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Introduction 1

Quantum entanglement

» Most surprising feature of quantum mechanics,
No analog in classical mechanics

» From pure state of the full system S: p = |¢) (4|, reduced
density matrix of a subsystem A: pa = Trs_4 p can become
mixed states, and has nonzero entanglement entropy

Sa=—Tralpalnpa].

This is purely a quantum property.
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» Ground states of quantum many-body systems with local
interactions typically exhibit the area law behavior of the
entanglement entropy: S, o< (area of A)

» Gapped systems in 1D are proven to obey the area law.
[Hastings 2007]
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Introduction 2

Area law of entanglement entropy

>

Ground states of quantum many-body systems with local
interactions typically exhibit the area law behavior of the
entanglement entropy: S, o< (area of A)

Gapped systems in 1D are proven to obey the area law.
[Hastings 2007] (Area law violation) = Gapless

For gapless case, (1 + 1)-dimensional CFT violates
logarithmically: 5S4 = £ In(volume of A).  [Calabrese, Cardy 2009]
Belief for gapless case in D-dim. (over two decades) :

Sa = O(LP=YInL) (L: length scale of A)

Recently, 1D solvable spin chain model which exhibit
extensive entanglement entropy have been discussed.

» Beyond logarithmic violation: S5 o< /(volume of A)
[Movassagh, Shor 2014], [Salberger, Korepin 2016]

Counterexamples of the belief!
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MOtZkin Spln mOdel ]. [Bravyi et al 2012]
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» Spin-1 state at each site can be regarded as up, down and flat

steps;
|U><:>/‘, ‘d><:>\‘7 |0><:>—)



MOtZkin Spln mOdel 1 [Bravyi et al 2012]

» 1D spin chain at sites i € {1,2,--- ,2n}
» Spin-1 state at each site can be regarded as up, down and flat

steps;
|U><:>/‘, ‘d><:>\"7 |O><:>—)

» Each spin configuration < length-2n walk in (x, y) plane
Example)

y




Motzkin spin model 2 [Bravyi et al 2012]
Hamiltonian: Hpyotzkin = Hpuik + Hpdy
2n—1
> Bulk part: Hpu = 501 My ji,

Njjr1=1D); ;1 (DI +|U); ;1 (U] + |F); ;11 (F]

(local interactions) with
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Motzkin spin model 2 [Bravyi et al 2012]
Hamiltonian: Hpyotzkin = Hpuik + Hpdy
2n—1
> Bulk part: Hpu = 501 My ji,

Njjr1=1D); ;1 (DI +|U); ;1 (U] + |F); ;11 (F]

(local interactions) with

|D>57(|o dy — |d. 0)),
R e

|U>z}<ro u) — |u, 0)), -

£y — 1 & —- /'\

F) = 5(10.0) ~ |u. ).

“gauge equivalence”.
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MOtZkin Spln mOdel 3 [Bravyi et al 2012]

Hamiltonian: Huotzkin = Hpuik + Hbdy

» Boundary part: Hpgy, = |d);(d| + |u),, (]
4

> Hpjotzkin is the sum of projection operators.
= Positive semi-definite spectrum
» We find the unique zero-energy ground state.
» Each projector in Hpjotzkin annihilates the zero-energy state.
= Frustration free
» The ground state corresponds to randoms walks starting at
(0,0) and ending at (2n,0) restricted to the region y > 0
(Motzkin Walks (MWs)).



MOtZkin Spln mOdel 4 [Bravyi et al 2012]

In terms of S = 1 spin matrices

2n—1
1 1, 1. o
Hiulk = 5 Z: [1,-1,-+1 = 3 52iSej1 = 3578z + 452157
J:

+ 54 (525—)j+1 +5- (5+52)j+1 - (S—Sz)j S4j+1

(522 - 52)1 + % (522 + 52)2n

—(S.S:

~—

Hpdy =

N =



MOtZkin Spln mOdel 5 [Bravyi et al 2012]

Example) 2n =4 case,
MWs:

I NIRRTV NN ¥
TN TN TN NN

N

(i
Ground state:

1
Py = NG [/0000) + |ud00) + |0ud0) + |00ud)

+|u0d0) + [0u0d) + |u00d) + |udud)
+|uudd)] .



MOtZkin Spln mOdel 6 [Bravyi et al 2012]

Note
Forbidden paths for the ground state

1. Path entering y < 0 region

TN AN T

Forbidden by Hpqy,
2. Path ending at nonzero height

T

Forbidden by Hyqy,



MOtZkin Spln mOdel s [Bravyi et al 2012]
Entanglement entropy of the subsystem A= {1,2,---  n}:

» Normalization factor of the ground state |Pz,) is given by

the number of MWs of length 2n: Mo, =37 o Ck <§Z>

Cx = %{1 (2:): Catalan number



MOtZkin Spln mOdel s [Bravyi et al 2012]

Entanglement entropy of the subsystem A= {1,2,---  n}:
» Normalization factor of the ground state |Py,) is given by

the number of MWs of length 2n: My, = ZZ:O Ck <§Z>

Cx = %{1 (2:): Catalan number

» Consider to trace out the density matrix p = |Pap){Pan| w.r.t.
the subsystem B = {n+1,---,2n}.
Schmidt decomposition:

|'D2n> = Z V pr(j,,r)r

h>0

P'(10ﬁh)> ® ‘ Pr(lhﬁ0)>

) _ () 1
Paths from (0,0) to (n, h)



MOtZkin Spln mOdel 8 [Bravyi et al 2012]

> M,(,h) is the number of paths in P,(,O_m).
For n — oo, Gaussian distribution
h 1 2 2
i) 2RO 1 o/,

> Reduced density matrix

h
pa=Trgp= Y pis

P’(70—>h) > < P,(,O_> h)

h>0
> Entanglement entropy
h h
Sa = — Z Pg,n In Pg,r)1
h>0
1 2 1
= +§In§+'y—§ (v: Euler constant)

up to terms vanishing as n — oo.



MOtZkin Spln mOdel 9 [Bravyi et al 2012]

Notes

» The system is critical (gapless).
Sa is similar to the (1 + 1)-dimensional CFT with ¢ = 3/2.
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» But, gap scales as O(1/n*) with z > 2.
The system cannot be described by relativistic CFT.
Lifshitz type 7
Different z depending on excited states (Multiple dynamics)?
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Motzkin spin model 9 [Bravyi et al 2012]

Notes

» The system is critical (gapless).
Sa is similar to the (1 + 1)-dimensional CFT with ¢ = 3/2.
» But, gap scales as O(1/n*) with z > 2.
The system cannot be described by relativistic CFT.
Lifshitz type 7
Different z depending on excited states (Multiple dynamics)?
[Chen, Fradkin, Witczak-Krempa 2017]

» Excitations have not been much investigated.
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Color d.o.f. decorated to Motzkin Walks



Colored Motzkin Spin model 1 [Movassagh, Shor 2014]

» Introducing color d.o.f. Kk =1,2,--- s to up and down spins
as

k k
’uk>@/, ’dk><:>\, 0) &
Color d.o.f. decorated to Motzkin Walks

» Hamiltonian Hepotzkin = Hpuik + Hbdy

» Bulk part consisting of local interactions:

2n—1
Hpui = Z (M1 +057)
j=1
S
Mjj1 = DDk>j,j+1<Dk| + |Uk>j,j+1<Uk| + |Fk>j,j+1<Fk|}

k=1
with



Colored Motzkin Spin model 2 [Movassagh, Shor 2014]

0) = 75 (o @) ~[a-.0)).
5 ((0.0) [k, 0)).
F*) (\0 0) — ’u Ld9)).

! ’
neess = > |uk, d)  (uk a¥].
i Jd+1

= Colors should be matched in up and down pairs.

o
ST

and

» Boundary part

oy = 3= (), (] +[4£), 7).

k=1
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Colored Motzkin Spin model 3 [Movassagh, Shor 2014]

» Still unique ground state with zero energy
» Example) 2n = 4 case,

konk koK konk
—>—>—>—>+/\—>—>+—>/\—>+—>—>/'\
LN e
SN 4
BN
_|_

S

\/ﬁ |0000> + 2 {‘ukdk00> et ‘UkOOdk>}

+ i {)ukdkuk’dk’> + ]ukuk’dk’dk>}].

k,k'=1

|Ps) =




Colored Motzkin Spin model 4 [Movassagh, Shor 2014]

Entanglement entropy

» Paths from (0,0) to (n, h), P have h unmatched up
steps.
Let FN’,(,Oﬁh)({/im}) be paths with the colors of unmatched up
steps frozen.
(unmatched up from height (m — 1) to m) — u"m

> Similarly,

(unmatched down from height m to (m — 1)) — d".

» The numbers satisfy M — sh pSh).



Colored Motzkin Spin model 5 [Movassagh, Shor 2014]

Example
2n =8 case, h=2

y A B

3
"k
2 u"'/Z d“2
k Kk
1
Ut dr
0 X



Colored Motzkin Spin model 6 [Movassagh, Shor 2014]

» Schmidt decomposition

PO ({km}) )

with

» Reduced density matrix

DD W'

h>0 k1=1 kp=1

{rmh) ) (PO ({1}




Colored Motzkin Spin model 7 [Movassagh, Shor 2014]

» For n — oo,

h V2sh ()2
pi) ~ NEOEE (h+1)2e 2 x [L+ O(1/n)]
with o = 5. Note: Effectively h < O(y/n).
» Entanglement entropy
Sa o= =Y s"piinpl)

h>0



Colored Motzkin Spin model 7 [Movassagh, Shor 2014]

» For n — oo,

—h 2

(0 V25" 2% 1t o

Pn,n ﬁ(UI7)3 2( + ) € [ + ( /n)]
with o = 5. Note: Effectively h < O(y/n).
» Entanglement entropy
Sa o= =Y s"piinpl)
h>0

2 1 1 1

= (2Ins) %n +§Inn+§|n(27m)+fy— E—Ins

up to terms vanishing as n — oc. Grows as /n.
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poy
= crucial to O(y/n) behavior in S4
» Typical configurations:

SN

N

3

h=0(/n

+ (equivalence moves).



Colored Motzkin Spin model 8 [Movassagh, Shor 2014]

Comments

Matching color = s~/ factor in n

poy
= crucial to O(y/n) behavior in S4
» Typical configurations:

+ (equivalence moves).

» For spin 1/2 chain (only up and down), the model in which
similar behavior exhibits in colored as well as uncolored cases
has been constructed. (Fredkin model)  [Salberger, Korepin 2016]



Colored Motzkin Spin model 9 [Movassagh, Shor 2014]

» Correlation functions [Dell’Anna et al, 2016]

3

s —S

6

<Sz71521 2”>Connected — —0.034... x 75 0 (n — oo)

= Violation of cluster decomposition property for s > 1
(Strong correlation due to color matching)



Colored Motzkin Spin model 9 [Movassagh, Shor 2014]

» Correlation functions [Dell’Anna et al, 2016]

3

s —S

6

<52715272”>C0nnected — —0.034... x 75 0 (n — oo)

= Violation of cluster decomposition property for s > 1
(Strong correlation due to color matching)

» Deformation of models to achieve the volume law behavior
(SA 0.8 n)
Weighted Motzkin/Dyck walks [Zhang et al, Salberger et al 2016]
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» SIS (C Semigroup):
Semigroup version of the symmetric group Sy

k
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(partial identities)

(><1,2)71 = X2,1 (unique inverse)
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Symmetric Inverse Semigroups (SISs)

» Inverse Semigroup (C Semigroup):
An unique inverse exists for every element.
But, no unique identity (partial identities).

» SIS (C Semigroup):
Semigroup version of the symmetric group Sy

k
SP (p =1..--
> Xa7b68{‘ maps ato b. (a,be {1,---,k})
Product rule: ., # x. g = 0pc %0y
X1,2 * X2,1 = Xl.l? X27]_ * X172 = X292
N /

(partial identities)

(><1,2)71 = X2,1 (unique inverse)

k k —
> Xay,a0; b1,by € 32 etc, ... Sk =S

k)



SlS Motzkin model 1 [Sugino, Padmanabhan 2017]

» Change the spin d.o.f. as |x, ) with a,b € {1,2,---  k}.
b
> a < bcase: ‘'up' & a/l

a
b

a > b case: ‘down’ & \

a= b case: ‘flat’ & a_>b



SIS Motzkin model 1 [Sugino, Padmanabhan 2017]

» Change the spin d.o.f. as |x, ) with a,b € {1,2,---  k}.
b
> a < bcase: ‘up’ & V

a
a > b case: ‘down’ & \b
a= b case: ‘flat’ & Q_,b
» We regard the configuration of adjacent sites
|(Xa,6)j) |(Xc,d)j+1) as a connected path for b = c.
c.f.) Analogous to the product rule of Symmetric Inverse
Semigroup (S§): Xab * Xc.d = Obc Xad
a, b: semigroup indices
> Inner product: (Xap|Xc,d) = 0a,c0p,d

» Let us consider the kK = 3 case.



SlS Motzkin model 2 [Sugino, Padmanabhan 2017]

» Maximum height is lower than the original Motzkin case.
d 3
3




SlS Motzkin model 3 [Sugino, Padmanabhan 2017]

Hamiltonian Hs31notzkin = Hbuik + Hpuik,disc + Hbdy
» Hpuik: local interactions corresponding to the following moves:

a

a a
(Down) N \b_>b (a>b)

b b
(Up) 227 ~ 7 (a < b)

b
(Flat) 2.2 2 ~ 37°\¢  (a<b)

3 3 3 3
(Wedge) N4 NS



SlS Motzkin model 4 [Sugino, Padmanabhan 2017]

> Hpuik,disc lifts disconnected paths to excited states.
Ni¥): projector to |1)

2n—1

Hbu/k disc — Z Z ﬂ’(xa,b)jv(xc,d)j+1>

j=1 a,b,c,d=1;b#c



SlS Motzkin model 4 [Sugino, Padmanabhan 2017]

> Hpuik,disc lifts disconnected paths to excited states.
NI¥): projector to [¢)

2n—1

Hbulk disc — Z Z ﬂ’(xa,b)jv(xc,d)j+1>

j=1 a,b,c,d=1;b#c

Hogy = MlGasr) 4 3 M/Ca,6)20)

a>b a<b
+1 [(x1,3)1,(x3,2)2,(x2,1)3) +n [(x1,2)2n—2,(%2,3)2n—1,(X3,1)2n)

The last 2 terms have no analog to the original Motzkin
model.
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» Ground states correspond to connected paths starting at
(0,0), ending at (2n,0) and not entering y < 0. S Mws
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(0,0), ending at (2n,0) and not entering y < 0. S Mws
» The ground states have 5 fold degeneracy according to the
initial and finial semigroup indices:
(1,1), (1,2), (2,1), (2,2) and (3, 3) sectors
The (3, 3) sector is trivial, consisting of only one path:
X3,3X33 " X3 3.



SIS Motzkin model 5 [Sugino, Padmanabhan 2017]

» Ground states correspond to connected paths starting at
(0,0), ending at (2n,0) and not entering y < 0. S Mws
» The ground states have 5 fold degeneracy according to the
initial and finial semigroup indices:
(1,1), (1,2), (2,1), (2,2) and (3, 3) sectors
The (3, 3) sector is trivial, consisting of only one path:
X3,3X33 " X3 3.
» The number of paths can be obtained by recursion relations.
For length-n paths from the semigroup index a to b (P, . .5),
n—2
Prisi = x11Pa-1151+x12 Z Piosox21Pp2_i151
- i=1
+x1.3 Z Pizs3x31Pn2-i151
i=1
n—2
+x13 Z Pi3—3x32Pn_2_j251, etc.
i=1



SlS Motzkin model 6 [Sugino, Padmanabhan 2017]

Result

» The entanglement entropies Sa 151, Sa 12, Sa2-1 and
S22 take the same form as in the case of the Motzkin
model.

Logarithmic violation of the area law

' h11)? st B2 L
» The form of p,(77) ~ (77) e~ (const-) == g Universal.

n>

> Sp3-3=0.
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» There are excited states corresponding to disconnected paths.
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Each connected component has no entanglement with other
components. “2nd quantization” of paths



SIS Motzkin model 7

Localization [Padmanabhan, F.S., Korepin 2018]

» There are excited states corresponding to disconnected paths.
Example) One such path in 2n = 6 case,
Y 3

.‘
o
3
o
3

DY

X
Corresponding excited state: ]P371_>1>®’P§712_i)%>
Each connected component has no entanglement with other
components. “2nd quantization” of paths
= 2pt connected correlation functions of local operators
belonging to separate connected components vanish.

= Localization!
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CO|Ored SIS MOtZkin mOdel ]. [Sugino, Padmanabhan 2017]

The SIS SS’

> 18 elements Xxp g With ab € {12,23,31} and
cd € {12,23,31,21, 32, 13} satisfying

Xab,cd * Xef gh = 5c,e(sd,f Xab,gh + 6c,f5d,e Xab,hg -

» can be regarded as 2 sets of S5. = color d.o.f.
1



CO|Ored SIS MOtZkin mOdel ]. [Sugino, Padmanabhan 2017]

The SIS SS’

> 18 elements Xxp g With ab € {12,23,31} and
cd € {12,23,31,21, 32, 13} satisfying

Xab,cd * Xef gh = 5c,e(sd,f Xab,gh + 5c,f5d,e Xab,hg -

» can be regarded as 2 sets of S3. = color d.o.f.
» Spin variables: x3, (s =1,2) (a,b=1,2,3)
» The new moves (C moves) introduced to the Hamiltonian.

ala ala
— —

~



CO|Ored SIS MOtZkin mOdel 2 [Sugino, Padmanabhan 2017]

Hamiltonian: Hcs31motzkin = Hpuik + Hbuik,disc + Hpdy

> In Hpuik, (Down), (Up) and (Flat) are essentially the same as
before.

s
a“as as s

(Down) N \b_)b (a>b)

S

s Sb Sh
(Up) 227 ~ 37 (a< b)
SbS

S S
(Flat) 2-2°2 ~ 37N¢  (a<b)



CO|Ored SIS MOtZkin mOdel 3 [Sugino, Padmanabhan 2017]

> Wedge move:
(Wedge) N

(Cross)jjii= [n!(x;,b),-,(xﬁ,cm +n\<x§,b)jy(x;,c)j+l>}

b>a,c

forbids unmatched up and down steps in ground states.

!
2n 2n—1
Hou =1 Z G+ Z [((Down); j+1 4+ (Up)j,jt+1
j=1 j=1

+(Flat)jj+1 + (Wedge);jr1 + (Cross)jjii]



CO|Ored SIS MOtZkin mOdel 4 [Sugino, Padmanabhan 2017]

>
2n—1 3 2
Hbuik disc = g Z E I'I’(Xib)f’(xct,d)f“>
j=1 a,b,c,d=1;b#c s,t=1
| 2

Hbdy = Z 22: ﬂ’(ijh) + Z 22: I_||(X:’b)2n>

a>b s=1 a<b s=1

2
+ Z n ’(xf’3)1,(x35_’2)2,(x2f‘1)3>

s,t=1

2
+ Z I_I ’(Xi2)2n72,(X2t’3)2,,71.,(X§,1)2,1>

s,t=1



CO|Ored SIS MOtZkin mOdel 5 [Sugino, Padmanabhan 2017]

» 5 ground states of (1,1), (1,2), (2,1), (2,2), (3,3) sectors
» Quantum phase transition between p > 0 and p = 0 in the 4
sectors except (3, 3).

» For u >0,
2on 1 1 1
Sa=1(2In2) 7+§|nn+§|n(27ra)+’y Jr|n21/3
with o = V21,

9v2
» For =0, colors 1 and 2 decouple.

Sp o Inn.
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Rényi entropy [Rényi, 1970]

» Rényi entropy has further importance than the von Neumann
entanglement entropy:

1
Saa=-——InTrap3 with @ > 0 and o # 1.
— X

» Generalization of the von Neumann entanglement entropy:
|im,\*yl SA~(\ — SA

» Reconstructs the whole spectrum of the entanglement
Hamiltonian Hepe, 4 = — Inpa.

» For Sa o (0 < a < 1), the gapped systems in 1D is proven to
obey the area law. [Huang, 2015]

Here, | give a review of Motzkin spin chain and analytically
compute its Rényi entropy of half-chain.

New phase transition found at oo = 1!
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Réyni entropy of Motzkin model 1 [F.S., Korepin, 2018]

» What we compute is the asymptotic behavior of

1 ’ «
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» What we compute is the asymptotic behavior of

1 ’ «
Saa = 1o InZsh (pnf',,) .

h=0

» For colorless case (s = 1), we obtain

1 1 1
Spaa = 2Inn—|—1_alnr<a+2>
1 T
= Ja+20)1 In -~ 41 6}
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up to terms vanishing as n — oo.



Réyni entropy of Motzkin model 1 [F.S., Korepin, 2018]

» What we compute is the asymptotic behavior of

1 ’ «
Saa = 1o InZsh (p,(7h,,) )

h=0

» For colorless case (s = 1), we obtain

1 1 1
Spaa = 2Inn—|—1_alnr<a+2>

1 s
—— (14 2a)l In — |6}
2(1—a){( + 2a) na+aln 7 +In

up to terms vanishing as n — oo.
> Logarithmic growth
» Reduces to S4 in the oo — 1 limit.
» Consistent with half-chain case in the result in [Movassagh, 2017]
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Réyni entropy of Motzkin model 2 [F.S., Korepin, 2018]

Colored case (s > 1)

» The summand s” (p,(f',l)“ has a factor s

(1-a)h
For 0 < a < 1, exponentially growing (colored case (s > 1)).

= Saddle point value of the sum: h, = O(n)
» Saddle point analysis for the sum leads to
2« 1—a _1l-a —1/2
SAa:niln[a(sm 15 7a +s )}
’ 11—«
l1+a

—a) Inn+ C(s, )

with C(s, «) being n-independent terms.



Réyni entropy of Motzkin model 2 [F.S., Korepin, 2018]

Colored case (s > 1)

(h)°

> The summand s" <PnAn> " has a factor s(-)h.

For 0 < a < 1, exponentially growing (colored case (s > 1)).
= Saddle point value of the sum: h, = O(n)

» Saddle point analysis for the sum leads to

2 —a S
SAa = nia In [o’ (5127 —+ 5*127 + 5*1/2>}
’ 1-a

1+«

—a) Inn+ C(s, )

with C(s, «) being n-independent terms.

R
» The saddle point value is h, = n—5"—=>+"—
s2a +s 2a +1

+ O(n).
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Colored case (s > 1)

(h)°

> The summand s" <PnAn> " has a factor s(-)h.

For 0 < a < 1, exponentially growing (colored case (s > 1)).
= Saddle point value of the sum: h, = O(n)

» Saddle point analysis for the sum leads to

2 —a a
S =n—""In [a (slm s +s*1/2)}
’ 1-a

1+«

A=) Inn+ C(s, )

with C(s, «) being n-independent terms.
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» The saddle point value is h, = n%
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+ O(n).

» Linear growth in n.



Réyni entropy of Motzkin model 2 [F.S., Korepin, 2018]

Colored case (s > 1)

> The summand s" (vahfl)(" has a factor s(1=)".

For 0 < a < 1, exponentially growing (colored case (s > 1)).
= Saddle point value of the sum: h, = O(n)

» Saddle point analysis for the sum leads to

2 —a a
S =n—""In [a (slm s +s*1/2)}
’ 1-a

1+«

—a) Inn+ C(s, )

with C(s, «) being n-independent terms.
L _ 1
» The saddle point value is h, = n%
s2a +s 2a+1

+ O(n).
» Linear growth in n.

» Note: &« — 1 or s — 1 limit does not commute with the
n — oo limit.
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Rényi entropy for av > 1

» For o > 1, the factor s(!=® in the summand s” (p%)u

exponentially decays.
= hsS O (ﬁ) = 0(n®) dominantly contributes to the
sum.

» The result:
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Réyni entropy of Motzkin model 3 [F.S., Korepin, 2018]

Rényi entropy for av > 1
» For o > 1, the factor s(!=® in the summand s” (p%) '
exponentially decays.

= hsS O (ﬁ) = 0(n®) dominantly contributes to the

sum.

» The result:

Sp 0= Sa Inn+ O(n).

’ 2(a—1)

» Logarithmic growth
» o — 1 ors— 1 limit does not commute with the n — oo limit.
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Réyni entropy of Motzkin model 4 [F.S., Korepin, 2018]

Phase transition

» Saa grows as O(n) for 0 < a < 1 while as O(In n) for o > 1.
= Non-analytic behavior at & = 1 (Phase transition)

> In terms of the entanglement Hamiltonian,
Traps="Tra e Hent. a: “inverse temperature”
» 0 < a < 1: "high temperature”
(Height of dominant paths h = O(n))
» a > 1: “low temperature”
(Height of dominant paths h = O(n%))

» The transition point o = 1 itself forms the third phase.

SA o O(In n) O(v/n) O(n)

)

1/«



Summary and discussion



Summary and discussion 1

Summary

» We have reviewed the (colored) Motzkin spin models which
yield large entanglement entropy proportional to the square
root of the volume.



Summary and discussion 1

Summary

» We have reviewed the (colored) Motzkin spin models which
yield large entanglement entropy proportional to the square
root of the volume.

» We have extended the models by introducing additional d.o.f.
based on Symmetric Inverse Semigroups.

» Quantum phase transitions

In uncolored case (S7), log. violation v.s. area law O(1) for Sa
In colored case (53), v/n v.s. Inn for Sa.



Summary and discussion 1
Summary

» We have reviewed the (colored) Motzkin spin models which
yield large entanglement entropy proportional to the square
root of the volume.

» We have extended the models by introducing additional d.o.f.
based on Symmetric Inverse Semigroups.

» Quantum phase transitions

In uncolored case (S7), log. violation v.s. area law O(1) for Sa
In colored case (53), v/n v.s. Inn for Sa.

» Semigroup extension of the Fredkin model

[Padmanabhan, F.S., Korepin 2018]



Summary and discussion 1

Summary

» We have reviewed the (colored) Motzkin spin models which
yield large entanglement entropy proportional to the square
root of the volume.

» We have extended the models by introducing additional d.o.f.
based on Symmetric Inverse Semigroups.

» Quantum phase transitions
In uncolored case (S7), log. violation v.s. area law O(1) for Sa
In colored case (53), v/n v.s. Inn for Sa.
» Semigroup extension of the Fredkin model
[Padmanabhan, F.S., Korepin 2018]

» As a feature of the extended models,

Anderson-like localization occurs in excited states
corresponding to disconnected paths.

>
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Summary and discussion 2

Summary

» We have analytically computed the Rényi entropy of
half-chain in the Motzkin model.

» Phase transition at « = 1 (New phase transition!)
No analog for other spin chains investigated so far (XX, XY,
AKLT,...).

» For 0 < a <1 ("high temperature”), Sa o = O(n).
» For o > 1 (“low temperature”), Sa o = O(In n).
» We also have a similar result for the Fredkin spin chain.
[F.S., Korepin, 2018]

» Rényi entropy of chain of general length (in progress)
Our conjecture: the same phase transition occurs for chain of
general length

» Similar computation for semigroup extensions (in progress)
[F.S., Padmanabhan, 2018], [Padmanabhan, F.S., Korepin, 2018]
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Summary and discussion 3

Future directions
» Continuum limit? (In particular, for colored case)
[Chen, Fradkin, Witczak-Krempa 2017]

» Holography? Application to quantum gravity or black holes?
[Alexander, Klich 2018]

» Higher-dimensional models (d =2, 3,...)?

Thank you very much for your attention!



App SlS Motzkin model [Sugino, Padmanabhan 2017]

» By adding the balancing term to the Hamiltonian

2n—1
S SN [LSRACRI N [ERAENEY
j=1

3 3 3 3
with A1 put to the term \:‘L/' ~ \%/' , quantum

phase transition takes place in the 4 sectors except (3, 3):
A 4 Spoxcinn

Sa = 0O(1) (area law)

0 Ao

A1, A2 > 0 is not frustration free (here, we do not consider).
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