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“Lessons” for the Geometry of Spacetime and Quantum Gravity

_ Geometry is Generalized (Noncommutativity, String, Matrices)

_ Geometry is (maybe) Emergent (String, AdS/CFT, Matrices, ...)

_ Geometry is (maybe) Doubled (Quantum Mechanics/Born Reciprocity, String/T-duality)



Doubling for Closed Strings

Circle compactifications Momentum and Winding modes with mass ∝ 1/R and R

Large radius limit Only momentum modes probe spacetime, and EFT is supergravity

 measure lengths with position operators x

At QG scales, R ∼
√
α′  both momentum and winding modes become important

e.g. in the Brandenberger-Vafa early universe scenario

 position operators x and dual (to windings) x̃

Supergravity is certainly not enough here need (some kind of) Double Field Theory
e.g. proposals by Siegel ’93; Hull, Zwiebach ’09; Freidel, Leigh, Minic ’15; &c.



Symmetries

On one hand, we have diffeomorphisms and gauge transformations, as in field theory

But for closed strings, also T-duality, exchanging momenta↔ windings and R ↔ 1/R

N.B., T-duality is an asymmetric reflection: X (σ, τ) = XL + XR
T→ X̃ (σ, τ) = XL − XR

When multiple (d) circle compactification, the T-duality symmetry group is O(d , d ;Z)

 The Double Field Theory should enjoy an O(d , d ;R) symmetry

 The underlying geometric structure should contain/unify these symmetries



Flux, Duality and Open Strings

For open strings on D-branes

D Turn on B or F  noncommutativity Douglas, Hull ’97; Chu, Ho ’98; Seiberg, Witten ’99

[X1(τ),X2(τ)] = iθ12 , θ12 = −2πiα′(B − F )

1 + (B − F )2 .

_ T-dual frame commutativity & D-branes at angles.

Lesson: New geometries arise in presence of non-trivial flux backgrounds.



Flux, Duality and Closed Strings

Left and right movers may experience different geometries (asymmetric strings).

T-duality reveals closed string backgrounds which are “non-geometric” (T-folds & co.)
e.g. Hull ’04; Shelton, Taylor, Wecht ’05; &c.

Hijk → f k
ij → Q jk

i → R ijk

Generic closed string geometries argued to be noncommutative and nonassociative.
Lüst ’10; Blumenhagen, Plauschinn ’10; Mylonas, Schupp, Szabo ’12

Q-case [X i ,X j ] ∼ Q ij
k wk

R-case [X i ,X j ] ∼ R ijk pk [X i ,X j ,X k ] ∼ R ijk .

Similar to particle in a non-constant magnetic field in QM. Jackiw ’85; Bakas, Lüst ’13



Enter Algebroids

_ Courant Algebroids: unify Poisson and pre-symplectic structures
Courant ’90; Liu, Weinstein, Xu ’95

I Canonical example: TM ⊕ T∗M, with a natural O(d , d) metric, and fluxes as twists

_ Generalized Complex Geometry: unify symplectic and complex structures
Hitchin ’02; Gualtieri ’04

I g and B on equal footing, Diffs and Gauge trafos as automorphisms of Courant bracket
I Main additional player: a generalized metric:

HIJ =

(
gij − Bik gkl Blj Bik gkj

−g ik Bkj g ij

)
.

Courant Algebroid vs. Doubling of coordinates

D Captures the symmetries, but not the doubling of coordinates

D But if the target is doubled, the symmetry would be O(2d , 2d), i.e. too large



Double Field Theory
Siegel ’93; Hull, Zwiebach ’09

A proposal for a field theory invariant under O(d , d); T-duality becomes manifest.

It uses doubled coordinates (x I) = (x i , x̃i ), and all fields depend on both.

The O(d , d) structure is associated to a (constant) O(d , d)-invariant metric

η = (ηIJ ) =

(
0 1d

1d 0

)
, htηh = η , h ∈ O(d , d) ,

used to raise and lower I = 1, . . . , 2d indices.

Derivatives are also doubled accordingly: (∂I) = (∂i , ∂̃
i ).

The fields are the generalized metric H and invariant dilaton d (e−2d =
√
−ge−2φ), with

Hohm, Hull, Zwiebach ’10

S =

∫
dxdx̃e−2d

(
1
8H

IJ∂IHKL∂JHKL − 1
2H

IJ∂IHKL∂LHKJ − 2∂Id∂JHIJ + 4HIJ∂Id∂Jd
)
.



DFT symmetries and constraints

Gauge transformations are included with a parameter εI = (εi , ε̃I):

δεHIJ = εK∂K H IJ + (∂ IεK − ∂K ε
I)HKJ + (∂JεK − ∂K ε

J )HIK := LεHIJ ,

δεd = − 1
2∂K ε

K + εK∂K d ,

and Lε· is called the generalised Lie derivative. But S is not automatically invariant.

The theory is constrained.

D Weak constraint: ∆· := ∂ I∂I · = 0; stems from the level matching condition.

_ Strong constraint: ∂ I ⊗ ∂I (. . . ) = 0 on products on fields.

Strong constraint eliminates half coordinates  DFT s.c.→ SUGRA

Alternatively, generalized vielbein E formulation HIJ = EA
IEB

JSAB .
Siegel ’93; Hohm, Kwak ’10; Aldazabal et al. ’11; Geissbuhler ’11

D Allows to mildly dispense with the s.c. in generalized Scherk-Schwarz reductions



Questions to address

_ What is the geometric structure of DFT and its relation to Courant algebroids?

_ What is the Sigma-Model that captures the flux content of DFT?
cf. Heller, Ikeda, Watamura ’16

_ What is the origin/role of DFT constraints and how does noncommutativity appear?

We want to answer these questions in the context of Membrane Sigma-Models



Membranes for Strings: Why?

D Already the familiar NSNS flux (field strength of B) lives in 3D (open membrane)

D Courant Algebroids correspond naturally to 3D Topological Field Theories

D Deformation quantization viewpoint acknowledging private communication with Peter Schupp

I (“Closed”) Fields  Open Strings (Poisson Sigma-Model)

I Closed Strings  Open Membranes (Courant Sigma-Model)

I Closed Membranes ?
 Open Tribranes (LAuth Sigma-Model)



Plan for the rest of the talk

1 Sigma-Models and Courant Algebroids

2 Doubled Membrane Sigma-Model

3 Universal description of geometric and non-geometric fluxes — NC/NA structure

4 (Almost) Algebroid Structures beyond Courant

5 Epilogue



Warm Up: (Twisted) Poisson Sigma-Model

Topological action for fields X = (X i ) : Σ2 → M and A ∈ Ω1(Σ2; X∗T ∗M)
Schaller, Strobl ’94; Ikeda ’94

SPSM[X ,A] =

∫
Σ2

(
Ai ∧ dX i + 1

2 Πij (X )Ai ∧ Aj

)
Invariant under the gauge symmetry:

δX i = Πjiεj ,

δAi = dεi + ∂i Π
jk Ajεk ,

provided that
Πl[i∂l Π

jk ] = 0 → Π is a Poisson 2-vector

Comments

_ May be twisted by a 3-form H (Wess-Zumino term) twisted Poisson structure
Klimcik, Strobl ’01

Πl[i∂l Π
jk ] = HlmnΠli Πmj Πnk .

_ 2D case of AKSZ scheme of topological field theories (for H = 0 at least)
Alexandrov, Kontsevich, Schwarz, Zaboronsky ’95

_ Deformation Quantization of Poisson manifolds ∼ Perturbation theory of PSM
Kontsevich ’97; Cattaneo, Felder ’99



Courant Sigma-Model
Hofman, Park ’02; Ikeda ’02

Maps X = (X i ) : Σ3 → M, 1-forms A ∈ Ω1(Σ3,X∗E), and 2-form F ∈ Ω2(Σ3,X∗T ∗M)

S[X ,A,F ] =

∫ (
Fi ∧ dX i + 1

2ηIJAI ∧ dAJ − ρi
I(X )AI ∧ Fi + 1

6 TIJK (X )AI ∧ AJ ∧ AK
)
.

E is some vector bundle (here TM ⊕ T ∗M), η is the (constant) O(d , d)-invariant metric

η = (ηIJ ) =

(
0 1d

1d 0

)
.

3D case of AKSZ scheme of topological field theories Roytenberg ’06



Gauge Symmetries of the Courant Sigma-Model

The Courant Sigma-Model is invariant under the following gauge transformations Ikeda ‘02

δX i = ρi
Jε

J ,

δAI = dεI + ηINTNJK AJεK + ηIJρi
J ti ,

δFm = −εJ∂mρ
i
JFi + 1

2 ε
J∂mTILJAI ∧ AL + dtm + ∂mρ

j
JAJ tj ,

where ε and t are gauge parameters, provided that

ηKLρi
Kρ

j
L = 0

2ρl
[I∂lρ

k
J] − ρk

Jη
JLTLIJ = 0

4ρm
[L∂mTIJK ] − 3ηMNTM[IJTKL]N = 0 .

These three conditions have an interesting relation to both physics and mathematics

_ Coincide with the fluxes and Bianchi identities in sugra flux compactifications

_ Coincide with the local form of the axioms of a Courant Algebroid



Courant Algebroid Axioms
Liu, Weinstein, Xu ’95

(E π→ M, [·, ·], 〈·, ·〉, ρ : E → TM), such that for A,B,C ∈ Γ(E) and f , g ∈ C∞(M):

1 Modified Jacobi identity (D : C∞(M)→ Γ(E) is defined by 〈Df ,A〉 = 1
2ρ(A)f .)

[[A,B],C] + c.p. = DN (A,B,C) , where N (A,B,C) = 1
3 〈[A,B],C〉+ c.p. ,

2 Modified Leibniz rule

[A, fB] = f [A,B] + (ρ(A)f )B − 〈A,B〉Df ,

3 Compatibility condition

ρ(C)〈A,B〉 = 〈[C,A] +D〈C,A〉,B〉+ 〈[C,B] +D〈C,B〉,A〉 ,

The structures also satisfy the following properties (they follow... Uchino ’02):

4 Homomorphism
ρ[A,B] = [ρ(A), ρ(B)] ,

5 “Absence of strong constraint”

ρ ◦ D = 0 ⇔ 〈Df ,Dg〉 = 0 .



Naive Doubling

In order to incorporate the dual coordinates, we replace M with a doubled spaceM.

A “large” CA E overM leads to a MSM with action (I = 1, . . . , 2d and Î = 1, . . . , 4d)

S[X,A,F] =

∫ (
FI ∧ dXI + 1

2 η̂Î ĴA
Î ∧ dAĴ − ρI

Î(X)AÎ ∧ FI + 1
6 TÎ Ĵ K̂ (X)AÎ ∧ AĴ ∧ AK̂

)
.

In order to have some metric structure too, we add a general symmetric term on ∂Σ3

Ssym[X,A] =

∫
∂Σ3

1
2 gÎ Ĵ (X)AÎ ∧ ∗AĴ :=

∫
∂Σ3

||A||g .

_ Previously we had O(d , d) (η) but d-dimensional target

_ Now we have 2d-dimensional target but O(2d , 2d) (η̂)

D A DFT structure should be “in between”, schematically:

Large CA overM p+−−−→ DFT Structure
strong
−−−−→ Canonical CA over M



Splitting and Projecting

A section A ∈ E is

A := AV + AF = AI∂I + ÃIdXI = AI
+e+

I + AI
−e−I ,

where we introduce the following combinations:

AI
± = 1

2 (AI ± ηIJ ÃJ ) , e±I = ∂I ± ηIJ dXJ ,

This gives a decomposition of the generalized tangent bundle as

E = TM = L+ ⊕ L− .

Then we consider a projection to the subbundle L+ with O(d,d) vectors

p+ : E −→ L+ , (AV ,AF ) 7−→ A+ := A = Ai (dX i + ∂̃ i ) + Ai (dX̃i + ∂i ) .

Projection of the symmetric bilinear of E, leads to the O(d,d) invariant DFT metric:

〈A,B〉E = 1
2ηÎ ĴA

ÎBĴ = ηIJ (AI
+BJ

+ − AI
−BJ
−) 7→ ηIJAIBJ = 〈A,B〉L+ .



Projected Bracket

Using the projection, a closed bracket on L+ is defined as

[[A,B]]L+ = p+

(
[p+(A), p+(B)]E

)
(N.B.: L+ is not an involutive subbundle, thus neither a Dirac structure of E.)

This agrees with the local formula for the so-called C-bracket, used in DFT
Siegel ’93; Hull, Zwiebach ’10

[[A,B]]J
L+

= AK ∂K BJ − 1
2 AK ∂JBK − {A↔ B} .

Thus, the map p+ sends large CA structures to corresponding DFT structures.



Double Field Theory Sigma-Model

Applying this strategy to the Courant Sigma-Model, we obtain the action
agrees with the proposal of A.Ch., Jonke, Lechtenfeld ’15

S[X,A,F ] =

∫ (
FI ∧ dXI + ηIJAI ∧ dAJ − (ρ+)I

JAJ ∧ FI + 1
3 T̂IJK AI ∧ AJ ∧ AK

)
,

where ρ+ : L+ → TM is a map to the tangent bundle ofM.

The symmetric term undergoes a rather trivial projection:

Ssym[X,A] =

∫
∂Σ3

1
2 gIJ (X)AI ∧ ∗AJ .

_ Does it describe all types of fluxes in a unified way?

_ What is the underlying mathematical structure that replaces the CA?

_ What is the relation to the target space DFT and its constraint structure?



Examples: The 3-Torus Flux Chain

Consider a doubled torus as target of the DFT MSM and DFT structural data as

(ρ+)I
J =

(
ρi

j ρij

ρij ρi
j

)
AI = (q i , pi ) TIJK =

(
Hijk fij k

Qi
jk R ijk

)
gIJ =

(
gij gi

j

g i
j g ij

)
.

The goal is to describe the T-duality chain relating geometric and non-geometric fluxes
Shelton, Taylor, Wecht ’05

Hijk
Tk←→ fij k

Tj←→ Qi
jk Ti←→ R ijk

Also, to clarify the proposal for NC/NA deformations in non-geometric flux backgrounds



NSNS Flux & Geometric Flux

Choose

(ρ+)I
J =

(
δi

j 0
0 0

)
, TIJK =

(
Hijk 0
0 0

)
and gIJ =

(
0 0
0 g ij

)
.

Then, taking the F -equations of motion, the membrane action reduces to

SH [X ] :=

∫
∂Σ3

1
2 gij dX i ∧ ∗dX j +

∫
Σ3

1
6 Hijk dX i ∧ dX j ∧ dX k ,

which is the standard closed string model with NSNS flux as Wess-Zumino term.

Choose (fij k = −2 Eµ
[i Eν

j] ∂µEk
ν structure constants of the 3D Heisenberg algebra)

(ρ+)M
J =

(
Eµ

j 0
0 0

)
, TIJK =

(
0 2 fij k

0 0

)
and gIJ =

(
0 0
0 g ij

)
.

The resulting action now becomes simply (using Maurer-Cartan dE i = − 1
2 fjk i E j ∧ Ek )

Sf [X ] :=

∫
∂Σ3

1
2 gij E i ∧ ∗E j ,

which is the action with T-dual target the Heisenberg nilmanifold.



The T-fold and Noncommutativity

To describe the globally non-geometric Q-flux frame we choose

(ρ+)I
J =

(
δi

j β ij (X )

0 −δi
j

)
TIJK =

(
0 0

Qi
jk 0

)
gIJ =

(
0 δ3

j

0 g ij

)
,

with g ij = diag(1, 1, 0) and β ij (X ) = −Qk
ij X k with components Q3

12 = Q = −Q3
21.

The same procedure leads, for m = 1, 2, to∫
∂Σ3

(
dX̃m ∧ dX m + Q X 3 dX̃1 ∧ dX̃2 + 1

2 dX 3 ∧ ∗dX 3 + 1
2 dX̃m ∧ ∗dX̃m

)
.

This is shown to be equivalent to the T-fold action, obtained via Buscher rules

SQ[X ] =

∫
∂Σ3

( 1
2 dX 3 ∧ ∗dX 3 + 1

2(1+(Q X3)2)
dX m ∧ ∗dX m − Q X3

1+(Q X3)2 dX 1 ∧ dX 2)



The T-fold and Noncommutativity

From a different viewpoint, taking Σ3 = Σ2 × S1 and wrapping the membrane:

X 3(σ) = w3 σ3,

a dimensional reduction of the topological action yields

SQ,w [X , X̃ ] :=

∫
Σ2

( 1
2 dX̃m ∧ ∗dX̃m + dX̃m ∧ dX m + 1

2 Q3
mn w3 dX̃m ∧ dX̃n

)
.

The topological sector contains θ = 1
2 θ

mn ∂m ∧ ∂n + ∂m ∧ ∂̃m, with Poisson brackets

{X m,X n}θ = θmn = Q3
mn w3 , {X m, X̃n}θ = δm

n and {X̃m, X̃n}θ = 0 .

 Q-flux leads to a closed string noncommutative geometry provided by a Wilson line
exactly as in Lüst ’10

θij =

∮
Ck

Qk
ij dX k .



R flux and nonassociativity

A frame with no conventional target space description in terms of standard coordinates

Realized in the membrane sigma-model upon choosing (with β ij (X̃ ) = R ijk X̃k )

(ρ+)I
J =

(
δi

j β ij (X̃ )

0 −δi
j

)
TIJK =

(
0 0
0 R ijk

)
and gIJ =

(
0 0
0 g ij

)
.

This leads to the action, first proposed in Mylonas, Schupp, Szabo ’12

SR[X , X̃ ] =

∫
∂Σ3

(
dX̃i ∧ dX i + 1

2 R ijk X̃k dX̃i ∧ dX̃j + 1
2 g ij dX̃i ∧ ∗dX̃j

)
.

 2-vector ΘIJ =

(
R ijk X̃k δi

j

−δi
j 0

)
on the doubled space, with twisted Poisson bracket

{X i ,X j}Θ = R ijk X̃k , {X i , X̃j}Θ = δi
j and {X̃i , X̃j}Θ = 0 ,

and the non-vanishing Jacobiator, a sign of nonassociativity in X -space,

{X i ,X j ,X k}Θ := 1
3 {{X

i ,X j}Θ,X k}Θ + cyclic = −R ijk .



Towards the DFT Algebroid

In general, taking a parametrization of the ρ+ components to be

(ρ+)I
J =

(
δi

j β ij

Bij δi
j + β jk Bki

)
,

the relevant local expressions that replace the ones of the undoubled case are

ηIJρK
Iρ

L
J = ηKL

2ρL
[I∂Lρ

K
J] − ηLMρK

LT̂MIJ = ρL[I∂
KρL

J]

4ρM
[L∂M T̂IJK ] + 3ηMN T̂M[IJ T̂KL]N = ZIJKL .

_ Expressions for fluxes and Bianchis of DFT when the strong constraint holds
Geissbuhler, Marques, Nunez, Penas ’13

_ Conditions for gauge invariance of our MSM when the strong constraint holds

_ They can be used to reverse-engineer a more general structure than CAs



A Word on the Generalized Metric

In general one obtains on-shell a string sigma-model with doubled target
as e.g. in Hull, Reid-Edwards ’09

SH,F [X] :=

∫
∂Σ3

1
2 HIJ dXI ∧ ∗dXJ +

∫
Σ3

1
3 FIJK dXI ∧ dXJ ∧ dXK ,

where

HIJ := (ρ+)I
K gKL (ρ+)J

L and FIJK := (ρ+)I
L (ρ+)J

M (ρ+)K
N T̂LMN .

H is then exactly the generalized metric, in various parametrizations, e.g.

HIJ =

(
gij − Bik gkl Blj −Bik gkj

g ik Bkj g ij

)
, for β = 0

H̃IJ =

(
gij gik β

kj

−β ik gkj g ij − β ik gkl β
lj

)
, for B = 0



The DFT Algebroid and other Relaxed Structures

A quadruple (L+, [[·, ·]], 〈·, ·〉L+ , ρ+) satisfying (〈A,D+f 〉L+ = 1
2ρ+(A)f )

2 [[A, fB]] = f [[A,B]] + (ρ+(A)f ) B − 〈A,B〉L+D+f ,

3 〈[[C,A]] +D+〈C,A〉L+ ,B〉L+ + 〈[[C,B]] +D+〈C,B〉L+ ,A〉L+ = ρ+(C)〈A,B〉L+ ,

5 〈D+f ,D+g〉L+ = 1
4 〈df ,dg〉L+ .

Notably, the modified Jacobi, homomorphism and kernel properties are obstructed

In general, by relaxing properties one obtains a host of intermediate structures
cf. Vaisman ’04; Hansen, Strobl ’09; Bruce, Grabowski ’16

Pre-DFT
algebroid

��5←−−− Ante-Courant
algebroid

��4←−−− Pre-Courant
algebroid

��1←−−− Courant
algebroid

The DFT Algebroid is an example of pre-DFT Algebroid, for which

Large Courant algebroid
p+−−−→ DFT algebroid

5
−−−→ Courant algebroid

Imposing that the RHS of property 5 is zero is exactly the strong constraint of DFT.



Comments on the Strong Constraint & Beyond DFT

_ It’s too strong. Essentially it merely reduces DFT to supergravity.

_ It’s not there in the original DFT and it has no obvious stringy origin.

_ It’s violated in certain (nonassociative) R flux models.

_ It can be relaxed in generalised SS reductions (by a milder closure constraint.)

Options to formulate a sigma-model that goes beyond the standard DFT

D Depart from the constant η metric and consider a dynamical one η(X)
cf. Freidel, Leigh, Minic ’15; also Hansen, Strobl ’09

D Make use of the additional symplectic structure related to the term ω = dX ∧ dX̃
Vaisman ’12; Freidel, Rudolph, Svoboda ’17



Dynamical η

D The twist of the C-bracket is modified:

[[A,B]]η := p+ ([p+(A),p+(B)]E ) = [[A,B]] + S(A,B) ,

where in local coordinate form

S(A,B) = SL
IJAIBJe+

L = ηLKρM
[I∂MηJ]K AIBJe+

L .

D However, the MSM is not modified, since 〈[[A,A]]η,A〉L+ = 〈[[A,A]],A〉L+ .

D The gauge transformation of AI is modified to

δεAI = dεI +
(
ηIJ T̂ JKL(X) + SI

KL(X)
)

AK εL

D We found that the strong constraint can be avoided provided that

ρK
[I∂KηL]J = ρJKρN[I∂

KρN
L] .

_ We plan to understand this globally and find examples that solve this equation.



Epilogue

Take-Home Messages
_ The geometric structure of DFT is between two Courant Algebroids

_ A DFT Algebroid as a relaxed-CA structure; interpretation of strong constraint

_ Membrane Sigma-Model compatible with flux formulation of DFT

_ In principle, more general; with noncommutative/nonassociative deformations

Some Open Questions and Things-To-Do

D What is the theory without the strong constraint? Role of η(X) and ω(X)?
Perhaps a relation to “Metastring Theory” or “Born Geometry”?
Implications for stringy early-universe cosmology?

D One dimension higher? Closed Membranes, Exceptional Field Theory?

D Any relation to Matrix Models? Perhaps dynamical phase space A.Ch. ’14



Back-up slide



Alternative definition of a Courant Algebroid
Ševera ’98

Definition in terms of a bilinear, non-skew operation (Dorfman derivative)

[A,B] = A ◦ B − B ◦ A ,

notably satisfying instead of 1, the Jacobi identity (in Loday-Leibniz form):

A ◦ (B ◦ C) = (A ◦ B) ◦ C + B ◦ (A ◦ C) .

Axioms 2 and 3 do not contain D-terms any longer,

A ◦ fB = f (A ◦ B) + (ρ(A)f )B ,

ρ(C)〈A,B〉 = 〈C ◦ A,B〉+ 〈C ◦ B,A〉 .

The two definitions are equivalent, as proven by Roytenberg ’99
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