C)= }([AB],C)+cp.,
@ Modified Leibniz rule
[A, B] = f[A, B] + (p(A)f)B — (A, B)Df ,
© Compatibility condition
p(C)(A,B) = ([C,Al + D(C, A), B) + ([C, B] + D(C, B), A) ,

The structures also satisfy the following properties (they follow... uchino '02):

© Homomorphism
plA, Bl = [p(A), p(B)] ,
@ “Absence of strong constraint”

poD=0 <« (Df,Dg)=0.



Naive Doubling

In order to incorporate the dual coordinates, we replace M with a doubled space M.

A “large” CA E over M leads to a MSM with action (/ =1, ...,2d and 1= 1,...,4d)

SIX, A, F] = / (Fi A ax'+ Al A dA” = )y (X)A AR+ § Tige(X)AT A A7 A A

In order to have some metric structure too, we add a general symmetric term on 0X3

Saym[X, A] = / 1g(X)AT A <A 1= / 1Al
%5 855

« Previously we had O(d, d) (n) but d-dimensional target
« Now we have 2d-dimensional target but O(2d, 2d) ()
+ A DFT structure should be “in between”, schematically:

Large CA over M P+, DFT Structure —™"8, Ganonical CA over M



Splitting and Projecting

Asection A€ Eis
A=Av+Ar=A9+AdX =A el +A ¢,
where we introduce the following combinations:
Al = I(A"£9YA)), ef =9 £ nudx’,
This gives a decomposition of the generalized tangent bundle as
E=TM=L.®oL_.

Then we consider a projection to the subbundle L. with O(d,d) vectors

Py E— Ly, (Av,Af)— A, :=A=A(dX + )+ AdX +9) .

Projection of the symmetric bilinear of E, leads to the O(d,d) invariant DFT metric:

<A, ]B>]E = %’I]A,JA’BJ = ’r]/J(AirIBi = A’,BJ,) — UIJAIBJ = <A7 B>LJr 0



Projected Bracket

Using the projection, a closed bracket on L. is defined as
I[A7 B]IL+ =P+ ([p+(A)7 p+(B)]E)
(N.B.: Ly is not an involutive subbundle, thus neither a Dirac structure of E.)

This agrees with the local formula for the so-called C-bracket, used in DFT
Siegel '93; Hull, Zwiebach '10

[A Bl = A“okB’ — L A9'Bk — {A« B} .

Thus, the map p.+ sends large CA structures to corresponding DFT structures.



Double Field Theory Sigma-Model

Applying this strategy to the Courant Sigma-Model, we obtain the action

agrees with the proposal of A.Ch., Jonke, Lechtenfeld '15
S[X, A F] = / (F, A X+ A A dA = (p1)JAT A Fi+ I TiAT A AT A AK) ,
where p; : Ly — T M is a map to the tangent bundle of M.

The symmetric term undergoes a rather trivial projection:

Seym[X, A] = / 1gu(X)A' A <AL
3

« Does it describe all types of fluxes in a unified way?

« What is the underlying mathematical structure that replaces the CA?

« What is the relation to the target space DFT and its constraint structure?



Examples: The 3-Torus Flux Chain

Consider a doubled torus as target of the DFT MSM and DFT structural data as
(P P ' (b _ (Hik £ _(9 9
(p+)y = (p,-,- p/) A=(q.p) Tuk= (Oi]k Rik w=\g, g

The goal is to describe the T-duality chain relating geometric and non-geometric fluxes
Shelton, Taylor, Wecht '05

T, Tj ik Tj i
I'Iijk k fijk J Qle i lek

Also, to clarify the proposal for NC/NA deformations in non-geometric flux backgrounds



NSNS Flux & Geometric Flux

Choose
&, 0 Hij 0 0 0
(p+)s = (01 0) , Tk = ( Olk 0) and gu= (0 gij> :
Then, taking the F-equations of motion, the membrane action reduces to
SulX] ;:/ T gpdX' A *dxf+/ 3 Hied X' AdX A dXE,
9%3 T3
which is the standard closed string model with NSNS flux as Wess-Zumino term.

Choose (fi* = —2 E*|; E; 0,,E*, structure constants of the 3D Heisenberg algebra)

E*; 0 0 2fk 0 0
(p)"s = ( 01 O) ] Tk = (0 0’ ) and gu= (0 gij) :

The resulting action now becomes simply (using Maurer-Cartan dE' = —1 fi' E/ A E¥)
Si[X] = / 1giEAKE
8%,

which is the action with T-dual target the Heisenberg nilmanifold.



The T-fold and Noncommutativity

To describe the globally non-geometric Q-flux frame we choose

& BI(X 0 0 0 &
(,0+)/J - (Oj 7(5/)) T/JK = (Ql_jk 0) g/J - <O g3’/> )
with g7 = diag(1,1,0) and 87(X) = —Qi” X* with components Q;'? = Q = —Q*'.

The same procedure leads, for m= 1,2, to

dXm AdX™ + QX3dX; AdXo + 2 dXC A %d X%+ 1 dXm A %dXm) .
o 2 2
3

This is shown to be equivalent to the T-fold action, obtained via Buscher rules

dX™ A *dX™ — —QX _ dx" A dX?)

201+( ox3 2) TH(Q X3)2

SolX] = / (1dX® A =dX° +
o5,



The T-fold and Noncommutativity

From a different viewpoint, taking £3 = ¥» x S' and wrapping the membrane:
X3(o) = wo®,
a dimensional reduction of the topological action yields

SowlX, X]:= / (3 dXm A %dXim + dXen A AX™ + 1 Q™ WP d X A dX;) -

P23
The topological sector contains 6 = § 6™ O A 9p + Om A O™, with Poisson brackets

(X" X =0 =™ w®,  {X", Xs}o=6"n and  {Xm Xo}s=0.

~» Q-flux leads to a closed string noncommutative geometry provided by a Wilson line

exactly as in Lust "10

"= ¢ QJdxk.
Ck



R flux and nonassociativity

A frame with no conventional target space description in terms of standard coordinates

Realized in the membrane sigma-model upon choosing (with B7(X ) = R¥ Xj)

& BIX 0 0 00
(p+)’J — (0/ ﬁ_((;,j )> T/JK = (0 Rllk> and qgu = (0 glj) .

This leads to the action, first pl’OpOSGd iN Mylonas, Schupp, Szabo '12

sﬁ[x,)?]:/ (dX A dX + 1 R* X dX; A dX; + 1 g7 dXi A «dX;) |

o7y

Rik ;(k 5ij

~ 2-vector OV = ( TN

) on the doubled space, with twisted Poisson bracket

(X' XYe=R*X., {X X}oe=6; and {X,X}e=0,
and the non-vanishing Jacobiator, a sign of nonassociativity in X-space,

(XX, X Yo = L {{X', X'}e, X}o + cyclic = —R™



Towards the DFT Algebroid

In general, taking a parametrization of the p; components to be

Ty B
(p+) J = (BI] 5!'] +ﬁjk Bki )
the relevant local expressions that replace the ones of the undoubled case are
M K L KL
npepg=n
20 100" 5y — ™" LT = p1d" oy
4™ 0w Turg + 30" Taw Tegn = 2k -
« Expressions for fluxes and Bianchis of DFT when the strong constraint holds
Geissbuhler, Marques, Nunez, Penas '13
#« Conditions for gauge invariance of our MSM when the strong constraint holds

#« They can be used to reverse-engineer a more general structure than CAs



A Word on the Generalized Metric

In general one obtains on-shell a string sigma-model with doubled target
as e.g. in Hull, Reid-Edwards '09

Su, F[X] = / %HIJ ax! A xdX? + %]:IJK dxX/ A dxY A dx® ,
o955 5

where

Hu = (p4) g (p+)s" and Fux = (o1 )i" (p+)s™ (p)k™ Tomw -

‘H is then exactly the generalized metric, in various parametrizations, e.g.
_ (9 —Bxg"B; —Bixg"” _
Hy = ( : gik,Bkj J glij 9 for /8 =0

~ gi gi B9 )
H == [ i il i 5 fOI’ B = 0
Y (—ﬂkgkj 9" — B* g B



The DFT Algebroid and other Relaxed Structures
A quadruple (L+7 II'» ']]7 <'7 '>L+>P+) SatiSfying (<A7 D+f>L+ = %er(A)f)
@ [A, B] = f[A, B] + (0 (A)f) B— (A, B). D f,
o <|IC7 A]I + D+<07 A>L+7 B>L+ + <|107 B]] + D+<07 B>L+7A>L+ = p+(C)<A, B>L+ )
e <D+f7 D+g>L+ = % <df7 dg>L+ .

Notably, the modified Jacobi, homomorphism and kernel properties are obstructed

In general, by relaxing properties one obtains a host of intermediate structures

cf. Vaisman '04; Hansen, Strobl '09; Bruce, Grabowski '16

Pre-DFT /@/ Ante-Courant @ Pre-Courant @ Courant
algebroid algebroid algebroid algebroid

The DFT Algebroid is an example of pre-DFT Algebroid, for which

Large Courant algebroid L, DFT algebroid @ Courant algebroid

Imposing that the RHS of property 5 is zero is exactly the strong constraint of DFT.



Comments on the Strong Constraint & Beyond DFT

« It's too strong. Essentially it merely reduces DFT to supergravity.
« It's not there in the original DFT and it has no obvious stringy origin.
« It's violated in certain (nonassociative) R flux models.

# It can be relaxed in generalised SS reductions (by a milder closure constraint.)

Options to formulate a sigma-model that goes beyond the standard DFT

+ Depart from the constant n metric and consider a dynamical one n(X)
cf. Freidel, Leigh, Minic '15; also Hansen, Strobl ‘09

+ Make use of the additional symplectic structure related to the term w = dX A dX
Vaisman ’12; Freidel, Rudolph, Svoboda '17



L3
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Dynamical n

The twist of the C-bracket is modified:
[A, Bl := p+ ([p+(A), p+(B)le) = [A Bl + S(A,B)

where in local coordinate form

S(A, B) = S'yA'B e = 0" oM oumyxA'B e .
However, the MSM is not modified, since ([A, Al,, A)r, = ([A, A], A)L, .
The gauge transformation of A’ is modified to

s A =de + (n" Ty (X) + s’KL(x)) Al
We found that the strong constraint can be avoided provided that
PK[IaKnL]J = PJKPN[IaKPNL] .

We plan to understand this globally and find examples that solve this equation.



Epilogue

Take-Home Messages

« The geometric structure of DFT is between two Courant Algebroids
« A DFT Algebroid as a relaxed-CA structure; interpretation of strong constraint
« Membrane Sigma-Model compatible with flux formulation of DFT

« In principle, more general; with noncommutative/nonassociative deformations

Some Open Questions and Things-To-Do

+ What is the theory without the strong constraint? Role of 1(X) and w(X)?
Perhaps a relation to “Metastring Theory” or “Born Geometry”?
Implications for stringy early-universe cosmology?

+ One dimension higher? Closed Membranes, Exceptional Field Theory?

+ Any relation to Matrix Models? Perhaps dynamical phase space A.ch. 14




Back-up slide



Alternative definition of a Courant Algebroid

Severa '98

Definition in terms of a bilinear, non-skew operation (Dorfman derivative)
[A,Bl]=AocB—-BoA,
notably satisfying instead of 1, the Jacobi identity (in Loday-Leibniz form):
Ao(BoC)=(AoB)oC+Bo(AcC).
Axioms 2 and 3 do not contain D-terms any longer,

AofB = f(AoB)+ (p(A))B,
p(C)(A,B) = (CoAB)+(CoB,A).

The two definitions are equivalent, as proven by Roytenberg ‘99
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