Highly entangled quantum spin chains and their extensions by semigroups

Fumihiko Sugino

Center for Theoretical Physics of the Universe, Institute for Basic Science

Workshop on "Matrix Models for Noncommutative Geometry and String Theory"
Erwin Schrödinger Institute (ESI), July 12, 2018

Highly entangled quantum spin chains and their extensions by semigroups

Fumihiko Sugino

Center for Theoretical Physics of the Universe, Institute for Basic Science

Workshop on "Matrix Models for Noncommutative Geometry and String Theory"
Erwin Schrödinger Institute (ESI), July 12, 2018
Bravyi et al, Phys. Rev. Lett. 118 (2012) 207202, arXiv: 1203.5801 R. Movassagh and P. Shor, Proc. Natl. Acad. Sci. 113 (2016) 13278, arXiv: 1408.1657
F.S. and P. Padmanabhan, J. Stat. Mech. 1801 (2018) 013101, arXiv: 1710.10426
P. Padmanabhan, F.S. and V. Korepin, arXiv: 1804.00978
F.S. and V. Korepin, arXiv:1806.04049

Outline

Introduction
Motzkin spin model
Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model
Rényi entropy
Rényi entropy of Motzkin model
Summary and discussion

Introduction 1

Quantum entanglement

- Most surprising feature of quantum mechanics, No analog in classical mechanics

Introduction 1

Quantum entanglement

- Most surprising feature of quantum mechanics, No analog in classical mechanics
- From pure state of the full system $S: \rho=|\psi\rangle\langle\psi|$, reduced density matrix of a subsystem $A: \rho_{A}=\operatorname{Tr} S_{-A} \rho$ can become mixed states, and has nonzero entanglement entropy

$$
S_{A}=-\operatorname{Tr}_{A}\left[\rho_{A} \ln \rho_{A}\right] .
$$

This is purely a quantum property.

Introduction 2

Area law of entanglement entropy

- Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_{A} \propto($ area of $A)$
- Gapped systems in 1D are proven to obey the area law. [Hastings 2007]

Introduction 2

Area law of entanglement entropy

- Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_{A} \propto($ area of $A)$
- Gapped systems in 1D are proven to obey the area law. [Hastings 2007] (Area law violation) \Rightarrow Gapless
- For gapless case, $(1+1)$-dimensional CFT violates logarithmically: $S_{A}=\frac{c}{3} \ln ($ volume of $A)$. [Calabrese, Cardy 2009]

Introduction 2

Area law of entanglement entropy

- Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_{A} \propto($ area of $A)$
- Gapped systems in 1D are proven to obey the area law. [Hastings 2007] (Area law violation) \Rightarrow Gapless
- For gapless case, $(1+1)$-dimensional CFT violates logarithmically: $S_{A}=\frac{c}{3} \ln ($ volume of $A)$. [Calabrese, Cardy 2009]
- Belief for gapless case in D-dim. (over two decades) : $S_{A}=O\left(L^{D-1} \ln L\right)(L$: length scale of $A)$

Introduction 2

Area law of entanglement entropy

- Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_{A} \propto($ area of $A)$
- Gapped systems in 1D are proven to obey the area law. [Hastings 2007] (Area law violation) \Rightarrow Gapless
- For gapless case, $(1+1)$-dimensional CFT violates logarithmically: $S_{A}=\frac{c}{3} \ln ($ volume of $A) . \quad$ [Calabrese, Cardy 2009]
- Belief for gapless case in D-dim. (over two decades) : $S_{A}=O\left(L^{D-1} \ln L\right)(L$: length scale of $A)$
- Recently, 1D solvable spin chain model which exhibit extensive entanglement entropy have been discussed.
- Beyond logarithmic violation: $S_{A} \propto \sqrt{ }($ volume of $A)$

Counterexamples of the belief!

Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion

Motzkin spin model 1

- 1D spin chain at sites $i \in\{1,2, \cdots, 2 n\}$
- Spin-1 state at each site can be regarded as up, down and flat steps;

$$
|u\rangle \Leftrightarrow \nearrow, \quad|d\rangle \Leftrightarrow \searrow, \quad|0\rangle \Leftrightarrow \longrightarrow
$$

Motzkin spin model 1

- 1D spin chain at sites $i \in\{1,2, \cdots, 2 n\}$
- Spin-1 state at each site can be regarded as up, down and flat steps;

$$
|u\rangle \Leftrightarrow \nearrow, \quad|d\rangle \Leftrightarrow \searrow, \quad|0\rangle \Leftrightarrow \longrightarrow
$$

- Each spin configuration \Leftrightarrow length- $2 n$ walk in (x, y) plane Example)

Motzkin spin model 2

Hamiltonian: $H_{\text {Motzkin }}=H_{\text {bulk }}+H_{b d y}$

- Bulk part: $H_{b u l k}=\sum_{j=1}^{2 n-1} \Pi_{j, j+1}$,

$$
\Pi_{j, j+1}=|D\rangle_{j, j+1}\langle D|+|U\rangle_{j, j+1}\langle U|+|F\rangle_{j, j+1}\langle F|
$$

(local interactions) with

$$
\begin{aligned}
|D\rangle & \equiv \frac{1}{\sqrt{2}}(|0, d\rangle-|d, 0\rangle) \\
|U\rangle & \equiv \frac{1}{\sqrt{2}}(|0, u\rangle-|u, 0\rangle) \\
|F\rangle & \equiv \frac{1}{\sqrt{2}}(|0,0\rangle-|u, d\rangle)
\end{aligned}
$$

Motzkin spin model 2

Hamiltonian: $H_{\text {Motzkin }}=H_{b u l k}+H_{b d y}$

- Bulk part: $H_{b u l k}=\sum_{j=1}^{2 n-1} \Pi_{j, j+1}$,

$$
\Pi_{j, j+1}=|D\rangle_{j, j+1}\langle D|+|U\rangle_{j, j+1}\langle U|+|F\rangle_{j, j+1}\langle F|
$$

(local interactions) with

$$
\begin{aligned}
|D\rangle & \equiv \frac{1}{\sqrt{2}}(|0, d\rangle-|d, 0\rangle) \\
|U\rangle & \equiv \frac{1}{\sqrt{2}}(|0, u\rangle-|u, 0\rangle) \\
|F\rangle & \equiv \frac{1}{\sqrt{2}}(|0,0\rangle-|u, d\rangle)
\end{aligned}
$$

Motzkin spin model 2

Hamiltonian: $H_{\text {Motzkin }}=H_{\text {bulk }}+H_{b d y}$

- Bulk part: $H_{b u l k}=\sum_{j=1}^{2 n-1} \Pi_{j, j+1}$,

$$
\Pi_{j, j+1}=|D\rangle_{j, j+1}\langle D|+|U\rangle_{j, j+1}\langle U|+|F\rangle_{j, j+1}\langle F|
$$

(local interactions) with

$$
\begin{aligned}
|D\rangle & \equiv \frac{1}{\sqrt{2}}(|0, d\rangle-|d, 0\rangle) \\
|U\rangle & \equiv \frac{1}{\sqrt{2}}(|0, u\rangle-|u, 0\rangle) \\
|F\rangle & \equiv \frac{1}{\sqrt{2}}(|0,0\rangle-|u, d\rangle)
\end{aligned}
$$

$\Leftrightarrow \longrightarrow \sim \sim$

Motzkin spin model 2

Hamiltonian: $H_{\text {Motzkin }}=H_{\text {bulk }}+H_{b d y}$

- Bulk part: $H_{b u l k}=\sum_{j=1}^{2 n-1} \Pi_{j, j+1}$,

$$
\Pi_{j, j+1}=|D\rangle_{j, j+1}\langle D|+|U\rangle_{j, j+1}\langle U|+|F\rangle_{j, j+1}\langle F|
$$

(local interactions) with

$$
\begin{aligned}
|D\rangle & \equiv \frac{1}{\sqrt{2}}(|0, d\rangle-|d, 0\rangle) \\
|U\rangle & \equiv \frac{1}{\sqrt{2}}(|0, u\rangle-|u, 0\rangle) \\
|F\rangle & \equiv \frac{1}{\sqrt{2}}(|0,0\rangle-|u, d\rangle)
\end{aligned}
$$

"gauge equivalence".

Motzkin spin model 3

Hamiltonian: $H_{\text {Motzkin }}=H_{\text {bulk }}+H_{b d y}$

- Boundary part: $H_{b d y}=|d\rangle_{1}\langle d|+|u\rangle_{2 n}\langle u|$

Motzkin spin model 3

Hamiltonian: $H_{\text {Motzkin }}=H_{\text {bulk }}+H_{b d y}$

- Boundary part: $H_{b d y}=|d\rangle_{1}\langle d|+|u\rangle_{2 n}\langle u|$
- $H_{\text {Motzkin }}$ is the sum of projection operators.
\Rightarrow Positive semi-definite spectrum
- We find the unique zero-energy ground state.

Motzkin spin model 3

Hamiltonian: $H_{\text {Motzkin }}=H_{\text {bulk }}+H_{\text {bdy }}$

- Boundary part: $H_{b d y}=|d\rangle_{1}\langle d|+|u\rangle_{2 n}\langle u|$
- $H_{\text {Motzkin }}$ is the sum of projection operators.
\Rightarrow Positive semi-definite spectrum
- We find the unique zero-energy ground state.
- Each projector in $H_{\text {Motzkin }}$ annihilates the zero-energy state.
\Rightarrow Frustration free
- The ground state corresponds to randoms walks starting at $(0,0)$ and ending at $(2 n, 0)$ restricted to the region $y \geq 0$ (Motzkin Walks (MWs)).

Motzkin spin model 4

In terms of $S=1$ spin matrices

$$
\begin{aligned}
S_{z}= & \left(\begin{array}{ccc}
1 & & \\
& 0 & \\
& & -1
\end{array}\right), \quad S_{ \pm} \equiv \frac{1}{\sqrt{2}}\left(S_{x} \pm i S_{y}\right)=\left(\begin{array}{cc}
1 & \\
& 1
\end{array}\right),\left(\begin{array}{cc}
1 & \\
& \\
& 1
\end{array}\right) \\
& H_{b u l k}=\frac{1}{2} \sum_{j=1}^{2 n-1}\left[1_{j} 1_{j+1}-\frac{1}{4} S_{z j} S_{z j+1}-\frac{1}{4} S_{z j}^{2} S_{z j+1}+\frac{1}{4} S_{z j} S_{z j+1}^{2}\right. \\
& -\frac{3}{4} S_{z j}^{2} S_{z j+1}^{2}+S_{+j}\left(S_{z} S_{-}\right)_{j+1}+S_{-j}\left(S_{+} S_{z}\right)_{j+1}-\left(S_{-} S_{z}\right)_{j} S_{+j+1} \\
& \left.-\left(S_{z} S_{+}\right)_{j} S_{-j+1}-\left(S_{-} S_{z}\right)_{j}\left(S_{+} S_{z}\right)_{j+1}-\left(S_{z} S_{+}\right)_{j}\left(S_{z} S_{-}\right)_{j+1}\right] \\
& H_{b d y}=\frac{1}{2}\left(S_{z}^{2}-S_{z}\right)_{1}+\frac{1}{2}\left(S_{z}^{2}+S_{z}\right)_{2 n}
\end{aligned}
$$

Motzkin spin model 5

Example) $2 n=4$ case, MWs:

Ground state:

$$
\begin{aligned}
\left|P_{4}\right\rangle=\frac{1}{\sqrt{9}} & {[|0000\rangle+|u d 00\rangle+|0 u d 0\rangle+|00 u d\rangle} \\
& +|u 0 d 0\rangle+|0 u 0 d\rangle+|u 00 d\rangle+|u d u d\rangle \\
& +|u u d d\rangle]
\end{aligned}
$$

Motzkin spin model 6

Note

Forbidden paths for the ground state

1. Path entering $y<0$ region

Forbidden by $H_{b d y}$
2. Path ending at nonzero height

Forbidden by $H_{b d y}$

Motzkin spin model 7

Entanglement entropy of the subsystem $A=\{1,2, \cdots, n\}$:

- Normalization factor of the ground state $\left|P_{2 n}\right\rangle$ is given by the number of MWs of length $2 n: M_{2 n}=\sum_{k=0}^{n} C_{k}\binom{2 n}{2 k}$.

$$
C_{k}=\frac{1}{k+1}\binom{2 k}{k}: \text { Catalan number }
$$

Motzkin spin model 7

Entanglement entropy of the subsystem $A=\{1,2, \cdots, n\}$:

- Normalization factor of the ground state $\left|P_{2 n}\right\rangle$ is given by the number of MWs of length $2 n: M_{2 n}=\sum_{k=0}^{n} C_{k}\binom{2 n}{2 k}$.

$$
C_{k}=\frac{1}{k+1}\binom{2 k}{k}: \text { Catalan number }
$$

- Consider to trace out the density matrix $\rho=\left|P_{2 n}\right\rangle\left\langle P_{2 n}\right|$ w.r.t. the subsystem $B=\{n+1, \cdots, 2 n\}$.
Schmidt decomposition:

$$
\left|P_{2 n}\right\rangle=\sum_{h \geq 0} \sqrt{p_{n, n}^{(h)}}\left|P_{n}^{(0 \rightarrow h)}\right\rangle \otimes\left|P_{n}^{(h \rightarrow 0)}\right\rangle
$$

with $p_{n, n}^{(h)} \equiv \frac{\left(M_{n}^{(h)}\right)^{2}}{M_{2 n}}$.
Paths from $(0,0)$ to (n, h)

Motzkin spin model 8

- $M_{n}^{(h)}$ is the number of paths in $P_{n}^{(0 \rightarrow h)}$. For $n \rightarrow \infty$,

Gaussian distribution

$$
p_{n, n}^{(h)} \sim \frac{3 \sqrt{6}}{\sqrt{\pi}} \frac{(h+1)^{2}}{n^{3 / 2}} e^{-\frac{3}{2} \frac{(h+1)^{2}}{n}} \times[1+O(1 / n)] .
$$

- Reduced density matrix

$$
\rho_{A}=\operatorname{Tr}_{B} \rho=\sum_{h \geq 0} p_{n, n}^{(h)}\left|P_{n}^{(0 \rightarrow h)}\right\rangle\left\langle P_{n}^{(0 \rightarrow h)}\right|
$$

- Entanglement entropy

$$
\begin{aligned}
S_{A} & =-\sum_{h \geq 0} p_{n, n}^{(h)} \ln p_{n, n}^{(h)} \\
& =\frac{1}{2} \ln n+\frac{1}{2} \ln \frac{2 \pi}{3}+\gamma-\frac{1}{2} \quad(\gamma: \text { Euler constant })
\end{aligned}
$$

up to terms vanishing as $n \rightarrow \infty$.

Motzkin spin model 9

Notes

- The system is critical (gapless). S_{A} is similar to the $(1+1)$-dimensional CFT with $c=3 / 2$.

Motzkin spin model 9

Notes

- The system is critical (gapless).
S_{A} is similar to the $(1+1)$-dimensional CFT with $c=3 / 2$.
- But, gap scales as $O\left(1 / n^{z}\right)$ with $z \geq 2$.

The system cannot be described by relativistic CFT.
Lifshitz type?
Different z depending on excited states (Multiple dynamics)?
[Chen, Fradkin, Witczak-Krempa 2017]

Motzkin spin model 9

Notes

- The system is critical (gapless).
S_{A} is similar to the $(1+1)$-dimensional CFT with $c=3 / 2$.
- But, gap scales as $O\left(1 / n^{z}\right)$ with $z \geq 2$.

The system cannot be described by relativistic CFT.
Lifshitz type?
Different z depending on excited states (Multiple dynamics)?
[Chen, Fradkin, Witczak-Krempa 2017]

- Excitations have not been much investigated.

Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion

Colored Motzkin spin model 1

- Introducing color d.o.f. $k=1,2, \cdots, s$ to up and down spins as

$$
\left|u^{k}\right\rangle \Leftrightarrow{ }^{k}, \quad\left|d^{k}\right\rangle \Leftrightarrow \searrow^{k}, \quad|0\rangle \Leftrightarrow \longrightarrow
$$

Color d.o.f. decorated to Motzkin Walks

Colored Motzkin spin model 1

- Introducing color d.o.f. $k=1,2, \cdots, s$ to up and down spins as

$$
\left|u^{k}\right\rangle \Leftrightarrow{ }^{k} \gamma, \quad\left|d^{k}\right\rangle \Leftrightarrow \searrow^{k}, \quad|0\rangle \Leftrightarrow \longrightarrow
$$

Color d.o.f. decorated to Motzkin Walks

- Hamiltonian $H_{c M o t z k i n}=H_{b u l k}+H_{b d y}$
- Bulk part consisting of local interactions:

$$
\begin{gathered}
H_{\text {bulk }}=\sum_{j=1}^{2 n-1}\left(\Pi_{j, j+1}+\Pi_{j, j+1}^{\text {cross }}\right), \\
\Pi_{j, j+1}=\sum_{k=1}^{s}\left[\left|D^{k}\right\rangle_{j, j+1}\left\langle D^{k}\right|+\left|U^{k}\right\rangle_{j, j+1}\left\langle U^{k}\right|+\left|F^{k}\right\rangle_{j, j+1}\left\langle F^{k}\right|\right] \\
\text { with }
\end{gathered}
$$

Colored Motzkin spin model 2

$$
\begin{aligned}
& \left|D^{k}\right\rangle \equiv \frac{1}{\sqrt{2}}\left(\left|0, d^{k}\right\rangle-\left|d^{k}, 0\right\rangle\right) \\
& \left|U^{k}\right\rangle \equiv \frac{1}{\sqrt{2}}\left(\left|0, u^{k}\right\rangle-\left|u^{k}, 0\right\rangle\right) \\
& \left|F^{k}\right\rangle \equiv \frac{1}{\sqrt{2}}\left(|0,0\rangle-\left|u^{k}, d^{k}\right\rangle\right)
\end{aligned}
$$

and

$$
\Pi_{j, j+1}^{c r o s s}=\sum_{k \neq k^{\prime}}\left|u^{k}, d^{k^{\prime}}\right\rangle_{j, j+1}\left\langle u^{k}, d^{k^{\prime}}\right|
$$

\Rightarrow Colors should be matched in up and down pairs.

- Boundary part

$$
H_{b d y}=\sum_{k=1}^{s}\left(\left|d^{k}\right\rangle_{1}\left\langle d^{k}\right|+\left|u^{k}\right\rangle_{2 n}\left\langle u^{k}\right|\right)
$$

Colored Motzkin spin model 3

- Still unique ground state with zero energy

Colored Motzkin spin model 3

- Still unique ground state with zero energy
- Example) $2 n=4$ case,

$$
\begin{aligned}
\left|P_{4}\right\rangle=\frac{1}{\sqrt{1+6 s+2 s^{2}}} & {\left[|0000\rangle+\sum_{k=1}^{s}\left\{\left|u^{k} d^{k} 00\right\rangle+\cdots+\left|u^{k} 00 d^{k}\right\rangle\right\}\right.} \\
+ & \left.\sum_{k, k^{\prime}=1}^{s}\left\{\left|u^{k} d^{k} u^{k^{\prime}} d^{k^{\prime}}\right\rangle+\left|u^{k} u^{k^{\prime}} d^{k^{\prime}} d^{k}\right\rangle\right\}\right]
\end{aligned}
$$

Colored Motzkin spin model 4

Entanglement entropy

- Paths from $(0,0)$ to $(n, h), P_{n}^{(0 \rightarrow h)}$, have h unmatched up steps.
Let $\tilde{P}_{n}^{(0 \rightarrow h)}\left(\left\{\kappa_{m}\right\}\right)$ be paths with the colors of unmatched up steps frozen.

$$
\text { (unmatched up from height }(m-1) \text { to } m) \rightarrow u^{\kappa_{m}}
$$

- Similarly,

$$
\begin{aligned}
& P_{n}^{(h \rightarrow 0)} \rightarrow \tilde{P}_{n}^{(h \rightarrow 0)}\left(\left\{\kappa_{m}\right\}\right), \\
& \text { (unmatched down from height } m \text { to }(m-1)) \rightarrow d^{\kappa_{m}} .
\end{aligned}
$$

- The numbers satisfy $M_{n}^{(h)}=s^{h} \tilde{M}_{n}^{(h)}$.

Colored Motzkin spin model 5

Example
$2 n=8$ case, $h=2$

Colored Motzkin spin model 6

- Schmidt decomposition

$$
\begin{aligned}
\left|P_{2 n}\right\rangle= & \sum_{h \geq 0} \sum_{\kappa_{1}=1}^{s} \cdots \sum_{\kappa_{h}=1}^{s} \sqrt{p_{n, n}^{(h)}} \\
& \times\left|\tilde{P}_{n}^{(0 \rightarrow h)}\left(\left\{\kappa_{m}\right\}\right)\right\rangle \otimes\left|\tilde{P}_{n}^{(h \rightarrow 0)}\left(\left\{\kappa_{m}\right\}\right)\right\rangle
\end{aligned}
$$

with

$$
p_{n, n}^{(h)}=\frac{\left(\tilde{M}_{n}^{(h)}\right)^{2}}{M_{2 n}}
$$

- Reduced density matrix

$$
\begin{aligned}
\rho_{A}= & \sum_{h \geq 0} \sum_{\kappa_{1}=1}^{s} \cdots \sum_{\kappa_{h}=1}^{s} p_{n, n}^{(h)} \\
& \times\left|\tilde{P}_{n}^{(0 \rightarrow h)}\left(\left\{\kappa_{m}\right\}\right)\right\rangle\left\langle\tilde{P}_{n}^{(0 \rightarrow h)}\left(\left\{\kappa_{m}\right\}\right)\right|
\end{aligned}
$$

Colored Motzkin spin model 7

- For $n \rightarrow \infty$,

$$
p_{n, n}^{(h)} \sim \frac{\sqrt{2} s^{-h}}{\sqrt{\pi}(\sigma n)^{3 / 2}}(h+1)^{2} e^{-\frac{(h+1)^{2}}{2 \sigma n}} \times[1+O(1 / n)]
$$

with $\sigma \equiv \frac{\sqrt{s}}{2 \sqrt{s}+1}$.
Note: Effectively $h \lesssim O(\sqrt{n})$.

- Entanglement entropy

$$
S_{A}=-\sum_{h \geq 0} s^{h} p_{n, h}^{(h)} \ln p_{n, n}^{(h)}
$$

Colored Motzkin spin model 7

- For $n \rightarrow \infty$,

$$
p_{n, n}^{(h)} \sim \frac{\sqrt{2} s^{-h}}{\sqrt{\pi}(\sigma n)^{3 / 2}}(h+1)^{2} e^{-\frac{(h+1)^{2}}{2 \sigma n}} \times[1+O(1 / n)]
$$

with $\sigma \equiv \frac{\sqrt{s}}{2 \sqrt{s}+1}$.
Note: Effectively $h \lesssim O(\sqrt{n})$.

- Entanglement entropy

$$
\begin{aligned}
S_{A} & =-\sum_{h \geq 0} s^{h} p_{n, n}^{(h)} \ln p_{n, n}^{(h)} \\
& =(2 \ln s) \sqrt{\frac{2 \sigma n}{\pi}}+\frac{1}{2} \ln n+\frac{1}{2} \ln (2 \pi \sigma)+\gamma-\frac{1}{2}-\ln s
\end{aligned}
$$

up to terms vanishing as $n \rightarrow \infty$.

Colored Motzkin spin model 8

Comments
Matching color $\Rightarrow s^{-h}$ factor in $p_{n, n}^{(h)}$
\Rightarrow crucial to $O(\sqrt{n})$ behavior in S_{A}

Colored Motzkin spin model 8

Comments

- Matching color $\Rightarrow s^{-h}$ factor in $p_{n, n}^{(h)}$
\Rightarrow crucial to $O(\sqrt{n})$ behavior in S_{A}
- Typical configurations:

+ (equivalence moves).

Colored Motzkin spin model 8

Comments

- Matching color $\Rightarrow s^{-h}$ factor in $p_{n, n}^{(h)}$
\Rightarrow crucial to $O(\sqrt{n})$ behavior in S_{A}
- Typical configurations:

+ (equivalence moves).
- For spin $1 / 2$ chain (only up and down), the model in which similar behavior exhibits in colored as well as uncolored cases has been constructed. (Fredkin model) [Salberger, Korepin 2016]

Colored Motzkin spin model 9

- Correlation functions
$\left\langle S_{z, 1} S_{z, 2 n}\right\rangle_{\text {connected }} \rightarrow-0.034 \ldots \times \frac{s^{3}-s}{6} \neq 0 \quad(n \rightarrow \infty)$
\Rightarrow Violation of cluster decomposition property for $s>1$
(Strong correlation due to color matching)

Colored Motzkin spin model 9

- Correlation functions
$\left\langle S_{z, 1} S_{z, 2 n}\right\rangle_{\text {connected }} \rightarrow-0.034 \ldots \times \frac{s^{3}-s}{6} \neq 0 \quad(n \rightarrow \infty)$
\Rightarrow Violation of cluster decomposition property for $s>1$
(Strong correlation due to color matching)
- Deformation of models to achieve the volume law behavior $\left(S_{A} \propto n\right)$
Weighted Motzkin/Dyck walks
[Zhang et al, Salberger et al 2016]

Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion

Symmetric Inverse Semigroups (SISs)

- Inverse Semigroup (\subset Semigroup):

An unique inverse exists for every element. But, no unique identity (partial identities).

Symmetric Inverse Semigroups (SISs)

- Inverse Semigroup (\subset Semigroup):

An unique inverse exists for every element. But, no unique identity (partial identities).

- SIS (\subset Semigroup):

Semigroup version of the symmetric group S_{k}

$$
\mathcal{S}_{p}^{k}(p=1, \cdots, k)
$$

Symmetric Inverse Semigroups (SISs)

- Inverse Semigroup (\subset Semigroup):

An unique inverse exists for every element.
But, no unique identity (partial identities).

- SIS (\subset Semigroup):

Semigroup version of the symmetric group S_{k}

$$
\hat{S}_{p}^{k}(p=1, \cdots, k)
$$

- $x_{a, b} \in \mathcal{S}_{1}^{k}$ maps a to $b . ~(a, b \in\{1, \cdots, k\})$ Product rule: $x_{a, b} * x_{c, d}=\delta_{b, c} x_{a, d}$

$$
x_{1,2} * x_{2,1}=x_{1,1}, \quad x_{2,1} * x_{1,2}=x_{2,2}
$$

(partial identities)

$$
\left(x_{1,2}\right)^{-1}=x_{2,1} \quad \text { (unique inverse) }
$$

Symmetric Inverse Semigroups (SISs)

- Inverse Semigroup (\subset Semigroup):

An unique inverse exists for every element.
But, no unique identity (partial identities).

- SIS (\subset Semigroup):

Semigroup version of the symmetric group S_{k}

$$
\hat{S}_{p}^{k}(p=1, \cdots, k)
$$

- $x_{a, b} \in \mathcal{S}_{1}^{k}$ maps a to $b . ~(a, b \in\{1, \cdots, k\})$ Product rule: $x_{a, b} * x_{c, d}=\delta_{b, c} x_{a, d}$

$$
x_{1,2} * x_{2,1}=x_{1,1}, \quad x_{2,1} * x_{1,2}=x_{2,2}
$$

(partial identities)

$$
\left(x_{1,2}\right)^{-1}=x_{2,1} \quad \text { (unique inverse) }
$$

- $x_{a_{1}, a_{2} ;} b_{1}, b_{2} \in \mathcal{S}_{2}^{k}$ etc, \ldots

Symmetric Inverse Semigroups (SISs)

- Inverse Semigroup (\subset Semigroup):

An unique inverse exists for every element.
But, no unique identity (partial identities).

- SIS (\subset Semigroup):

Semigroup version of the symmetric group S_{k}

$$
\hat{S}_{p}^{k}(p=1, \cdots, k)
$$

- $x_{a, b} \in \mathcal{S}_{1}^{k}$ maps a to $b . ~(a, b \in\{1, \cdots, k\})$ Product rule: $x_{a, b} * x_{c, d}=\delta_{b, c} x_{a, d}$

$$
x_{1,2} * x_{2,1}=x_{1,1}, \quad x_{2,1} * x_{1,2}=x_{2,2}
$$

(partial identities)

$$
\left(x_{1,2}\right)^{-1}=x_{2,1} \quad \text { (unique inverse) }
$$

- $x_{a_{1}, a_{2} ;} b_{1}, b_{2} \in \mathcal{S}_{2}^{k}$ etc, \ldots

$$
\mathcal{S}_{k}^{k} \equiv S_{k}
$$

- Change the spin d.o.f. as $\left|x_{a, b}\right\rangle$ with $a, b \in\{1,2, \cdots, k\}$.
- $a<b$ case: 'up' \Leftrightarrow a
$a>b$ case: 'down' \Leftrightarrow

$a=b$ case: 'flat' $\Leftrightarrow \xrightarrow{a b}$

SIS Motzkin model 1

- Change the spin d.o.f. as $\left|x_{a, b}\right\rangle$ with $a, b \in\{1,2, \cdots, k\}$.
- $a<b$ case: 'up' $\Leftrightarrow{ }^{a}$
$a>b$ case: 'down' \Leftrightarrow

$a=b$ case: 'flat' $\Leftrightarrow \xrightarrow{a b}$
- We regard the configuration of adjacent sites $\left|\left(x_{a, b}\right)_{j}\right\rangle\left|\left(x_{c, d}\right)_{j+1}\right\rangle$ as a connected path for $b=c$.
c.f.) Analogous to the product rule of Symmetric Inverse Semigroup $\left(\mathcal{S}_{1}^{k}\right)$:

$$
x_{a, b} * x_{c, d}=\delta_{b, c} x_{a, d}
$$

a, b : semigroup indices

- Inner product: $\left\langle x_{a, b} \mid x_{c, d}\right\rangle=\delta_{a, c} \delta_{b, d}$
- Let us consider the $k=3$ case.

SIS Motzkin model 2

- Maximum height is lower than the original Motzkin case.

SIS Motzkin model 3

Hamiltonian $H_{\text {S31Motzkin }}=H_{b u l k}+H_{\text {bulk,disc }}+H_{\text {bdy }}$

- $H_{\text {bulk }}$: local interactions corresponding to the following moves:

- $H_{\text {bulk,disc }}$ lifts disconnected paths to excited states.

$$
\Pi^{|\psi\rangle}: \text { projector to }|\psi\rangle
$$

$$
H_{b u l k, d i s c}=\sum_{j=1}^{2 n-1} \sum_{a, b, c, d=1 ; b \neq c}^{3} \Pi^{\left|\left(x_{a, b}\right)_{j},\left(x_{c, d}\right)_{j+1}\right\rangle}
$$

SIS Motzkin model 4

- $H_{\text {bulk,disc }}$ lifts disconnected paths to excited states.
$\Pi^{|\psi\rangle}$: projector to $|\psi\rangle$

$$
H_{\text {bulk,disc }}=\sum_{j=1}^{2 n-1} \sum_{a, b, c, d=1 ; b \neq c}^{3} \Pi^{\left|\left(x_{a, b}\right)_{j},\left(x_{c, d}\right)_{j+1}\right\rangle}
$$

$$
\begin{aligned}
H_{b d y}= & \sum_{a>b} \Pi^{\left|\left(x_{a, b}\right)_{1}\right\rangle}+\sum_{a<b} \Pi^{\left|\left(x_{a, b}\right)_{2 n}\right\rangle} \\
& +\Pi^{\left|\left(x_{1,3}\right)_{1},\left(x_{3,2}\right)_{2},\left(x_{2,1}\right)_{3}\right\rangle}+\Pi^{\left|\left(x_{1,2}\right)_{2 n-2},\left(x_{2,3}\right)_{2 n-1},\left(x_{3,1}\right)_{2 n}\right\rangle}
\end{aligned}
$$

The last 2 terms have no analog to the original Motzkin model.

SIS Motzkin model 5

- Ground states correspond to connected paths starting at $(0,0)$, ending at $(2 n, 0)$ and not entering $y<0 . \quad \mathcal{S}_{1}^{3} \mathrm{MWs}$

SIS Motzkin model 5

- Ground states correspond to connected paths starting at $(0,0)$, ending at $(2 n, 0)$ and not entering $y<0 . \quad \mathcal{S}_{1}^{3} \mathrm{MWs}$
- The ground states have 5 fold degeneracy according to the initial and finial semigroup indices:
$(1,1),(1,2),(2,1),(2,2)$ and $(3,3)$ sectors
The $(3,3)$ sector is trivial, consisting of only one path:

$$
x_{3,3} x_{3,3} \cdots x_{3,3}
$$

SIS Motzkin model 5

- Ground states correspond to connected paths starting at $(0,0)$, ending at $(2 n, 0)$ and not entering $y<0 . \quad \mathcal{S}_{1}^{3} \mathrm{MWs}$
- The ground states have 5 fold degeneracy according to the initial and finial semigroup indices:
$(1,1),(1,2),(2,1),(2,2)$ and $(3,3)$ sectors
The $(3,3)$ sector is trivial, consisting of only one path:

$$
x_{3,3} x_{3,3} \cdots x_{3,3} .
$$

- The number of paths can be obtained by recursion relations. For length- n paths from the semigroup index a to $b\left(P_{n, a \rightarrow b}\right)$,

$$
\begin{aligned}
P_{n, 1 \rightarrow 1}= & x_{1,1} P_{n-1,1 \rightarrow 1}+x_{1,2} \sum_{i=1}^{n-2} P_{i, 2 \rightarrow 2} x_{2,1} P_{n-2-i, 1 \rightarrow 1} \\
& +x_{1,3} \sum_{i=1}^{n-2} P_{i, 3 \rightarrow 3} x_{3,1} P_{n-2-i, 1 \rightarrow 1} \\
& +x_{1,3} \sum_{i=1}^{n-2} P_{i, 3 \rightarrow 3} x_{3,2} P_{n-2-i, 2 \rightarrow 1}, \quad \text { etc. }
\end{aligned}
$$

SIS Motzkin model 6

Result

- The entanglement entropies $S_{A, 1 \rightarrow 1}, S_{A, 1 \rightarrow 2}, S_{A, 2 \rightarrow 1}$ and $S_{A, 2 \rightarrow 2}$ take the same form as in the case of the Motzkin model.

Logarithmic violation of the area law

- The form of $p_{n}^{(h)} \sim \frac{(h+1)^{2}}{n^{3 / 2}} e^{-(\text {const. }) \frac{(h+1)^{2}}{n}}$ is universal.
- $S_{A, 3 \rightarrow 3}=0$.

SIS Motzkin model 7

Localization

- There are excited states corresponding to disconnected paths. Example) One such path in $2 n=6$ case,

SIS Motzkin model 7

Localization

- There are excited states corresponding to disconnected paths. Example) One such path in $2 n=6$ case, y

Corresponding excited state: $\left|P_{3,1 \rightarrow 1}\right\rangle \otimes\left|P_{3,2 \rightarrow 1}^{(1 \rightarrow 0)}\right\rangle$
Each connected component has no entanglement with other components.
"2nd quantization" of paths

SIS Motzkin model 7

- There are excited states corresponding to disconnected paths. Example) One such path in $2 n=6$ case, y

$$
x
$$

Corresponding excited state: $\left|P_{3,1 \rightarrow 1}\right\rangle \otimes\left|P_{3,2 \rightarrow 1}^{(1 \rightarrow 0)}\right\rangle$
Each connected component has no entanglement with other components. "2nd quantization" of paths $\Rightarrow 2$ pt connected correlation functions of local operators belonging to separate connected components vanish.

Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion

The SIS \mathcal{S}_{2}^{3}

- 18 elements $x_{a b, c d}$ with $a b \in\{12,23,31\}$ and $c d \in\{12,23,31,21,32,13\}$ satisfying

$$
x_{a b, c d} * x_{e f, g h}=\delta_{c, e} \delta_{d, f} x_{a b, g h}+\delta_{c, f} \delta_{d, e} x_{a b, h g}
$$

- can be regarded as 2 sets of \mathcal{S}_{1}^{3}.

Colored SIS Motzkin model 1

The SIS \mathcal{S}_{2}^{3}

- 18 elements $x_{a b, c d}$ with $a b \in\{12,23,31\}$ and $c d \in\{12,23,31,21,32,13\}$ satisfying

$$
x_{a b, c d} * x_{e f, g h}=\delta_{c, e} \delta_{d, f} x_{a b, g h}+\delta_{c, f} \delta_{d, e} x_{a b, h g} .
$$

- can be regarded as 2 sets of \mathcal{S}_{1}^{3}.
- Spin variables: $x_{a, b}^{s}(s=1,2)(a, b=1,2,3)$
- The new moves (C moves) introduced to the Hamiltonian.
$\xrightarrow{a^{1} a} \sim \vec{\longrightarrow}$

Colored SIS Motzkin model 2

Hamiltonian: $H_{c S 31 \text { Motzkin }}=H_{b u l k}+H_{b u l k, d i s c}+H_{b d y}$

- In $H_{\text {bulk }}$, (Down), (Up) and (Flat) are essentially the same as before.

Colored SIS Motzkin model 3

- Wedge move:
(Wedge)

$$
(\text { Cross })_{j, j+1}=\sum_{b>a, c}\left[\Pi^{\left|\left(x_{a, b}^{1}\right)_{j},\left(x_{b, c}^{2}\right)_{j+1}\right\rangle}+\Pi^{\left|\left(x_{a, b}^{2}\right)_{j,(}\left(x_{b, c}^{1}\right)_{j+1}\right\rangle}\right]
$$

forbids unmatched up and down steps in ground states.

$$
\begin{gathered}
\Downarrow \\
H_{\text {bulk }}= \\
\\
\quad \begin{array}{c}
\text { j=1 } \\
\left.+(\text { Flat })_{j, j+1}+\left(\text { Wedge }^{2 n}\right)_{j, j+1}+(\text { Cross })_{j, j+1}\right]
\end{array} \sum_{j=1}^{2 n-1}\left[(\text { Down })_{j, j+1}+\left(\text { Up }_{j, j+1}\right.\right.
\end{gathered}
$$

$$
H_{b u l k, d i s c}=\sum_{j=1}^{2 n-1} \sum_{a, b, c, d=1 ; b \neq c}^{3} \sum_{s, t=1}^{2} \Pi^{\left|\left(x_{a, b}^{s}\right)_{j},\left(x_{c, d}^{t}\right)_{j+1}\right\rangle}
$$

$$
\begin{aligned}
H_{b d y}= & \sum_{a>b} \sum_{s=1}^{2} \Pi^{\left|\left(x_{a, b}^{s}\right)_{1}\right\rangle}+\sum_{a<b} \sum_{s=1}^{2} \Pi^{\left|\left(x_{a, b}^{s}\right)_{2 n}\right\rangle} \\
& +\sum_{s, t=1}^{2} \Pi^{\left|\left(x_{1,3}^{s}\right)_{1},\left(x_{3,2}^{s}\right)_{2},\left(x_{2,1}^{t}\right)_{3}\right\rangle} \\
& +\sum_{s, t=1}^{2} \Pi^{\left|\left(x_{1,2}^{s}\right)_{2 n-2},\left(x_{2,3}^{t}\right)_{2 n-1},\left(x_{3,1}^{t}\right)_{2 n}\right\rangle}
\end{aligned}
$$

- 5 ground states of $(1,1),(1,2),(2,1),(2,2),(3,3)$ sectors
- Quantum phase transition between $\mu>0$ and $\mu=0$ in the 4 sectors except $(3,3)$.
- For $\mu>0$,

$$
S_{A}=(2 \ln 2) \sqrt{\frac{2 \sigma n}{\pi}}+\frac{1}{2} \ln n+\frac{1}{2} \ln (2 \pi \sigma)+\gamma-\frac{1}{2}+\ln \frac{3}{2^{1 / 3}}
$$

with $\sigma \equiv \frac{\sqrt{2}-1}{9 \sqrt{2}}$.

- For $\mu=0$, colors 1 and 2 decouple.

$$
S_{A} \propto \ln n
$$

Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion

Rényi entropy

- Rényi entropy has further importance than the von Neumann entanglement entropy:

$$
S_{A, \alpha}=\frac{1}{1-\alpha} \ln \operatorname{Tr}_{A} \rho_{A}^{\alpha} \quad \text { with } \alpha>0 \text { and } \alpha \neq 1 .
$$

Rényi entropy

- Rényi entropy has further importance than the von Neumann entanglement entropy:

$$
S_{A, \alpha}=\frac{1}{1-\alpha} \ln \operatorname{Tr}_{A} \rho_{A}^{\alpha} \quad \text { with } \alpha>0 \text { and } \alpha \neq 1 .
$$

- Generalization of the von Neumann entanglement entropy: $\lim _{\alpha \rightarrow 1} S_{A, \alpha}=S_{A}$

Rényi entropy

- Rényi entropy has further importance than the von Neumann entanglement entropy:

$$
S_{A, \alpha}=\frac{1}{1-\alpha} \ln \operatorname{Tr}_{A} \rho_{A}^{\alpha} \quad \text { with } \alpha>0 \text { and } \alpha \neq 1 .
$$

- Generalization of the von Neumann entanglement entropy: $\lim _{\alpha \rightarrow 1} S_{A, \alpha}=S_{A}$
- Reconstructs the whole spectrum of the entanglement Hamiltonian $H_{\text {ent }, A} \equiv-\ln \rho_{A}$.

Rényi entropy

- Rényi entropy has further importance than the von Neumann entanglement entropy:

$$
S_{A, \alpha}=\frac{1}{1-\alpha} \ln \operatorname{Tr}_{A} \rho_{A}^{\alpha} \quad \text { with } \alpha>0 \text { and } \alpha \neq 1 .
$$

- Generalization of the von Neumann entanglement entropy: $\lim _{\alpha \rightarrow 1} S_{A, \alpha}=S_{A}$
- Reconstructs the whole spectrum of the entanglement Hamiltonian $H_{\text {ent }, A} \equiv-\ln \rho_{A}$.
- For $S_{A, \alpha}(0<\alpha<1)$, the gapped systems in 1D is proven to obey the area law.

Rényi entropy

- Rényi entropy has further importance than the von Neumann entanglement entropy:

$$
S_{A, \alpha}=\frac{1}{1-\alpha} \ln \operatorname{Tr}_{A} \rho_{A}^{\alpha} \quad \text { with } \alpha>0 \text { and } \alpha \neq 1 .
$$

- Generalization of the von Neumann entanglement entropy: $\lim _{\alpha \rightarrow 1} S_{A, \alpha}=S_{A}$
- Reconstructs the whole spectrum of the entanglement Hamiltonian $H_{\text {ent }, A} \equiv-\ln \rho_{A}$.
- For $S_{A, \alpha}(0<\alpha<1)$, the gapped systems in 1D is proven to obey the area law.

Here, I give a review of Motzkin spin chain and analytically compute its Rényi entropy of half-chain.

New phase transition found at $\alpha=1$!

Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model Summary and discussion

Réyni entropy of Motzkin model 1

- What we compute is the asymptotic behavior of

$$
S_{A, \alpha}=\frac{1}{1-\alpha} \ln \sum_{h=0}^{n} s^{h}\left(p_{n, n}^{(h)}\right)^{\alpha}
$$

Réyni entropy of Motzkin model 1

- What we compute is the asymptotic behavior of

$$
S_{A, \alpha}=\frac{1}{1-\alpha} \ln \sum_{h=0}^{n} s^{h}\left(p_{n, n}^{(h)}\right)^{\alpha}
$$

- For colorless case $(s=1)$, we obtain

$$
\begin{aligned}
S_{A, \alpha}= & \frac{1}{2} \ln n+\frac{1}{1-\alpha} \ln \Gamma\left(\alpha+\frac{1}{2}\right) \\
& -\frac{1}{2(1-\alpha)}\left\{(1+2 \alpha) \ln \alpha+\alpha \ln \frac{\pi}{24}+\ln 6\right\}
\end{aligned}
$$

up to terms vanishing as $n \rightarrow \infty$.

Réyni entropy of Motzkin model 1

- What we compute is the asymptotic behavior of

$$
S_{A, \alpha}=\frac{1}{1-\alpha} \ln \sum_{h=0}^{n} s^{h}\left(p_{n, n}^{(h)}\right)^{\alpha}
$$

- For colorless case $(s=1)$, we obtain

$$
\begin{aligned}
S_{A, \alpha}= & \frac{1}{2} \ln n+\frac{1}{1-\alpha} \ln \Gamma\left(\alpha+\frac{1}{2}\right) \\
& -\frac{1}{2(1-\alpha)}\left\{(1+2 \alpha) \ln \alpha+\alpha \ln \frac{\pi}{24}+\ln 6\right\}
\end{aligned}
$$

up to terms vanishing as $n \rightarrow \infty$.

- Logarithmic growth
- Reduces to S_{A} in the $\alpha \rightarrow 1$ limit.
- Consistent with half-chain case in the result in [Movassagh, 2017]

Réyni entropy of Motzkin model 2

Colored case $(s>1)$

- The summand $s^{h}\left(p_{n, h}^{(h)}\right)^{\alpha}$ has a factor $s^{(1-\alpha) h}$.

Réyni entropy of Motzkin model 2

Colored case $(s>1)$

- The summand $s^{h}\left(p_{n, h}^{(h)}\right)^{\alpha}$ has a factor $s^{(1-\alpha) h}$.

For $0<\alpha<1$, exponentially growing (colored case ($s>1$)).
\Rightarrow Saddle point value of the sum: $h_{*}=O(n)$

Réyni entropy of Motzkin model 2

Colored case $(s>1)$

- The summand $s^{h}\left(p_{n, h}^{(h)}\right)^{\alpha}$ has a factor $s^{(1-\alpha) h}$.

For $0<\alpha<1$, exponentially growing (colored case $(s>1)$).
\Rightarrow Saddle point value of the sum: $h_{*}=O(n)$

- Saddle point analysis for the sum leads to

$$
\begin{aligned}
S_{A, \alpha}= & n \frac{2 \alpha}{1-\alpha} \ln \left[\sigma\left(s^{\frac{1-\alpha}{2 \alpha}}+s^{-\frac{1-\alpha}{2 \alpha}}+s^{-1 / 2}\right)\right] \\
& +\frac{1+\alpha}{2(1-\alpha)} \ln n+C(s, \alpha)
\end{aligned}
$$

with $C(s, \alpha)$ being n-independent terms.

Réyni entropy of Motzkin model 2

Colored case $(s>1)$

- The summand $s^{h}\left(p_{n, h}^{(h)}\right)^{\alpha}$ has a factor $s^{(1-\alpha) h}$.

For $0<\alpha<1$, exponentially growing (colored case $(s>1)$).
\Rightarrow Saddle point value of the sum: $h_{*}=O(n)$

- Saddle point analysis for the sum leads to

$$
\begin{aligned}
S_{A, \alpha}= & n \frac{2 \alpha}{1-\alpha} \ln \left[\sigma\left(s^{\frac{1-\alpha}{2 \alpha}}+s^{-\frac{1-\alpha}{2 \alpha}}+s^{-1 / 2}\right)\right] \\
& +\frac{1+\alpha}{2(1-\alpha)} \ln n+C(s, \alpha)
\end{aligned}
$$

with $C(s, \alpha)$ being n-independent terms.

- The saddle point value is $h_{*}=n \frac{s^{\frac{1}{2 \alpha}}-s^{1-\frac{1}{2 \alpha}}}{s^{\frac{1}{2 \alpha}}+s^{1-\frac{1}{2 \alpha}}+1}+O\left(n^{0}\right)$.

Réyni entropy of Motzkin model 2

Colored case $(s>1)$

- The summand $s^{h}\left(p_{n, h}^{(h)}\right)^{\alpha}$ has a factor $s^{(1-\alpha) h}$.

For $0<\alpha<1$, exponentially growing (colored case $(s>1)$).
\Rightarrow Saddle point value of the sum: $h_{*}=O(n)$

- Saddle point analysis for the sum leads to

$$
\begin{aligned}
S_{A, \alpha}= & n \frac{2 \alpha}{1-\alpha} \ln \left[\sigma\left(s^{\frac{1-\alpha}{2 \alpha}}+s^{-\frac{1-\alpha}{2 \alpha}}+s^{-1 / 2}\right)\right] \\
& +\frac{1+\alpha}{2(1-\alpha)} \ln n+C(s, \alpha)
\end{aligned}
$$

with $C(s, \alpha)$ being n-independent terms.

- The saddle point value is $h_{*}=n \frac{\frac{1}{2 \alpha}-s^{1-\frac{1}{2 \alpha}}}{s^{\frac{1}{2 \alpha}}+s^{1-\frac{1}{2 \alpha}}+1}+O\left(n^{0}\right)$.
- Linear growth in n.

Réyni entropy of Motzkin model 2

Colored case ($s>1$)

- The summand $s^{h}\left(p_{n, h}^{(h)}\right)^{\alpha}$ has a factor $s^{(1-\alpha) h}$.

For $0<\alpha<1$, exponentially growing (colored case $(s>1)$).
\Rightarrow Saddle point value of the sum: $h_{*}=O(n)$

- Saddle point analysis for the sum leads to

$$
\begin{aligned}
S_{A, \alpha}= & n \frac{2 \alpha}{1-\alpha} \ln \left[\sigma\left(s^{\frac{1-\alpha}{2 \alpha}}+s^{-\frac{1-\alpha}{2 \alpha}}+s^{-1 / 2}\right)\right] \\
& +\frac{1+\alpha}{2(1-\alpha)} \ln n+C(s, \alpha)
\end{aligned}
$$

with $C(s, \alpha)$ being n-independent terms.

- The saddle point value is $h_{*}=n \frac{s^{\frac{1}{2 \alpha}}-s^{1-\frac{1}{2 \alpha}}}{s^{\frac{1}{2 \alpha}}+s^{1-\frac{1}{2 \alpha}}+1}+O\left(n^{0}\right)$.
- Linear growth in n.
- Note: $\alpha \rightarrow 1$ or $s \rightarrow 1$ limit does not commute with the $n \rightarrow \infty$ limit.

Réyni entropy of Motzkin model 3

Rényi entropy for $\alpha>1$

- For $\alpha>1$, the factor $s^{(1-\alpha) h}$ in the summand $s^{h}\left(p_{n, h}^{(h)}\right)^{\alpha}$ exponentially decays.

Réyni entropy of Motzkin model 3

Rényi entropy for $\alpha>1$

- For $\alpha>1$, the factor $s^{(1-\alpha) h}$ in the summand $s^{h}\left(p_{n, h}^{(h)}\right)^{\alpha}$ exponentially decays.
$\Rightarrow h \lesssim O\left(\frac{1}{(\alpha-1) \ln s}\right)=O\left(n^{0}\right)$ dominantly contributes to the sum.

Réyni entropy of Motzkin model 3

Rényi entropy for $\alpha>1$

- For $\alpha>1$, the factor $s^{(1-\alpha) h}$ in the summand $s^{h}\left(p_{n, n}^{(h)}\right)^{\alpha}$ exponentially decays.
$\Rightarrow h \lesssim O\left(\frac{1}{(\alpha-1) \ln s}\right)=O\left(n^{0}\right)$ dominantly contributes to the sum.
- The result:

$$
S_{A, \alpha}=\frac{3 \alpha}{2(\alpha-1)} \ln n+O\left(n^{0}\right)
$$

Réyni entropy of Motzkin model 3

Rényi entropy for $\alpha>1$

- For $\alpha>1$, the factor $s^{(1-\alpha) h}$ in the summand $s^{h}\left(p_{n, n}^{(h)}\right)^{\alpha}$ exponentially decays.
$\Rightarrow h \lesssim O\left(\frac{1}{(\alpha-1) \ln s}\right)=O\left(n^{0}\right)$ dominantly contributes to the sum.
- The result:

$$
S_{A, \alpha}=\frac{3 \alpha}{2(\alpha-1)} \ln n+O\left(n^{0}\right)
$$

- Logarithmic growth

Réyni entropy of Motzkin model 3

Rényi entropy for $\alpha>1$

- For $\alpha>1$, the factor $s^{(1-\alpha) h}$ in the summand $s^{h}\left(p_{n, h}^{(h)}\right)^{\alpha}$ exponentially decays.
$\Rightarrow h \lesssim O\left(\frac{1}{(\alpha-1) \ln s}\right)=O\left(n^{0}\right)$ dominantly contributes to the sum.
- The result:

$$
S_{A, \alpha}=\frac{3 \alpha}{2(\alpha-1)} \ln n+O\left(n^{0}\right)
$$

- Logarithmic growth
- $\alpha \rightarrow 1$ or $s \rightarrow 1$ limit does not commute with the $n \rightarrow \infty$ limit.

Réyni entropy of Motzkin model 4

Phase transition

- $S_{A \alpha}$ grows as $O(n)$ for $0<\alpha<1$ while as $O(\ln n)$ for $\alpha>1$.

Réyni entropy of Motzkin model 4

Phase transition

- $S_{A \alpha}$ grows as $O(n)$ for $0<\alpha<1$ while as $O(\ln n)$ for $\alpha>1$. \Rightarrow Non-analytic behavior at $\alpha=1$ (Phase transition)

Réyni entropy of Motzkin model 4

Phase transition

- $S_{A \alpha}$ grows as $O(n)$ for $0<\alpha<1$ while as $O(\ln n)$ for $\alpha>1$. \Rightarrow Non-analytic behavior at $\alpha=1$ (Phase transition)
- In terms of the entanglement Hamiltonian, $\operatorname{Tr}_{A} \rho_{A}^{\alpha}=\operatorname{Tr}_{A} e^{-\alpha H_{\text {ent }, A}}$
α : "inverse temperature"

Réyni entropy of Motzkin model 4

Phase transition

- $S_{A \alpha}$ grows as $O(n)$ for $0<\alpha<1$ while as $O(\ln n)$ for $\alpha>1$. \Rightarrow Non-analytic behavior at $\alpha=1$ (Phase transition)
- In terms of the entanglement Hamiltonian, $\operatorname{Tr}_{A} \rho_{A}^{\alpha}=\operatorname{Tr}_{A} e^{-\alpha H_{\text {ent }, A}}$
- $0<\alpha<1$: "high temperature"
(Height of dominant paths $h=O(n)$)
- $\alpha>1$: "low temperature"
(Height of dominant paths $h=O\left(n^{0}\right)$)

Réyni entropy of Motzkin model 4

Phase transition

- $S_{A \alpha}$ grows as $O(n)$ for $0<\alpha<1$ while as $O(\ln n)$ for $\alpha>1$. \Rightarrow Non-analytic behavior at $\alpha=1$ (Phase transition)
- In terms of the entanglement Hamiltonian, $\operatorname{Tr}_{A} \rho_{A}^{\alpha}=\operatorname{Tr}_{A} e^{-\alpha H_{\text {ent }, A}}$
α : "inverse temperature"
- $0<\alpha<1$: "high temperature"
(Height of dominant paths $h=O(n)$)
- $\alpha>1$ 1: "low temperature"
(Height of dominant paths $h=O\left(n^{0}\right)$)
- The transition point $\alpha=1$ itself forms the third phase.

$$
\begin{array}{cccc}
S_{A, \alpha}: & O(\ln n) & O(\sqrt{n}) & O(n) \\
\cline { 5 - 6 } & 0 & 1 & \\
h: & O\left(n^{0}\right) & O(\sqrt{n}) & O(n)
\end{array}
$$

Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion

Summary and discussion 1

Summary

- We have reviewed the (colored) Motzkin spin models which yield large entanglement entropy proportional to the square root of the volume.

Summary and discussion 1

Summary

- We have reviewed the (colored) Motzkin spin models which yield large entanglement entropy proportional to the square root of the volume.
- We have extended the models by introducing additional d.o.f. based on Symmetric Inverse Semigroups.
- Quantum phase transitions

In uncolored case $\left(\mathcal{S}_{1}^{3}\right)$, log. violation v.s. area law $O(1)$ for S_{A} In colored case $\left(\mathcal{S}_{2}^{3}\right), \sqrt{n}$ v.s. $\ln n$ for S_{A}.

Summary and discussion 1

Summary

- We have reviewed the (colored) Motzkin spin models which yield large entanglement entropy proportional to the square root of the volume.
- We have extended the models by introducing additional d.o.f. based on Symmetric Inverse Semigroups.
- Quantum phase transitions

In uncolored case $\left(\mathcal{S}_{1}^{3}\right)$, log. violation v.s. area law $O(1)$ for S_{A} In colored case $\left(\mathcal{S}_{2}^{3}\right), \sqrt{n}$ v.s. $\ln n$ for S_{A}.

- Semigroup extension of the Fredkin model
[Padmanabhan, F.S., Korepin 2018]

Summary and discussion 1

Summary

- We have reviewed the (colored) Motzkin spin models which yield large entanglement entropy proportional to the square root of the volume.
- We have extended the models by introducing additional d.o.f. based on Symmetric Inverse Semigroups.
- Quantum phase transitions In uncolored case $\left(\mathcal{S}_{1}^{3}\right)$, log. violation v.s. area law $O(1)$ for S_{A} In colored case $\left(S_{2}^{3}\right), \sqrt{n}$ v.s. In n for S_{A}.
- Semigroup extension of the Fredkin model
[Padmanabhan, F.S., Korepin 2018]
- As a feature of the extended models, Anderson-like localization occurs in excited states corresponding to disconnected paths.
- "2nd quantized paths".

Summary and discussion 2

Summary

- We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
- Phase transition at $\alpha=1$
(New phase transition!) No analog for other spin chains investigated so far (XX, XY, AKLT,...).

Summary and discussion 2

Summary

- We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
- Phase transition at $\alpha=1$
(New phase transition!) No analog for other spin chains investigated so far (XX, XY, AKLT,...).
- For $0<\alpha<1$ ("high temperature"), $S_{A, \alpha}=O(n)$.
- For $\alpha>1$ ("low temperature"), $S_{A, \alpha}=O(\ln n)$.

Summary and discussion 2

Summary

- We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
- Phase transition at $\alpha=1$
(New phase transition!) No analog for other spin chains investigated so far (XX, XY, AKLT,...).
- For $0<\alpha<1$ ("high temperature"), $S_{A, \alpha}=O(n)$.
- For $\alpha>1$ ("low temperature"), $S_{A, \alpha}=O(\ln n)$.
- We also have a similar result for the Fredkin spin chain.
[F.S., Korepin, 2018]

Summary and discussion 2

Summary

- We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
- Phase transition at $\alpha=1$
(New phase transition!) No analog for other spin chains investigated so far (XX, XY, AKLT,...).
- For $0<\alpha<1$ ("high temperature"), $S_{A, \alpha}=O(n)$.
- For $\alpha>1$ ("low temperature"), $S_{A, \alpha}=O(\ln n)$.
- We also have a similar result for the Fredkin spin chain.
[F.S., Korepin, 2018]
- Rényi entropy of chain of general length
(in progress) Our conjecture: the same phase transition occurs for chain of general length

Summary and discussion 2

Summary

- We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
- Phase transition at $\alpha=1$
(New phase transition!) No analog for other spin chains investigated so far (XX, XY, AKLT,...).
- For $0<\alpha<1$ ("high temperature"), $S_{A, \alpha}=O(n)$.
- For $\alpha>1$ ("low temperature"), $S_{A, \alpha}=O(\ln n)$.
- We also have a similar result for the Fredkin spin chain.
[F.S., Korepin, 2018]
- Rényi entropy of chain of general length
(in progress) Our conjecture: the same phase transition occurs for chain of general length
- Similar computation for semigroup extensions

Summary and discussion 3

Future directions

- Continuum limit? (In particular, for colored case)
[Chen, Fradkin, Witczak-Krempa 2017]

Summary and discussion 3

Future directions

- Continuum limit? (In particular, for colored case)
[Chen, Fradkin, Witczak-Krempa 2017]
- Holography? Application to quantum gravity or black holes?
[Alexander, Klich 2018]
- Higher-dimensional models $(d=2,3, \ldots)$?

Summary and discussion 3

Future directions

- Continuum limit? (In particular, for colored case)
[Chen, Fradkin, Witczak-Krempa 2017]
- Holography? Application to quantum gravity or black holes?
[Alexander, Klich 2018]
- Higher-dimensional models $(d=2,3, \ldots)$?

Thank you very much for your attention!

App. SIS Motzkin model

- By adding the balancing term to the Hamiltonian

$$
\lambda_{2} \sum_{j=1}^{2 n-1}\left[\Pi^{\left|\left(x_{1,3}\right)_{j},\left(x_{3,2}\right)_{j+1}\right\rangle}+\Pi^{\left|\left(x_{2,3}\right)_{j},\left(x_{3,1}\right)_{j+1}\right\rangle}\right]
$$

with λ_{1} put to the term

, quantum phase transition takes place in the 4 sectors except $(3,3)$:

$\lambda_{1}, \lambda_{2}>0$ is not frustration free (here, we do not consider).

