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Introduction 1

Quantum entanglement

I Most surprising feature of quantum mechanics,
No analog in classical mechanics

I From pure state of the full system S : ρ = |ψ〉〈ψ|, reduced
density matrix of a subsystem A: ρA = Tr S−A ρ can become
mixed states, and has nonzero entanglement entropy

SA = −Tr A [ρA ln ρA] .

This is purely a quantum property.
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Introduction 2

Area law of entanglement entropy

I Ground states of quantum many-body systems with local
interactions typically exhibit the area law behavior of the
entanglement entropy: SA ∝ (area of A)

I Gapped systems in 1D are proven to obey the area law.
[Hastings 2007]

(Area law violation) ⇒ Gapless

I For gapless case, (1 + 1)-dimensional CFT violates
logarithmically: SA = c

3 ln (volume of A). [Calabrese, Cardy 2009]

I Belief for gapless case in D-dim. (over two decades) :
SA = O(LD−1 ln L) (L: length scale of A)

I Recently, 1D solvable spin chain model which exhibit
extensive entanglement entropy have been discussed.

I Beyond logarithmic violation: SA ∝
√

(volume of A)
[Movassagh, Shor 2014], [Salberger, Korepin 2016]

Counterexamples of the belief!
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Motzkin spin model 1 [Bravyi et al 2012]

I 1D spin chain at sites i ∈ {1, 2, · · · , 2n}
I Spin-1 state at each site can be regarded as up, down and flat

steps;
|u〉 ⇔ , |d〉 ⇔ , |0〉 ⇔

I Each spin configuration ⇔ length-2n walk in (x , y) plane
Example)

y

x|u〉1 |0〉2 |d〉3 |u〉4 |u〉5 |d〉6
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Motzkin spin model 2 [Bravyi et al 2012]

Hamiltonian: HMotzkin = Hbulk + Hbdy

I Bulk part: Hbulk =
∑2n−1

j=1 Πj ,j+1,

Πj ,j+1 = |D〉j ,j+1〈D|+ |U〉j ,j+1〈U|+ |F 〉j ,j+1〈F |

(local interactions) with

|D〉 ≡ 1√
2

(|0, d〉 − |d , 0〉) ,

|U〉 ≡ 1√
2

(|0, u〉 − |u, 0〉) ,

|F 〉 ≡ 1√
2

(|0, 0〉 − |u, d〉) .

⇔ ∼

⇔ ∼

⇔ ∼

“gauge equivalence”.
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Motzkin spin model 3 [Bravyi et al 2012]

Hamiltonian: HMotzkin = Hbulk + Hbdy

I Boundary part: Hbdy = |d〉1〈d |+ |u〉2n〈u|

⇓

I HMotzkin is the sum of projection operators.
⇒ Positive semi-definite spectrum

I We find the unique zero-energy ground state.
I Each projector in HMotzkin annihilates the zero-energy state.

⇒ Frustration free

I The ground state corresponds to randoms walks starting at
(0, 0) and ending at (2n, 0) restricted to the region y ≥ 0
(Motzkin Walks (MWs)).
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Motzkin spin model 4 [Bravyi et al 2012]

In terms of S = 1 spin matrices

Sz =

1
0
−1

 , S± ≡
1√
2

(Sx±iSy ) =

 1
1

 ,

1
1

 ,

Hbulk =
1

2

2n−1∑
j=1

[
1j1j+1 −

1

4
Sz jSz j+1 −

1

4
S2
z jSz j+1 +

1

4
Sz jS

2
z j+1

−3

4
S2
z jS

2
z j+1 + S+ j (SzS−)j+1 + S− j (S+Sz)j+1 − (S−Sz)j S+ j+1

− (SzS+)j S− j+1− (S−Sz)j (S+Sz)j+1 − (SzS+)j (SzS−)j+1

]
,

Hbdy =
1

2

(
S2
z − Sz

)
1

+
1

2

(
S2
z + Sz

)
2n

Quartic spin interactions



Motzkin spin model 5 [Bravyi et al 2012]

Example) 2n = 4 case,
MWs:

+ + +

+ + + +

+

m

Ground state:

|P4〉 =
1√
9

[|0000〉+ |ud00〉+ |0ud0〉+ |00ud〉

+|u0d0〉+ |0u0d〉+ |u00d〉+ |udud〉
+|uudd〉] .



Motzkin spin model 6 [Bravyi et al 2012]

Note
Forbidden paths for the ground state

1. Path entering y < 0 region

∼

Forbidden by Hbdy

2. Path ending at nonzero height

∼ ∼ ∼

Forbidden by Hbdy



Motzkin spin model 7 [Bravyi et al 2012]

Entanglement entropy of the subsystem A = {1, 2, · · · , n}:
I Normalization factor of the ground state |P2n〉 is given by

the number of MWs of length 2n: M2n =
∑n

k=0 Ck

(
2n
2k

)
.

Ck = 1
k+1

(
2k
k

)
: Catalan number

I Consider to trace out the density matrix ρ = |P2n〉〈P2n| w.r.t.
the subsystem B = {n + 1, · · · , 2n}.
Schmidt decomposition:

|P2n〉 =
∑
h≥0

√
p

(h)
n,n

∣∣∣P(0→h)
n

〉
⊗
∣∣∣P(h→0)

n

〉

with p
(h)
n,n ≡

(
M

(h)
n

)2

M2n
. ↑

Paths from (0, 0) to (n, h)
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Motzkin spin model 8 [Bravyi et al 2012]

I M
(h)
n is the number of paths in P

(0→h)
n .

For n→∞, Gaussian distribution

p
(h)
n,n ∼

3
√

6√
π

(h + 1)2

n3/2
e−

3
2

(h+1)2

n × [1 + O(1/n)] .

I Reduced density matrix

ρA = Tr Bρ =
∑
h≥0

p
(h)
n,n

∣∣∣P(0→h)
n

〉〈
P

(0→h)
n

∣∣∣
I Entanglement entropy

SA = −
∑
h≥0

p
(h)
n,n ln p

(h)
n,n

=
1

2
ln n +

1

2
ln

2π

3
+ γ − 1

2
(γ: Euler constant)

up to terms vanishing as n→∞.



Motzkin spin model 9 [Bravyi et al 2012]

Notes

I The system is critical (gapless).
SA is similar to the (1 + 1)-dimensional CFT with c = 3/2.

I But, gap scales as O(1/nz) with z ≥ 2.
The system cannot be described by relativistic CFT.

Lifshitz type ?
Different z depending on excited states (Multiple dynamics)?

[Chen, Fradkin, Witczak-Krempa 2017]

I Excitations have not been much investigated.
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Colored Motzkin spin model 1 [Movassagh, Shor 2014]

I Introducing color d.o.f. k = 1, 2, · · · , s to up and down spins
as ∣∣∣uk〉⇔ k

,
∣∣∣dk
〉
⇔

k
, |0〉 ⇔

Color d.o.f. decorated to Motzkin Walks

I Hamiltonian HcMotzkin = Hbulk + Hbdy

I Bulk part consisting of local interactions:

Hbulk =
2n−1∑
j=1

(
Πj,j+1 + Πcross

j,j+1

)
,

Πj,j+1 =
s∑

k=1

[∣∣Dk
〉
j,j+1

〈
Dk
∣∣+
∣∣Uk
〉
j,j+1

〈
Uk
∣∣+
∣∣F k
〉
j,j+1

〈
F k
∣∣]

with
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Colored Motzkin spin model 2 [Movassagh, Shor 2014]

∣∣∣Dk
〉
≡ 1√

2

(∣∣∣0, dk
〉
−
∣∣∣dk , 0

〉)
,∣∣∣Uk

〉
≡ 1√

2

(∣∣∣0, uk〉− ∣∣∣uk , 0
〉)

,∣∣∣F k
〉
≡ 1√

2

(
|0, 0〉 −

∣∣∣uk , dk
〉)

,

and
Πcross
j ,j+1 =

∑
k 6=k ′

∣∣∣uk , dk ′
〉
j ,j+1

〈
uk , dk ′

∣∣∣.
⇒ Colors should be matched in up and down pairs.

I Boundary part

Hbdy =
s∑

k=1

(∣∣∣dk
〉

1

〈
dk
∣∣∣+
∣∣∣uk〉

2n

〈
uk
∣∣∣) .



Colored Motzkin spin model 3 [Movassagh, Shor 2014]

I Still unique ground state with zero energy

I Example) 2n = 4 case,

+
k k

+
k k

+
k k

+
k k

+
k k

+
k k

+
k k k ′ k ′

+
k

k ′ k ′

k

|P4〉 =
1√

1 + 6s + 2s2

[
|0000〉+

s∑
k=1

{∣∣∣ukdk00
〉

+ · · ·+
∣∣∣uk00dk

〉}
+

s∑
k,k ′=1

{∣∣∣ukdkuk
′
dk ′
〉

+
∣∣∣ukuk ′dk ′dk

〉}]
.
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k k k ′ k ′
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k
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Colored Motzkin spin model 4 [Movassagh, Shor 2014]

Entanglement entropy

I Paths from (0, 0) to (n, h), P
(0→h)
n , have h unmatched up

steps.

Let P̃
(0→h)
n ({κm}) be paths with the colors of unmatched up

steps frozen.
(unmatched up from height (m − 1) to m) → uκm

I Similarly,

P
(h→0)
n → P̃

(h→0)
n ({κm}),

(unmatched down from height m to (m − 1))→ dκm .

I The numbers satisfy M
(h)
n = sh M̃

(h)
n .



Colored Motzkin spin model 5 [Movassagh, Shor 2014]

Example

2n = 8 case, h = 2

x

y

0
1 2 3 4 5 6 7 8

1

2

3

k k

k ′ k ′

uκ1 dκ1

uκ2 dκ2

A B



Colored Motzkin spin model 6 [Movassagh, Shor 2014]

I Schmidt decomposition

|P2n〉 =
∑
h≥0

s∑
κ1=1

· · ·
s∑

κh=1

√
p

(h)
n,n

×
∣∣∣P̃(0→h)

n ({κm})
〉
⊗
∣∣∣P̃(h→0)

n ({κm})
〉

with

p
(h)
n,n =

(
M̃

(h)
n

)2

M2n
.

I Reduced density matrix

ρA =
∑
h≥0

s∑
κ1=1

· · ·
s∑

κh=1

p
(h)
n,n

×
∣∣∣P̃(0→h)

n ({κm})
〉〈

P̃
(0→h)
n ({κm})

∣∣∣.



Colored Motzkin spin model 7 [Movassagh, Shor 2014]

I For n→∞,

p
(h)
n,n ∼

√
2 s−h

√
π (σn)3/2

(h + 1)2 e−
(h+1)2

2σn × [1 + O(1/n)]

with σ ≡
√
s

2
√
s+1

. Note: Effectively h . O(
√
n).

I Entanglement entropy

SA = −
∑
h≥0

sh p
(h)
n,n ln p

(h)
n,n

= (2 ln s)

√
2σn

π
+

1

2
ln n +

1

2
ln(2πσ) + γ − 1

2
− ln s

up to terms vanishing as n→∞. Grows as
√
n.
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Colored Motzkin spin model 8 [Movassagh, Shor 2014]

Comments

I
Matching color ⇒ s−h factor in p

(h)
n,n

⇒ crucial to O(
√
n) behavior in SA

I Typical configurations:

k

k ′ k ′

k h = O(
√
n)

+ (equivalence moves).

I For spin 1/2 chain (only up and down), the model in which
similar behavior exhibits in colored as well as uncolored cases
has been constructed. (Fredkin model) [Salberger, Korepin 2016]
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similar behavior exhibits in colored as well as uncolored cases
has been constructed. (Fredkin model) [Salberger, Korepin 2016]
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Colored Motzkin spin model 9 [Movassagh, Shor 2014]
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〈Sz, 1Sz, 2n〉connected → −0.034...× s3 − s

6
6= 0 (n→∞)

⇒ Violation of cluster decomposition property for s > 1
(Strong correlation due to color matching)

I Deformation of models to achieve the volume law behavior
(SA ∝ n)
Weighted Motzkin/Dyck walks [Zhang et al, Salberger et al 2016]
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Symmetric Inverse Semigroups (SISs)

I Inverse Semigroup (⊂ Semigroup):
An unique inverse exists for every element.
But, no unique identity (partial identities).

I SIS (⊂ Semigroup):
Semigroup version of the symmetric group Sk

Skp (p = 1, · · · , k)

I xa,b ∈ Sk1 maps a to b. (a, b ∈ {1, · · · , k})
Product rule: xa,b ∗ xc,d = δb,c xa,d

x1,2 ∗ x2,1 = x1,1, x2,1 ∗ x1,2 = x2,2

↖ ↗
(partial identities)

(x1,2)−1 = x2,1 (unique inverse)

I xa1,a2; b1,b2 ∈ Sk2 etc, ... Skk ≡ Sk
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SIS Motzkin model 1 [Sugino, Padmanabhan 2017]

I Change the spin d.o.f. as |xa,b〉 with a, b ∈ {1, 2, · · · , k}.

I a < b case: ‘up’ ⇔ a
b

a > b case: ‘down’ ⇔
a

b

a = b case: ‘flat’ ⇔ a b

I We regard the configuration of adjacent sites
|(xa,b)j〉 |(xc,d)j+1〉 as a connected path for b = c .
c.f.) Analogous to the product rule of Symmetric Inverse
Semigroup (Sk1 ): xa,b ∗ xc,d = δb,c xa,d

a, b: semigroup indices

I Inner product: 〈xa,b|xc,d〉 = δa,cδb,d
I Let us consider the k = 3 case.
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SIS Motzkin model 2 [Sugino, Padmanabhan 2017]

I Maximum height is lower than the original Motzkin case.
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y

0
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SIS Motzkin model 3 [Sugino, Padmanabhan 2017]

Hamiltonian HS31Motzkin = Hbulk + Hbulk,disc + Hbdy

I Hbulk : local interactions corresponding to the following moves:

(Down)

a a
b ∼

a
b b (a > b)

(Up) a a
b

∼ a
b b

(a < b)

(Flat) a a a ∼ a
b

a (a < b)

(Wedge)

3
1

3

∼
3

2
3



SIS Motzkin model 4 [Sugino, Padmanabhan 2017]

I Hbulk,disc lifts disconnected paths to excited states.
Π|ψ〉: projector to |ψ〉

Hbulk,disc =
2n−1∑
j=1

3∑
a,b,c,d=1;b 6=c

Π|(xa,b)j ,(xc,d )j+1〉

I

Hbdy =
∑
a>b

Π|(xa,b)1〉 +
∑
a<b

Π|(xa,b)2n〉

+Π|(x1,3)1,(x3,2)2,(x2,1)3〉 + Π|(x1,2)2n−2,(x2,3)2n−1,(x3,1)2n〉

The last 2 terms have no analog to the original Motzkin
model.
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SIS Motzkin model 5 [Sugino, Padmanabhan 2017]

I Ground states correspond to connected paths starting at
(0, 0), ending at (2n, 0) and not entering y < 0. S3

1 MWs

I The ground states have 5 fold degeneracy according to the
initial and finial semigroup indices:
(1, 1), (1, 2), (2, 1), (2, 2) and (3, 3) sectors
The (3, 3) sector is trivial, consisting of only one path:

x3,3x3,3 · · · x3,3.
I The number of paths can be obtained by recursion relations.

For length-n paths from the semigroup index a to b (Pn,a→b),

Pn,1→1 = x1,1Pn−1,1→1 + x1,2

n−2∑
i=1

Pi ,2→2 x2,1Pn−2−i ,1→1

+x1,3

n−2∑
i=1

Pi ,3→3 x3,1Pn−2−i ,1→1

+x1,3

n−2∑
i=1

Pi ,3→3 x3,2Pn−2−i ,2→1, etc.
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SIS Motzkin model 6 [Sugino, Padmanabhan 2017]

Result

I The entanglement entropies SA,1→1, SA,1→2, SA,2→1 and
SA,2→2 take the same form as in the case of the Motzkin
model.

Logarithmic violation of the area law

I The form of p
(h)
n ∼ (h+1)2

n3/2 e−(const.) (h+1)2

n is universal.

I SA,3→3 = 0.



SIS Motzkin model 7

Localization [Padmanabhan, F.S., Korepin 2018]

I There are excited states corresponding to disconnected paths.
Example) One such path in 2n = 6 case,
y

x

1

2 2

1

2

3

2

1

Corresponding excited state: |P3, 1→1〉⊗
∣∣∣P(1→0)

3, 2→1

〉
Each connected component has no entanglement with other
components. “2nd quantization” of paths
⇒ 2pt connected correlation functions of local operators
belonging to separate connected components vanish.

⇒ Localization!
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Colored SIS Motzkin model 1 [Sugino, Padmanabhan 2017]

The SIS S3
2

I 18 elements xab,cd with ab ∈ {12, 23, 31} and
cd ∈ {12, 23, 31, 21, 32, 13} satisfying

xab,cd ∗ xef ,gh = δc,eδd ,f xab,gh + δc,f δd ,e xab,hg .

I can be regarded as 2 sets of S3
1 . ⇒ color d.o.f.

I Spin variables: x sa,b (s = 1, 2) (a, b = 1, 2, 3)

I The new moves (C moves) introduced to the Hamiltonian.

a a1
∼ a a2
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Colored SIS Motzkin model 2 [Sugino, Padmanabhan 2017]

Hamiltonian: HcS31Motzkin = Hbulk + Hbulk,disc + Hbdy

I In Hbulk , (Down), (Up) and (Flat) are essentially the same as
before.

(Down)

a a
b

s
s

∼
a

b b
s s

(a > b)

(Up) a a
bs

s

∼ a
b bs s

(a < b)

(Flat) a a a
s s

∼ a
b

a

s s

(a < b)



Colored SIS Motzkin model 3 [Sugino, Padmanabhan 2017]

I Wedge move:

(Wedge)

3
1

3s s ′

∼
3

2
3s s ′

I

(Cross)j ,j+1 =
∑
b>a,c

[
Π|(x

1
a,b)j ,(x

2
b,c )j+1〉 + Π|(x

2
a,b)j ,(x

1
b,c )j+1〉

]
forbids unmatched up and down steps in ground states.

⇓

Hbulk = µ

2n∑
j=1

Cj +
2n−1∑
j=1

[(Down)j ,j+1 + (Up)j ,j+1

+(Flat)j ,j+1 + (Wedge)j ,j+1 + (Cross)j ,j+1]



Colored SIS Motzkin model 4 [Sugino, Padmanabhan 2017]

I

Hbulk,disc =
2n−1∑
j=1

3∑
a,b,c,d=1;b 6=c

2∑
s,t=1

Π|(x
s
a,b)j ,(x

t
c,d )j+1〉

I

Hbdy =
∑
a>b

2∑
s=1

Π|(x
s
a,b)1〉 +

∑
a<b

2∑
s=1

Π|(x
s
a,b)2n〉

+
2∑

s,t=1

Π|(x
s
1,3)1,(xs3,2)2,(x t2,1)3〉

+
2∑

s,t=1

Π|(x
s
1,2)2n−2,(x t2,3)2n−1,(x t3,1)2n〉



Colored SIS Motzkin model 5 [Sugino, Padmanabhan 2017]

I 5 ground states of (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) sectors
I Quantum phase transition between µ > 0 and µ = 0 in the 4

sectors except (3, 3).
I For µ > 0,

SA = (2 ln 2)

√
2σn

π
+

1

2
ln n +

1

2
ln(2πσ) + γ − 1

2
+ ln

3

21/3

with σ ≡
√

2−1
9
√

2
.

I For µ = 0, colors 1 and 2 decouple.

SA ∝ ln n.
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Rényi entropy [Rényi, 1970]

I Rényi entropy has further importance than the von Neumann
entanglement entropy:

SA, α =
1

1− α
lnTr A ρ

α
A with α > 0 and α 6= 1.

I Generalization of the von Neumann entanglement entropy:
limα→1 SA, α = SA

I Reconstructs the whole spectrum of the entanglement
Hamiltonian Hent,A ≡ − ln ρA.

I For SA, α (0 < α < 1), the gapped systems in 1D is proven to
obey the area law. [Huang, 2015]

Here, I give a review of Motzkin spin chain and analytically
compute its Rényi entropy of half-chain.

New phase transition found at α = 1!
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Réyni entropy of Motzkin model 1 [F.S., Korepin, 2018]

I What we compute is the asymptotic behavior of

SA, α =
1

1− α
ln

n∑
h=0

sh
(
p

(h)
n,n

)α
.

I For colorless case (s = 1), we obtain

SA,α =
1

2
ln n +

1

1− α
ln Γ

(
α +

1

2

)
− 1

2(1− α)

{
(1 + 2α) lnα + α ln

π

24
+ ln 6

}
up to terms vanishing as n→∞.

I Logarithmic growth
I Reduces to SA in the α→ 1 limit.
I Consistent with half-chain case in the result in [Movassagh, 2017]
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Réyni entropy of Motzkin model 2 [F.S., Korepin, 2018]

Colored case (s > 1)

I The summand sh
(
p

(h)
n,n

)α
has a factor s(1−α)h.

For 0 < α < 1, exponentially growing (colored case (s > 1)).
⇒ Saddle point value of the sum: h∗ = O(n)

I Saddle point analysis for the sum leads to

SA,α = n
2α

1− α
ln
[
σ
(
s

1−α
2α + s−

1−α
2α + s−1/2

)]
+

1 + α

2(1− α)
ln n + C (s, α)

with C (s, α) being n-independent terms.

I The saddle point value is h∗ = n s
1

2α−s1− 1
2α

s
1

2α +s1− 1
2α +1

+ O(n0).

I Linear growth in n.
I Note: α→ 1 or s → 1 limit does not commute with the

n→∞ limit.
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Rényi entropy for α > 1

I For α > 1, the factor s(1−α)h in the summand sh
(
p

(h)
n,n

)α
exponentially decays.

⇒ h . O
(

1
(α−1) ln s

)
= O(n0) dominantly contributes to the

sum.

I The result:

SA, α =
3α

2(α− 1)
ln n + O(n0).

I Logarithmic growth
I α→ 1 or s → 1 limit does not commute with the n→∞ limit.
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Réyni entropy of Motzkin model 4 [F.S., Korepin, 2018]

Phase transition

I SAα grows as O(n) for 0 < α < 1 while as O(ln n) for α > 1.

⇒ Non-analytic behavior at α = 1 (Phase transition)
I In terms of the entanglement Hamiltonian,

Tr A ρ
α
A = Tr A e−αHent, A α: “inverse temperature”

I 0 < α < 1: “high temperature”
(Height of dominant paths h = O(n))

I α > 1: “low temperature”
(Height of dominant paths h = O(n0))

I The transition point α = 1 itself forms the third phase.

1/α10

SA, α: O(ln n) O(
√
n) O(n)

h: O(n0) O(
√
n) O(n)
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Summary and discussion 1

Summary

I We have reviewed the (colored) Motzkin spin models which
yield large entanglement entropy proportional to the square
root of the volume.

I We have extended the models by introducing additional d.o.f.
based on Symmetric Inverse Semigroups.

I Quantum phase transitions
In uncolored case (S3

1 ), log. violation v.s. area law O(1) for SA
In colored case (S3

2 ),
√
n v.s. ln n for SA.

I Semigroup extension of the Fredkin model
[Padmanabhan, F.S., Korepin 2018]

I As a feature of the extended models,
Anderson-like localization occurs in excited states
corresponding to disconnected paths.

I “2nd quantized paths”.
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Summary

I We have analytically computed the Rényi entropy of
half-chain in the Motzkin model.

I Phase transition at α = 1 (New phase transition!)
No analog for other spin chains investigated so far (XX, XY,
AKLT,...).

I For 0 < α < 1 (“high temperature”), SA, α = O(n).
I For α > 1 (“low temperature”), SA, α = O(ln n).

I We also have a similar result for the Fredkin spin chain.
[F.S., Korepin, 2018]

I Rényi entropy of chain of general length (in progress)
Our conjecture: the same phase transition occurs for chain of
general length

I Similar computation for semigroup extensions (in progress)
[F.S., Padmanabhan, 2018], [Padmanabhan, F.S., Korepin, 2018]
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Future directions

I Continuum limit? (In particular, for colored case)
[Chen, Fradkin, Witczak-Krempa 2017]

I Holography? Application to quantum gravity or black holes?
[Alexander, Klich 2018]

I Higher-dimensional models (d = 2, 3, ...)?

Thank you very much for your attention!
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App. SIS Motzkin model [Sugino, Padmanabhan 2017]

I By adding the balancing term to the Hamiltonian

λ2

2n−1∑
j=1

[
Π|(x1,3)j ,(x3,2)j+1〉 + Π|(x2,3)j ,(x3,1)j+1〉

]

with λ1 put to the term

3
1

3

∼
3

2
3

, quantum
phase transition takes place in the 4 sectors except (3, 3):

0

λ1

λ2

SA = O(1) (area law)

SA ∝ ln n

λ1, λ2 > 0 is not frustration free (here, we do not consider).
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