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gauge/gravity

• Gauged matrix quantum mechanics are theories of 
“strings”: planar diagrams.


• Most theories of strings are of quantum gravity type.


• Best known example is              being dual to N=4 SYM.AdS5 × S5



Phase diagram in AdS
T

E

First order phase transition 

Hawking-Page = confinement/deconfinement (Witten)

For global AdS transition occurs only at infinite N

Large BH

Small 5d BH

Hagedorn

Small 10 D BH



Want to analyze the phase diagram at fixed energy, below the first  
order phase transition in the dual CFT.

What is the dual to the small black hole phase?

How to relate it to the Hagedorn phase transition? 
 (proliferation of strings).

Is it like a coexistence phase?



Outline

• A toy model: 2 matrices (long strings and Young tableaux)


• Submatrix deconfinment: what does it mean?


• Small black holes in AdS



Simplest gauge theory

H = tr(Ẋ2) + tr(V (X))

Invariant under U(N): take singlet sector.

1-matrix model quantum mechanics

Solved by free fermions. 

There is no phase transition

V (X) = X2



Next simplest model

H = Tr(Ẋ2) + Tr(Ẏ 2) + V (X,Y )

V (X,Y ) = Tr(X2) + Tr(Y 2)

With X,Y in adjoint of U(N): a 2 matrix model.

In free theory at large N, there is a  
confinement/deconfinement first order phase transition



Sconf ' O(1)

Sdeconf ' O(N2)

To get the phase transition we need to study the density of states  
with the energy: counting states.

(low T)

(high T)

The “order parameter” is the dependence with N of the entropy.



Write states in an oscillator basis: 

(a†)ij = A

(b†)ij = B

All states are produced by matrix valued raising operators. 

Gauge invariance  requires upper indices be contracted with lower indices

tr(ABA . . . )

For example: traces and multitraces (strings — copied from AdS/CFT dictionary)



# States1�string ⇠ 2`/`

For single traces.

` = #Letters

S ' ` log 2

The entropy is the log

T =
1

dS/d`
=

1

log 2

From first law

Multi-traces only add subleading corrections to the entropy: same T.



Protocol

• Study at large energy but much less than the number of 
degrees of freedom of deconfined phase

1 << E << N2



How do these excitations 
fit in the matrix?



Another counting of states
(a†)i1j1(a

†)i2j2 . . . (a
†)ikjk

Transforms as tensor of U(N) x U(N) (upper and lower indices)

Decompose into irreps: Young diagrams (symmetrize/amtisymmetrize)

Same diagram on upper and lower indices: bose statistics of a oscillator.



Same works with B: we count all states this way.

YA ⌦ YB ' �YA+B

Take tensor product on upper (and lower indices) and decompose again.

For fixed energy E, we need E boxes 

E = `

This still counts all states: but there might be multiplicities in products.

To get a singlet: upper index boxes need to have same shape  
as lower index boxes.



and summing over all of these choices. The original motivation to count states this

way arose from studying how to attach strings to giant gravitons [11], which was later

formalized via group theory methods in [12].

The product tensor obtained this way can again be decomposed into irreducible rep-

resentations of U(N)⇥U(N), which can be analyzed using the Littlewood-Richardson

rules. This produces Young diagrams with a total of ` boxes for the upper indices and

lower indices separately. Now, we can impose the singlet constraint: the bottom indices

and the upper indices can be contracted to a non-zero state if they both produce the

same Young diagram. This way one can guarantee that there is a singlet. It turns out

that this procedure also generates a complete counting of states, see [14, 15] and also

[16] for a review. To get the result one needs to be careful and take into account that

a given representation can have multiplicity. Adding more matrices requires iterating

these ideas, and can be made rather explicit even in quiver setups [17].

To illustrate this, consider the product of two tableaux for the a, b oscillators

⌦ = • •
•

+
•

•
•

+ • •

•

(3.2)

+ •

•
•

+ 2 •
•

•

(3.3)

The multiplicity in the last term is important. This factor of 2 means that there are

two possible states on the upper indices. Similarly on the lower indices, giving a total

of 4 states (2⇥ 2).

Now, consider a typical Young diagram with ` boxes. Such typical states have been

analyzed in [23], where it was shown that there is a limit shape. A typical diagram

will be roughly symmetrical when we flip the diagram across the diagonal, and we can

expect that the number of horizontal rows and vertical columns of the diagram scale

as neff '
p
`. At this stage this is not precise. What we actually need to show is

that there is a proper way of counting where neff < c
p
`. I will describe this counting

later. For the time being, we are building an intuitive argument to get at the size of

the submatrix.

In a single matrix model, one can associate di↵erent rows in the Young diagram to

di↵erent eigenvalues of the matrix. This is precise when using free fermion techniques

[13]. We would want to claim that there is an e↵ective number of eigenvalues neff ⇠
p
`

where all the physics is taking place. One can understand this heuristically as follows:

the highest weight state for a representation of U(N) with a Young diagram with exactly

– 7 –

For example, we multiply the A,B diagrams and decompose



We want to count the  number of rows. For a typical tableaux we expect that

nrows ' ncols ' O(
p
`)

In the matrix model of a single matrix the number of columns or rows can be 
interpreted as a count of D-branes. 

They are called Giant gravitons and dual giants.



Want to interpret these as the rank of the matrix that is excited.

Technical fact: Young diagram describes highest weight state of irreducible.

Unbroken gauge group of highest weight state is

U(N � nrows)



Same entropy
S ' ` log(2) ' ↵n2

rows

Interpret the right hand side as a deconfined ensemble for matrices of size

nrows ⇥ nrows

at fixed temperature (determined by the prefactor)



Submatrix deconfinement

S ' n2

U(N � n) is unexcited= confined

Two conditions:

deconfinement



Coexistence

First order phase transitions allow for a coexistence phase. This is usually  
separated in volume (different spatial regions with different phases).

Here, deconfined phase and confined phase “coexist”: they are separated in 
 eigenvalue space on the matrix.



Corollary

• Long String ensemble is equivalent to excited D-branes


• Gives example of smooth transition from a string to a 
black hole (Susskind-Horowitz-Polchinski)



AdS black holes



Dual order parameter for deconfinement is 
the topology change.

Small AdS black holes have same topology as large AdS black holes 
(Euclidean, or presence of horizons) 

They should be deconfined!

Exist in micro canonical ensemble: they can not be  
deconfining the whole gauge group (much less entropy for same T)

10 D BH should also deconfine, but they also break  
the SO(6) symmetry to SO(5) (localized in a point on the sphere)



Field theory dual?



Conjecture

• Small black holes are deconfined on a submatrix 
(Asplund+Berenstein) — based on a model that does not 
get the dynamics correctly


• This assumption leads to a reasonable model of 
thermodynamics (Hanada+Maltz)— No explanation of the 
R-symmetry breaking pattern



• Can’t control directly


• However, can “boost” black  hole: give it R-charge


• States that preserve one half of SUSY have a lot of R-
charge: can be used to control the dynamics.



Tr(ZZZZZZZZZY ZZZZZZZZXZZZZZZ . . . )

What a mostly half-BPS state looks like

R-charge = number of Z

E �R =
Xq

1 + � sin2(p/2)

Energy of these states are controlled by integrability (Minahan, Zarembo, Beisert …) 

Dispersion relation of magnons: at strong coupling, p needs to be small, at weak 
coupling no constraints.



Geometry of giant magnon

p

q
1 + � sin2 p/2

Distance squared between ends of arc

p is an angle on the sphere: D.B. Correa, Vazquez;  
Hoffman-Maldacena: giant magnons



Weak coupling Strong coupling: localized

Picture of typical magnon changes as we change coupling 

Fix energy: at weak coupling no cost for long magnons, at strong coupling localization 
on sphere.



Similar story with D-branes 
(giants and dual giants)

Spectrum of strings stretching between giants and dual giants is known 
D. B., Correa, Dzienkowski, Vazquez: many papers 

Combinatorial techniques:Balasubramanian, D.B, Feng, Huang;  
De Mello Koch, Bekker,  Smolic x 2, Stephanou, Ramgoolam, …



Also controlled by segments on disk 
with similar dispersion relation.

More entropy when giants coincide 
 (less energy per string, so more strings).

More entropy when R-charge divided into more giants: 
the configuration localizes and moves to the edge of LLM disk

SM,near / M1/2



Seems that strings and 
D-branes are counting 

same states (short sticks)



R-charge of state breaks explicitly SO(6) -> SO(4) x SO(2)

Here I showed that the SO(2) is spontaneously broken: 
can argue that SO(4) unbroken.

Evidence for SO(6)->SO(5)  breaking in the absence of R-charge.



Conclusion

• There is evidence for a “coexistence phase” of small 
black holes: partial deconfinement on a submatrix.


• A computable example where Long Strings = black holes 
(as excited D-branes) (Susskind-Horowitz-Polchinski) in 
toy model.


• Can account for SO(6)-> SO(5) symmetry breaking in 
small black hole duals: it is a property of strong coupling 
+ suggestion of long strings = D-brane black holes.


