Emergence of chiral zero modes in the Lorentzian type IIB matrix model

Asato Tsuchiya
Shizuoka Univ.

Matrix Models for Noncommutative Geometry and String Theory
@Vienna, July 9th, 2018

Based on collaboration with
Kohta Hatakeyama (Shizuoka U.), Akira Matsumoto (Sokendai), Jun Nishimura (Sokendai, KEK), Atis Yosprakob (Sokendai)

Type IIB matrix model

A proposal for nonperturbative formulation of superstring theory
$S=-\frac{1}{g^{2}} \operatorname{Tr}\left(\frac{1}{4}\left[A^{M}, A^{N}\right]\left[A_{M}, A_{N}\right]+\frac{1}{2} \bar{\psi} \Gamma^{M}\left[A_{M}, \Psi\right]\right)$
$N \times N$ Hermitian matrices Kawai's talk
Nishimura's talk
$A_{M}: 10 \mathrm{D}$ Lorentz vector $\quad(M=0,1, \ldots, 9)$
$\Psi: 10 \mathrm{D}$ Majorana-Weyl spinor
Large- N limit is taken
Space-time does not exist a priori, but is generated dynamically from degrees of freedom of matrices

Evidences for nonperturbative formulation

(1) Manifest $\mathrm{SO}(9,1)$ symmetry and manifest 10D $\mathrm{N}=2$ SUSY
(2) Correspondence with Green-Schwarz action of Schild-type for type IIB superstring with κ symmetry fixed
(3) Long distance behavior of interaction between D-branes is reproduced
(4) Light-cone string field theory for type IIB superstring from SD equations for Wilson loops under some assumptions

Fukuma-Kawai-Kitazawa-A.T. ('97)
(5) Believing string duality, one can start from anywhere with nonperturbative formulation to tract strong coupling regime

Emergence of expanding (3+1)d universe

Kim-Nishimura-A.T. ('11)

Nishimura-A.T. ('18)
Our numerical simulation suggests that expanding (3+1)-dimensional Universe emerges in the Lorentzian version of the model

Questions

At late times
$>(3+1) \mathrm{d}$ expanding space-time emerges?
> How it expands?
$>(3+1) \mathrm{d}$ space-time structure is smooth?
> SM or BSM appears?
Structure of extra dimensions
Chiral fermions

Plan of the present talk

1. Introduction
2. Analysis of classical EOM
3. Space-time and chiral zero modes from Classical solutions
4. Conclusion and discussion

Analysis of classical EOM

Classical dynamics dominates at late times

CF.) Stern's talk, Steinacker's talk
$>$ The late-time behaviors are difficult to study by direct Monte Carlo methods, since larger matrix sizes are required.
$>$ But the classical equations of motion are expected to become more and more valid at later times, since the value of the action increases with the cosmic expansion.
$>$ We develop a numerical algorithm for searching for classical solutions satisfying the most general ansatz with "quasi direct product structure"
\sim nontrivial because of no time a priori in the model

Defining the Lorentzian model

Nishimura's talk
$>$ Lorentzian model

$$
\begin{aligned}
& S_{b} \propto \operatorname{Tr}\left(F^{M N} F_{M N}\right)=-2 \operatorname{Tr} F_{0 i}^{2}+\operatorname{Tr} F_{i j}^{2} \quad \begin{array}{l}
\text { opposite sign } \\
\text { not bounded below }
\end{array} \\
& \quad F_{M N}=-i\left[A_{M}, A_{N}\right]
\end{aligned}
$$

Introduce IR cutoffs

$$
\begin{aligned}
& \frac{1}{N} \operatorname{Tr}\left(A_{0}\right)^{2} \leq \kappa \\
& \frac{1}{N} \operatorname{Tr}\left(A_{i}\right)^{2} \leq L^{2}
\end{aligned}
$$

Kim-Nishimura-A.T. ('11)
removed in $N \rightarrow \infty$

Equation of motion

$$
\begin{aligned}
& S=-\frac{1}{4} \operatorname{Tr}\left(\left[A^{M}, A^{N}\right]\left[A_{M}, A_{N}\right]\right. \\
& {\left[A^{M},\left[A_{M}, A_{0}\right]\right]+\alpha+A_{0}=0} \\
& {\left[A^{M},\left[A_{M}, A_{i}\right]\right]-\beta A_{i}=0 \quad(i=1, \ldots, 9)}
\end{aligned}
$$

α, β : Lagrange multiplier
constraints

$$
\begin{aligned}
& \frac{1}{N} \operatorname{Tr}\left(A_{0}^{2}\right)=\kappa \\
& \frac{1}{N} \operatorname{Tr}\left(A_{i}^{2}\right)=1
\end{aligned}
$$

corresponding to IR cutoffs

Configuration with "quasi direct product structure"

$$
\begin{aligned}
A_{\mu}= & X_{\mu} \otimes \underbrace{}_{\uparrow} \quad \begin{array}{r}
(\mu=0, \ldots, 3) \\
A_{N_{X}}
\end{array} \otimes \underbrace{Y_{a}}_{\uparrow}(a=4, \ldots, 9) \\
& \quad M=1: \text { direct product space-time } \\
& N_{X} \times N_{X} \quad N_{Y} \times N_{Y} \quad N=N_{X} \times N_{Y}
\end{aligned}
$$

Each point on $(3+1)$ d space-time has the same structure in the extra dimensions

This ansatz is compatible with Lorentz symmetry to be expected at late time

$$
\begin{aligned}
& O_{\mu \nu} X_{\nu}=g[O] X_{\mu} g[O]^{\dagger} \\
& O \in \operatorname{SO}(3,1) \quad g[O] \in S U\left(N_{X}\right)
\end{aligned}
$$

Chiral fermions in type IIB matrix model

It is reasonable that one can analyze massless modes of fermions from Dirac equation in 10d
(1) $\Gamma^{M}\left[A_{M}, \Psi\right]=0$
Ψ is Majorana-Weyl in 10d $\quad \Longrightarrow \quad \Gamma_{\chi} \Psi=\Psi$
we demand Ψ to be chiral in $4 \mathrm{~d} \quad \Gamma_{\chi}=\gamma_{\chi}^{(4 d)} \gamma_{\chi}^{(6 d)}$
(2) $\gamma_{\chi}^{(4 d)} \Psi= \pm \Psi \quad \longrightarrow \quad \gamma_{\chi}^{(6 d)} \Psi= \pm \Psi \quad$ also chiral in $6 d$

It is easy to show

$$
\text { (1), (2) } \Longleftrightarrow\left\{\begin{array}{l}
\Gamma^{\mu}\left[A_{\mu}, \Psi\right]=0 \\
\Gamma^{a}\left[A_{a}, \Psi\right]=0 \\
\Psi \text { is chiral in 4d and 6d }
\end{array}\right.
$$

Massless Dirac equations in 6d

We consider the following (3+1)d background

$$
\begin{aligned}
& A_{\mu}=X_{\mu} \otimes M \quad(\mu=0, \ldots, 3) \\
& A_{a}=1_{N_{X}} \otimes Y_{a} \quad(a=4, \ldots, 9)
\end{aligned}
$$

We decompose Ψ as $\Psi=\varphi^{(4 d)} \otimes \varphi^{(6 d)}$

$$
\left\{\begin{array} { l }
{ \Gamma ^ { a } [A _ { a } , \Psi] = 0 } \\
{ \gamma _ { \chi } ^ { (6 d) } \Psi = \pm \Psi }
\end{array} \longleftrightarrow \left\{\begin{array}{l}
\Gamma^{a}\left[Y_{a}, \varphi^{(6 d)}\right]=0 \\
\gamma_{\chi}^{(6 d)} \varphi^{(6 d)}= \pm \varphi^{(6 d)}
\end{array}\right.\right.
$$

We examine spectrum of 6d Dirac operator $\Gamma^{a}\left[Y_{a}, *\right]$ zero eigenvectors ~ chiral zero modes

$$
\varphi^{(6 d)}
$$

Structure of Ya and chiral zero modes

Intersecting D-branes

chiral zero modes

Algorithm for finding solutions

$$
\begin{gathered}
I=\operatorname{Tr}\left(\left[A^{M},\left[A_{M}, A_{0}\right]\right]+\alpha A_{0}\right)^{2}+\operatorname{Tr}\left(\left[A^{M},\left[A_{M}, A_{i}\right]\right]-\beta A_{i}\right)^{2} \\
A_{\mu}=X_{\mu} \otimes M \quad(\mu=0, \ldots, 3) \\
A_{a}=1_{N_{X}} \otimes Y_{a} \quad(a=4, \ldots, 9)
\end{gathered}
$$

We search for configurations that gives $I=0$

gradient descent algorithm

update configurations following

$$
\delta X_{\mu}=-\epsilon \frac{\partial I}{\partial X_{\mu}^{\dagger}} \quad \delta Y_{a}=-\epsilon \frac{\partial I}{\partial Y_{a}^{\dagger}} \quad \delta M=-\epsilon \frac{\partial I}{\partial M^{\dagger}}
$$

$$
\delta I \leq 0
$$

Space-time and chiral zero modes from classical solutions

Our solutions

Our ansatz

$$
\left\{\begin{array}{l}
A_{\mu}=X_{\mu} \otimes M \\
A_{a}=1_{N_{X}} \otimes Y_{a} \quad(\mu=0, \ldots, 3) \\
(a=4, \ldots, 9)
\end{array}\right.
$$

$M^{3}=M \quad \longrightarrow \quad$ eigenvalues of $\mathrm{M}:-1,0,1$
$\left[M, Y_{a}\right]=0$
$\left[X^{\nu},\left[X_{\nu}, X_{0}\right]\right]+\alpha X_{0}=0$
$\left[X^{\nu},\left[X_{\nu}, X_{i}\right]\right]-\beta X_{i}=0 \quad(i=1,2,3)$
$\left[Y^{b},\left[Y_{b}, Y_{a}\right]\right]-\beta Y_{a}=0$
$\left[A^{M},\left[A_{M}, A_{0}\right]\right]+\alpha A_{0}=0$
$\left[A^{M},\left[A_{M}, A_{i}\right]\right]-\beta A_{i}=0 \quad(i=1, \ldots, 9)$

Structure of M and Ya

Emergence of concept of "time evolution"

Band diagonal structure of Xi_{i}

$N_{X}=64$

Eigenvalues of T_{ij}

$$
T_{i j}(t)=\frac{1}{n}\left(\bar{X}_{i}(t) \bar{X}_{j}(t)\right)
$$

$\mathrm{SO}(3)$ symmetric

$R^{\wedge} 2(\mathrm{t})$

$$
\begin{aligned}
R^{2}(t) & =\frac{1}{n} \operatorname{Tr} \bar{X}_{i}^{2}(t) \\
& =T_{i i}(t)
\end{aligned}
$$

Power-law expansion

Space-time structure

$Q(t)=\sum_{i=1}^{3} x_{t}(t)^{2}$
dense distribution \Longrightarrow smooth manifold

2d-4d ansatz

2d manifold and 4d manifold intersects at points

2d-4d ansatz

$$
\left[Y_{b}^{(1)},\left[Y_{b}^{(1)}, Y_{a}^{(1)}\right]\right]-Y_{a}^{(1)}=0
$$

$$
Y_{1}^{(1)}=L_{1}, \quad Y_{2}^{(1)}=L_{2}
$$

$$
\left[L_{i}, L_{j}\right]=i \epsilon_{i j k} L_{l}
$$

Generators of SU(2)
We solve $\Gamma^{a}\left(Y_{a}^{(1)} \Psi-\Psi Y_{a}^{(2)}\right)=\lambda \Psi$
$Y_{a}^{(1)}$
$Y_{a}^{(2)}$

1) $1^{7} \oplus 2^{18} \oplus 3^{7}$
2) 64^{1}
i) 8 solutions at $N_{Y}^{(2)}=16$
ii) 8 solutions at $N_{Y}^{(2)}=32$

$$
\left(N_{Y}^{(1)}=64\right)
$$

iii) 8 solutions at $N_{Y}^{(2)}=64$

Spectrum of 6d Dirac operator

1) $1^{7} \oplus 2^{18} \oplus 3^{7}$

$$
\begin{aligned}
& \quad N_{Y}^{(2)}=16 \\
& \square
\end{aligned} N_{Y}^{(2)}=320+\quad N_{Y}^{(2)}=64
$$

We plot only 256 eigenvalues out of 32768 ones

Spectrum of 6d Dirac operator

1) $1^{7} \oplus 2^{18} \oplus 3^{7} \quad$ Average of 8 solutions

Spectrum of 6d Dirac operator

2) 64^{1}

We plot only 8 eigenvalues out of 32768 ones

Spectrum of 6d Dirac operator

2) $64^{1} \quad$ Average of 8 solutions

Profile of wave function for lowest ev

1) $1^{7} \oplus 2^{18} \oplus 3^{7} \quad N_{Y}^{(2)}=64$

$$
\Psi_{\alpha}^{\prime}=U \Psi_{\alpha} V^{\dagger} \quad \text { SVD for } \alpha=1
$$

$\alpha=1$
$\alpha=2$
$\alpha=3$

$\alpha=5$
$\alpha=6$

$\alpha=7$

Localized !
Intersecting at a point

Profile of wave function for lowest ev

$$
\text { 2) } 64^{1} \quad N_{Y}^{(2)}=64
$$

$$
\Psi_{\alpha}^{\prime}=U \Psi_{\alpha} V^{\dagger} \quad \text { SVD for } \alpha=1
$$

$$
\alpha=1
$$

$$
\alpha=2
$$

$$
\alpha=3
$$

$$
\alpha=4
$$

$\alpha=5$

$$
\alpha=6
$$

$\alpha=7$
$\alpha=8$

Localized!

Conclusion and discussion

Conclusion

> We developed a numerical method to search for classical solutions satisfying the most general ansatz with "quasi direct product structure". It works well.
$>$ Solutions in general give expanding (and shrinking) (3+1)d space-times, which have smooth structure. Expansion seems to obey power-law.
> Quasi direct product structure favors block-diagonal structure which can yield intersecting branes in extra dimensions. One can obtain chiral zero modes in 6d at intersecting points, which can lead to the chiral fermions in $(3+1)$ dimensions.
$>$ What is important is that chiral zero modes are obtained as solutions of EOM.
Cf.) Aoki('11) A. Chatzistavrakidis, H. Steinacker and G. Zoupanos ('11) Nishimura-A.T.('13) Aoki-Nishimura-A.T.('14)

Discussion

$>$ We obtained $128(=4 x(7+18+7))$ zero modes for $1^{7} \oplus 2^{18} \oplus 3^{7}$ and 4 zero modes for 64^{1}
4 zero modes for each brane in 2 d ?
$>$ We need to further examine dependence of lowest and $2^{\text {nd }}$ lowest eigenvalues on $N_{Y}^{(1)}, N_{Y}^{(2)}$ and $\mathrm{SU}(2)$ representations.
$>$ Profile of D-branes and geometry of extra dimensions
Berenstein-Dzienkowski ('12), Ishiki ('15), Schneiderbauer-Steinaker ('16)
Gutleb's talk

Discussion

> Only 3 blocks?
Indeed, to realize the Standard Model, more blocks seems to be needed.
(1) structure of blocks within a block is allowed for a classical solution, but seems non-generic.
Quantum effect might favor such a structure.
(2) We can generalize IR cutoffs as follows:

$$
\frac{1}{N} \operatorname{Tr}\left(\left(A_{0}^{2}\right)^{p}\right)=\kappa \quad \frac{1}{N} \operatorname{Tr}\left(\left(A_{i}^{2}\right)^{p}\right)=1
$$

We took $p=1$ in this talk for simplicity.
For $\mathrm{p}=2$, arbitrary number of blocks are naturally obtained, because no constraints are obtained from $M^{3}=M^{3}$ Indeed, $p>1$ seems to be required from universality Azuma-Ito-Nishimura-A.T. ('17)
> Where left-right asymmetry comes from?
Indeed, wave functions for the left and right modes are different:
(1) from Yukawa coupling.
we need to calculate coupling of zero modes to Higgs,
which comes from fluctuation of Ya
(2) realized in more nontrivial solution having structure as
$\left[M, Y_{a}\right] \neq 0$
action of M on left and right modes are different Nishimura-A.T.('13) Aoki-Nishimura-A.T.('14)
$>$ Gauge groups?
seem to come from a stack of multiple D-branes
~ identical blocks within a block
~ favored by quantum effect?

Outlook

$>$ We search for solutions by starting with various initial configurations to understand the variety of solutions.
> We expect that there exists a solution that realizes the Standard model or beyond the Standard model and that it is indeed selected in the sense that our Monte Carlo result is connected to such a solution.
> Or we can calculate 1-loop effective actions around classical solutions we have found. We expect the effective action for the solution giving SM or BSM to be minimum.

Outlook

> We perform numerical calculation at $\mathrm{Nx} \sim \mathrm{Ny} \sim 1000$ ($\mathrm{N} \sim 10^{\wedge} 6$) by using Kei or post-Kei supercomputers with large-scale parallel computation.
It is doable since the computation is not more than simulating a bosonic matrix model, which has been done already with matrix size ~ 1000.

