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- Introduction



Type 1B matrix model

Ishibashi-Kawai-Kitazawa-A.T. (’96)
N

A proposal for nonperturbative formulation of superstring theory

S = —g%Tl” (%[AM,ANHAM,AN] -+ %?,Z_)FM[AM, \IJ])
Kawai’s talk

N x N Hermitian matrices Nishimura’s talk
Ay - 10D Lorentz vector (M =0,1,...,9)
¥ : 10D Majorana-Weyl spinor

Large-N limit is taken

Space-time does not exist a priori, but is generated dynamically
from degrees of freedom of matrices



Evidences for nonperturbative formulation

S
(1) Manifest SO(9,1) symmetry and manifest 10D N=2 SUSY

(2) Correspondence with Green-Schwarz action of Schild-type for type
1B superstring with x symmetry fixed

(3) Long distance behavior of interaction between D-branes is
reproduced

(4) Light-cone string field theory for type 1B superstring from SD

equations for Wilson loops under some assumptions
Fukuma-Kawai-Kitazawa-A.T. (’97)

(5) Believing string duality, one can start from anywhere )

with nonperturbative formulation to tract strong ot Eax E
coupling regime
@ Het SO(32)



Emergence of expanding (3+1)d universe

S
Kim-Nishimura-A.T. ("11)
Nishimura-A.T. ("18)

Our numerical simulation suggests that expanding
(3+1)-dimensional Universe emerges in the Lorentzian
version of the model

10

Nishimura’ talk
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Questions
S S

At late times

» (3+1)d expanding space-time emerges”?
» How it expands?

» (3+1)d space-time structure is smooth?
» SM or BSM appears?

Structure of extra dimensions mm) Chiral fermions



Plan of the present talk
S
1. Introduction

2. Analysis of classical EOM

3. Space-time and chiral zero modes
from Classical solutions

4. Conclusion and discussion



~ |Analysis of classical EOM



Classical dynamics dominates at late times

S
CF.) Stern’s talk, Steinacker’s talk

» The late—time behaviors are difficult to study by direct Monte
Carlo methods, since larger matrix sizes are required.

» But the classical equations of motion are expected to become
more and more valid at later times, since the value of the action
Increases with the cosmic expansion.

» We develop a numerical algorithm for searching for classical
solutions satisfying the most general ansatz with
“quasi direct product structure”
~nontrivial because of no time a priori in the model



Defining the Lorentzian model
S

» Lorentzian model

Sy o< Te(FMN Fyrn) =
Fyn = —ilAy, AN

Introduce IR cutoffs

1
—Tr(A4g)? <

]\{ (Ag)c < k
NTr(AZ-)Q < L2

—2Tr Fy; Ty F

Nishimura’s talk

opposite sign
not bounded below

Kim-Nishimura-A.T. ("11)

removedin N — o0



Equation of motion

§ =~ Tr([AM, ANy, Ay

¥
(A M T A (]
A ,_AM,Ao]]+(){A0:0

o, B : Lagrange multiplier

constraints

1 )
—Tr(A7) =&
N corresponding to IR cutoffs
1 2

LV )




Configuration with “quasi direct product structure”
.

AT Nishimura-A.T.("13)

AM:Xugﬁ(u:O,...,3)
AaleX @\E/ (a:4,...,9)

T ‘ M =1 : direct product space-time

NXXNX Nnyy N:NXxNY

Each point on (3+1)d space-time has the same structure in the
extra dimensions

This ansatz is compatible with Lorentz symmetry to be
expected at late time

O Xy = g[O] X Q[O]Jr
O € S0O(3,1) g|O] € SU(Nx)



Chiral fermions in type |[IB matrix model

It is reasonable that one can analyze massless modes of
fermions from Dirac equation in 10d

W is Majorana-Weyl in 10d =) T, V=V

we demand WU to be chiralin 4d T, = ("5

2 W=+ ) A% =+0 also chiral in 6d

It is easy to show

—

TH[A,, U] = 0

(1), (2) == | 194, 0] =0
‘\IJ is chiral in 4d and 6d




Massless Dirac equations in 6d

S
We consider the following (3+1)d background

Ay=X, M (u=0,....3)
AaleX®Ya (CL:4,...,9)
We decompose I as I = (44) ) (,(69)

“T%[A,, 0] =0 Y, 0] =0

—>
,Y>(<6d,)qj . \,Y>(<6d)(p(6d) — 4,(6d)

—

We examine spectrum of 6d Dirac operator I'“[Yy, *]

zero eigenvectors ~ chiral zero modes

QO(Gd) ‘ \Ij



Structure of Ya and chiral zero modes

0

)

Intersecting D-branes

L/

l

/

chiral zero modes



Algorithm for finding solutions
S

I =Tr([AM,[Awm, Aol] + ado)? + Tr([AM, [Au, A;]] — BA;)?

Ay=X, M (u=0,...,3)
AaleX®Ya (CL:4,.--,9)

We search for configurations that gives 1 =0

gradient descent algorithm
update configurations following

o1 o1 o1
5X, = ~“oxd Yo = e M =~

) /<0




Space-time and chiral zero




Our solutions

S e
Our ansatz {Au — Xu®M (M — 0»---73)
A, =1n, ®Y, (a:4,...,9)

M =M )  eigenvalues of M: -1, 0, 1
M,Y,] =0
— | X", | X, Xoll + aXg =0
XY X, Xo]] -B8Xs =0 (i=1,2,3)
Y, [¥5, Ya]] = BYa =0
:AM, AM,A()H —I-OéAo =0
‘_:AM, Ay, Al —BA; =0 (i=1,...,9)




Structure of M and Ya




Emergence of concept of time evolution”

-4
—
Tq \

t
average ¢ t1 <tz <--- <ty

Xy = 1,/ These values are
A e dynamically determined

L
=
(=]

Band-diagonal structure is

/- - -
small \ observed, which is
nontrivial

X; = \ _ X;(¢) represents space
nl Xi(t) structure at fixed time t
concept of “time evolution’

(i=1,2,3)
k small J emerges

bJ




Band diagonal structure of Xi
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Eigenvalues of Tii
S

Ti5(t) = %(Xz(t)xj(t)) | ' .

025

SO(3) symmetric S

0.1

eigenvalues of 15, (t

-0.8 -0.6 -04 02 0 02 04 0.6 0.8



R*(t) = —TrX; (¢) 0s
n
= T3 (1) o5
R*(t) o}

02 | assansanl atp_i_c

. a = 0.67(3)

| p=2.7(1)

0 | ¢ = 0.228(3)
t

Power-law expansion



Space-time structure

_
3 14 : : . . | | |
Q)= Xi(t)?
i—=1 12 1 1

dense distribution ?

==) smooth manifold ; -
S \
(.5 06 & .
f=) 04 L m%‘w‘” ~ |
’ \:‘:_“_W s

02 e SsS=Ssoe
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2d-4d ansatz

2d manifold and 4d manifold intersects at points

/ NV

~

Yl(l) £ 0, Yz(l) 0
Y3(1) _ Y4(1) _ Y5(1) _ Yﬁ(l) —0

y® —y® g
va? #£0, Y, #£0
Y5(2) £ 0, Y6(2) £ 0




2d-4d ansatz

N
[}/b(l)’ [Yb(1)7 Ya,(l)” . Y(l) — 0

a

‘ Yl(l) = L, YQ(l) = Lo [L’iaLj] = 1€ Ly
Generators of SU(2)

We solve I‘a(Ya(l)\Il — \IIYCL(Q)) = \U

y y (2

1) 1"q@28q37 i) 8 solutions at Ny~ = 16

2) 64! i) 8 solutions at nN? = 32
(NP = 64) iii) 8 solutions at N = 64



Spectrum of 6d Dirac operator
S
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Spectrum of 6d Dirac operator

JEEE N
1) 17 o 218 D 37

0.06

Average of 8 solutions

0.04

0.02 -

|
64 128

— NP =16
— NP =32
— NP =64



Spectrum of 6d Dirac operator
S
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Spectrum of 6d Dirac operator
S
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Profile of wave function for lowest ev
]
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Profile of wave function for lowest ev
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- Conclusion and discussion



Conclusion

-
» We developed a numerical method to search for classical

solutions satisfying the most general ansatz with “quasi direct
product structure”. It works well.

» Solutions in general give expanding (and shrinking) (3+1)d
space-times, which have smooth structure. Expansion seems
to obey power-law.

» Quasi direct product structure favors block-diagonal
structure which can yield intersecting branes in extra
dimensions. One can obtain chiral zero modes in 6d at
Intersecting points, which can lead to the chiral fermions in
(3+1) dimensions.

» What is important is that chiral zero modes are obtained as
solutions of EOM.

Cf.) Aoki('11) A. Chatzistavrakidis, H. Steinacker and G. Zoupanos (‘11)
Nishimura-A.T.(’13) Aoki-Nishimura-A.T.(14)



Discussion
I e,,—,—,S—,—,—,—

> We obtained 128(=4x(7+18+7)) zero modes for 17 ¢ 218 @ 37
and 4 zero modes for 641!
4 zero modes for each brane in 2d?

> We need to further examine dependence of lowest and 2"
lowest eigenvalues on Ny", N and SU(2) representations.

» Profile of D-branes and geometry of extra dimensions
Berenstein-Dzienkowski ('12), Ishiki ("15), Schneiderbauer-Steinaker ("16)

Gutleb’s talk



Discussion

1
» Only 3 blocks?

Indeed, to realize the Standard Model, more blocks seems
to be needed.

(1) structure of blocks within a block is allowed for a classical
solution, but seems non-generic.

Quantum effect might favor such a structure.

(2) We can generalize IR cutoffs as follows:
1 1
ST =r ST((4D)7) =1

We took p=1 in this talk for simplicity.
For p=2, arbitrary number of blocks are naturally obtained,
because no constraints are obtained from A3 = M3

Indeed, p >1 seems to be required from universality
Azuma-Ito-Nishimura-A.T. (17 )




Discussion
I e,,—,—,S—,—,—,—

» Where left-right asymmetry comes from?
Indeed, wave functions for the left and right modes are different:
(1) from Yukawa coupling.
we need to calculate coupling of zero modes to Higgs,
which comes from fluctuation of Ya
(2) realized in more nontrivial solution having structure as

(M,Y,] #0

action of M on left and right modes are different

Nishimura-A.T.('13) Aoki-Nishimura-A.T.('14)
» Gauge groups?

seem to come from a stack of multiple D-branes
~ identical blocks within a block
~ favored by quantum effect?



Outlook

» We search for solutions by starting with various initial
configurations to understand the variety of solutions.

» We expect that there exists a solution that realizes the
Standard model or beyond the Standard model and that it is
Indeed selected Iin the sense that our Monte Carlo result is
connected to such a solution.

» Or we can calculate 1-loop effective actions around
classical solutions we have found. We expect the effective
action for the solution giving SM or BSM to be minimum.



Outlook

» We perform numerical calculation at Nx ~ Ny ~1000
(N ~ 1076) by using Kei or post-Kei supercomputers with
large-scale parallel computation.
It is doable since the computation is not more than simulating
a bosonic matrix model, which has been done already with
matrix size ~1000.



