Gravity in three dimensions as a noncommutative gauge theory

George Manolakos

ESI workshop "MM for NCG and string theory"

$$
\text { July 10, } 2018
$$

Joint work with: A. Chatzistavrakidis, L. Jonke, D. Jurman, P. Manousselis, G. Zoupanos

NTUA

Table of contents

1. Gravity as gauge theory in $1+2$ (and $1+3$) dimensions
2. How to build gauge theories on noncommutative (nc) spaces
3. 3-d noncommutative spaces based on $S U(2)$ and $S U(1,1)$
4. Gravity as gauge theory on 3-d nc spaces (Euclidean-Lorentzian)

- 3-d Gravity: gauge theory of $\mathfrak{i s o}(1,2)$ (Poincaré - isometry of M^{3})
- Presence of $\Lambda: \mathrm{dS}$ or AdS algebras, i.e. $\mathfrak{s o}(1,3), \mathfrak{s o}(2,2)$
- Corresponding generators: $P_{a}, J_{a b}, a=1,2,3$ (translations, LT)
- Satisfy the following CRs:

$$
\left[J_{a b}, J_{c d}\right]=4 \eta_{[a[c} J_{d] b]}, \quad\left[P_{a}, J_{b c}\right]=2 \eta_{a[b} P_{c]}, \quad\left[P_{a}, P_{b}\right]=\Lambda J_{a b}
$$

- CRs valid in arbitrary dim; particularly in 3-d:

$$
\left[J_{a}, J_{b}\right]=\epsilon_{a b c} J^{c}, \quad\left[P_{a}, J_{b}\right]=\epsilon_{a b c} P^{c}, \quad\left[P_{a}, P_{b}\right]=\Lambda \epsilon_{a b c} J^{c}
$$

- After the redefinition: $J^{a}=\frac{1}{2} \epsilon^{a b c} J_{b c}$

The gauging procedure

- Intro of a gauge field for each generator: $e_{\mu}{ }^{a}, \omega_{\mu}{ }^{a}($ transl, LT)
- The Lie-valued 1-form gauge connection is:

$$
A_{\mu}=e_{\mu}{ }^{a}(x) P_{a}+\omega_{\mu}{ }^{a}(x) J_{a}
$$

- Transforms in the adjoint rep, according to the rule:

$$
\delta A_{\mu}=\partial_{\mu} \epsilon+\left[A_{\mu}, \epsilon\right]
$$

- The gauge transformation parameter is expanded as:

$$
\epsilon=\xi^{a}(x) P_{a}+\lambda^{a}(x) J_{a}
$$

- Combining the above \rightarrow transformations of the fields:

$$
\begin{gathered}
\delta e_{\mu}{ }^{a}=\partial_{\mu} \xi^{a}-\epsilon^{a b c}\left(\xi_{b} \omega_{\mu c}+\lambda_{b} e_{\mu c}\right) \\
\delta \omega_{\mu}{ }^{a}=\partial_{\mu} \lambda^{a}-\epsilon^{a b c}\left(\lambda_{b} \omega_{\mu c}+\Lambda \xi_{b} e_{\mu c}\right)
\end{gathered}
$$

Curvatures and action

- Curvatures of the fields are given by:

$$
R_{\mu \nu}(A)=2 \partial_{[\mu} A_{\nu]}+\left[A_{\mu}, A_{\nu}\right]
$$

- Tensor $R_{\mu \nu}$ is also Lie-valued:

$$
R_{\mu \nu}(A)=T_{\mu \nu}^{a} P_{a}+R_{\mu \nu}^{a} J_{a}
$$

- Combining the above \rightarrow curvatures of the fields:

$$
\begin{aligned}
T_{\mu \nu}^{a} & =2 \partial_{[\mu} e_{\nu]}^{a}+2 \epsilon^{a b c} \omega_{[\mu b} e_{\nu] c} \\
R_{\mu \nu}^{a} & =2 \partial_{[\mu} \omega_{\nu]}^{a}+\epsilon^{a b c}\left(\omega_{\mu b} \omega_{\nu c}+\Lambda e_{\mu b} e_{\nu c}\right)
\end{aligned}
$$

- The Chern-Simons action functional of the Poincaré, dS or AdS algebra is found to be identical to the 3-d E-H action:
$\mathcal{S}_{C S}=\frac{1}{16 \pi G} \int \epsilon^{\mu \nu \rho}\left(e_{\mu}^{a}\left(\partial_{\nu} \omega_{\rho a}-\partial_{\rho} \omega_{\nu a}\right)+\epsilon_{a b c} e_{\mu}^{a} \omega_{\nu}{ }^{b} \omega_{\rho}{ }^{c}+\frac{\Lambda}{3} \epsilon_{a b c} e_{\mu}^{c} e_{\nu}^{b} e_{\rho}^{c}\right) \equiv S_{E H}$ 3-d gravity is a Chern-Simons gauge theory.
- Vielbein formulation of GR: Gauging Poincaré algebra iso(1,3)
- Comprises ten generators: $P_{a}, J_{a b}, a=1, \ldots 4$ (transl, LT)
- Satisfy the aforementioned CRs (for $\Lambda=0$)
- Gauging in the same way leading to field transformations
- Curvatures are obtained accordingly
- Dynamics follow from the E-H action:

$$
\mathcal{S}_{E H 4}=\frac{1}{2} \int \mathrm{~d}^{4} x \epsilon^{\mu \nu \rho \sigma} \epsilon_{a b c d} e_{\mu}^{a} e_{\nu}^{b} R_{\rho \sigma}{ }^{c d}
$$

- Form of Einstein action: $A^{2}\left(d A+A^{2}\right)$
- Such action does not exist in gauge theories
- In that sense, gravity cannot be considered as gauge theory.
- Employ the nc type of matrix geometries

> Ishibashi-Kawai-Kitazawa-Tsuchiya '97

- Operators $X_{\mu} \in \mathcal{A}$ satisfy the CR: $\left[X_{\mu}, X_{\nu}\right]=i \theta_{\mu \nu}, \theta_{\mu \nu}$ arbitrary
- Lie-type nc: $\left[X_{\mu}, X_{\nu}\right]=i C_{\mu \nu}{ }^{\rho} X_{\rho}$
- Natural intro of nc gauge theories through covariant nc coordinates: $\mathcal{X}_{\mu}=X_{\mu}+A_{\mu} \quad$ Madore-Schraml-Schupp-Wess '00
- Obeys a covariant gauge transformation rule: $\delta \mathcal{X}_{\mu}=i\left[\epsilon, \mathcal{X}_{\mu}\right]$
- A_{μ} transforms in analogy with the gauge connection: $\delta A_{\mu}=-i\left[X_{\mu}, \epsilon\right]+i\left[\epsilon, A_{\mu}\right],(\epsilon-$ the gauge parameter $)$
- Definition of a (Lie-type) nc covariant field strength tensor: $F_{\mu \nu}=\left[\mathcal{X}_{\mu}, \mathcal{X}_{\nu}\right]-i C_{\mu \nu}{ }^{\rho} \mathcal{X}_{\rho}$

Non-Abelian case

- Gauge theory could be Abelian or non-Abelian:
- Abelian if ϵ is a function in \mathcal{A}
- Non-Abelian if ϵ is matrix valued $(\operatorname{Mat}(\mathcal{A}))$
\triangleright In non-Abelian case, where are the gauge fields valued?
- Let us consider the CR of two elements of an algebra:

$$
[\epsilon, A]=\left[\epsilon^{A} T^{A}, A^{B} T^{B}\right]=\frac{1}{2}\left\{\epsilon^{A}, A^{B}\right\}\left[T^{A}, T^{B}\right]+\frac{1}{2}\left[\epsilon^{A}, A^{B}\right]\left\{T^{A}, T^{B}\right\}
$$

- Not possible to restrict to a matrix algebra: last term neither vanishes in nc nor is an algebra element
- There are two options to overpass the difficulty:
- Consider the universal enveloping algebra
- Extend the generators and/or fix the rep so that the anticommutators close
\triangleright We employ the second option

3-d fuzzy spaces based on $S U(2)$ and $S U(1,1)$

The Euclidean case

- Euclidean case: 3-d fuzzy space based on $S U(2)$
- Fuzzy sphere, S_{F}^{2} : Matrix approximation of ordinary sphere, S^{2}

Hoppe '82, Madore '92
For higher-dim S_{F} see:
Kimura '02, Dolan - O'Connor '03, Sperling - Steinacker '17

- S^{2} defined by coordinates of \mathbb{R}^{3} modulo $\sum_{a=1}^{3} x_{a} x^{a}=r^{2}$
- S_{F}^{2} defined by three rescaled angular momentum operators, $X_{i}=\lambda J_{i}, J_{i}$ the Lie algebra generators in a UIR of $S U(2)$. The X_{i} s satisfy:

$$
\left[X_{i}, X_{j}\right]=i \lambda \epsilon_{i j k} X_{k}, \quad \sum_{i=1}^{3} X_{i} X_{i}=\lambda^{2} j(j+1):=r^{2}, \lambda \in \mathbb{R}, 2 j \in \mathbb{N}
$$

- Allowing X_{i} to live in reducible rep: obtain the nc \mathbb{R}_{λ}^{3}, viewed as direct sum of S_{F}^{2} with all possible radii (determined by $2 j$) - a discrete foliation of \mathbb{R}^{3} by multiple S_{F}^{2}

The fuzzy space \mathbb{R}_{λ}^{3}

\mathbb{R}_{λ}^{3} : Foliation of \mathbb{R}^{3} by fuzzy spheres (onion-like construction)

Matrix (coordinate) of \mathbb{R}_{λ}^{3} as a block diagonal form each block is a fuzzy sphere

The Lorentzian case

- In analogy: Lorentzian case: 3-d fuzzy space based on $S U(1,1)$

Jurman-Steinacker '14

- Fuzzy hyperboloids, $d S_{F}^{2}$, defined by three rescaled operators, $X_{i}=\lambda J_{i}$, (in appropriate irreps) satisfying:

$$
\left[X_{i}, X_{j}\right]=i \lambda C_{i j}^{k} X_{k}, \quad \sum_{i, j} \eta^{i j} X_{i} X_{j}=\lambda^{2} j(j-1),
$$

- where $C_{i j}{ }^{k}$ are the structure constants of $\mathfrak{s u}(1,1)$
- Difference to previous case: Non-compact group, i.e. no finite-dim UIRs but infinite-dim
- Again, letting X_{i} live in (infinite-dim) reducible reps: Block diagonal form - each block being a $d S_{F}^{2}$
- 3-d Minkowski spacetime foliated with leaves being $d S_{F}^{2}$ of different radii
- Consideration of the foliated M^{3} with $\Lambda>0$
- Natural symmetry of the space: $S O(1,3)(S O(4)$ for the Eucl.)
- Consider the corresponding spin group: $S O(1,3) \cong \operatorname{Spin}(1,3)=S L(2, \mathbb{C})$
- Anticommutators do not close \rightarrow Fix at spinor rep generated by: $\sum_{A B}=\frac{1}{2} \gamma_{A B}=\frac{1}{4}\left[\gamma_{A}, \gamma_{B}\right], A=1, \ldots 4$
- Satisfying the CRs and aCRs:
$\left[\gamma_{A B}, \gamma_{C D}\right]=8 \eta_{[A[C} \gamma_{D] B]}, \quad\left\{\gamma_{A B}, \gamma_{C D}\right\}=4 \eta_{C[B} \eta_{A] D} \mathbb{1}+2 i \epsilon_{A B C D} \gamma_{5}$
- Inclusion of γ_{5} and identity in the algebra \rightarrow extension of $S L(2, \mathbb{C})$ to $G L(2, \mathbb{C})$ with set of generators: $\left\{\gamma_{A B}, \gamma_{5}, i \mathbb{1}\right\}$
- In $S O(3)$ notation: $\gamma_{a 4} \equiv \gamma_{a}$ and $\tilde{\gamma}^{a} \equiv \epsilon^{a b c} \gamma_{b c}$, with $a=1,2,3$
- The CRs and aCRs are now written:
$\left[\tilde{\gamma}^{a}, \tilde{\gamma}^{b}\right]=-4 \epsilon^{a b c} \tilde{\gamma}_{c},\left[\gamma_{a}, \tilde{\gamma}_{b}\right]=-4 \epsilon_{a b c} \gamma^{c},\left[\gamma_{a}, \gamma_{b}\right]=\epsilon_{a b c} \tilde{\gamma}^{c},\left[\gamma^{5}, \gamma^{A B}\right]=0$
$\left\{\tilde{\gamma}^{a}, \tilde{\gamma}^{b}\right\}=-8 \eta^{a b} \mathbb{1},\left\{\gamma_{a}, \tilde{\gamma}^{b}\right\}=4 i \delta_{a}^{b} \gamma_{5},\left\{\gamma_{a}, \gamma_{b}\right\}=2 \eta_{a b} \mathbb{1}$,
$\left\{\gamma^{5}, \gamma^{a}\right\}=i \tilde{\gamma}_{a},\left\{\tilde{\gamma}^{5}, \gamma^{a}\right\}=-4 i \gamma_{a}$
- Proceed with the gauging of $G L(2, \mathbb{C})$
- Determine the covariant coordinate: $\mathcal{X}_{\mu}=X_{\mu}+\mathcal{A}_{\mu}$ $\mathcal{A}_{\mu}=\mathcal{A}_{\mu}^{i}\left(X_{a}\right) \otimes T^{i}$ the $\mathfrak{g l}(2, \mathbb{C})$-valued gauge connection
- Gauge connection expands on the generators as:

$$
\mathcal{A}_{\mu}=e_{\mu}{ }^{a}(X) \otimes \gamma_{a}+\omega_{\mu}{ }^{a}(X) \otimes \tilde{\gamma}_{a}+A_{\mu}(X) \otimes i \mathbb{1}+\tilde{A}_{\mu}(X) \otimes \gamma_{5}
$$

See also: Nair '03, '06, Abe - Nair '03

- Gauge parameter, ϵ, expands similarly:

$$
\epsilon=\xi^{a}(X) \otimes \gamma_{a}+\lambda^{a}(X) \otimes \tilde{\gamma}_{a}+\epsilon_{0}(X) \otimes i \mathbb{1}+\tilde{\epsilon}_{0}(X) \otimes \gamma_{5}
$$

Kinematics

- Covariant transf rule: $\delta \mathcal{X}_{\mu}=\left[\epsilon, \mathcal{X}_{\mu}\right] \rightarrow$ transf of the gauge fields:

$$
\begin{aligned}
\delta e_{\mu}{ }^{a} & =-i\left[X_{\mu}+A_{\mu}, \xi^{a}\right]-2\left\{\xi_{b}, \omega_{\mu c}\right\} \epsilon^{a b c}-2\left\{\lambda_{b}, e_{\mu c}\right\} \epsilon^{a b c}+i\left[\epsilon_{0}, e_{\mu}{ }^{a}\right]-2 i\left[\lambda^{a}, \tilde{A}_{\mu}\right]-2 i\left[\tilde{\epsilon}_{0}, \omega_{\mu}{ }^{a}\right] \\
\delta \omega_{\mu}{ }^{a} & =-i\left[X_{\mu}+A_{\mu}, \lambda^{a}\right]+\frac{1}{2}\left\{\xi_{b}, e_{\mu c}\right\} \epsilon^{a b c}-2\left\{\lambda_{b}, \omega_{\mu c}\right\} \epsilon^{a b c}+i\left[\epsilon_{0}, \omega_{\mu}{ }^{a}\right]+\frac{i}{2}\left[\xi^{a}, \tilde{A}_{\mu}\right]+\frac{i}{2}\left[\tilde{\epsilon}_{0}, e_{\mu}^{a}\right] \\
\delta A_{\mu} & =-i\left[X_{\mu}+A_{\mu}, \epsilon_{0}\right]-i\left[\xi_{a}, e_{\mu}^{a}\right]+4 i\left[\lambda_{a}, \omega_{\mu}{ }^{a}\right]-i\left[\tilde{\epsilon}_{0}, \tilde{A}_{\mu}\right] \\
\delta \widetilde{A}_{\mu} & =-i\left[X_{\mu}+A_{\mu}, \tilde{\epsilon}_{0}\right]+2 i\left[\xi_{a}, \omega_{\mu}{ }^{a}\right]+2 i\left[\lambda_{a}, e_{\mu}{ }^{a}\right]+i\left[\epsilon_{0}, \tilde{A}_{\mu}\right]
\end{aligned}
$$

- Commutative limit: Y-M and gravity fields disentangle and inner derivation becomes $\left[X_{\mu}, f\right] \rightarrow-i \partial_{\mu} f$:

$$
\begin{gathered}
\delta e_{\mu}^{a}=-\partial_{\mu} \xi^{a}-4 \xi_{b} \omega_{\mu c} \epsilon^{a b c}-4 \lambda_{b} e_{\mu c} \epsilon^{a b c} \\
\delta \omega_{\mu}^{a}=-\partial_{\mu} \lambda^{a}+\xi_{b} e_{\mu c} \epsilon^{a b c}-4 \lambda_{b} \omega_{\mu c} \epsilon^{a b c}
\end{gathered}
$$

- After the redefinitions: $\gamma_{a} \rightarrow \frac{2 i}{\sqrt{\Lambda}} P_{a}, \tilde{\gamma}_{a} \rightarrow-4 J_{a}, 4 \lambda^{a} \rightarrow \lambda^{a}$,

$$
\xi^{a} \frac{2 i}{\sqrt{\Lambda}} \rightarrow-\xi^{a}, e_{\mu}^{a} \rightarrow \frac{\sqrt{\Lambda}}{2 i} e_{\mu}^{a}, \omega_{\mu}^{a} \rightarrow-\frac{1}{4} \omega_{\mu}^{a} \rightarrow 3 \text {-d gravity }
$$

Curvatures

- Definition of curvature:

$$
\mathcal{R}_{\mu \nu}=\left[\mathcal{X}_{\mu}, \mathcal{X}_{\nu}\right]-i \lambda C_{\mu \nu}{ }^{\rho} \mathcal{X}_{\rho}
$$

- Curvature tensor can be expanded in the $G L(2, \mathbb{C})$ generators:

$$
\mathcal{R}_{\mu \nu}=T_{\mu \nu}^{a} \otimes \gamma_{a}+R_{\mu \nu}^{a} \otimes \tilde{\gamma}_{a}+F_{\mu \nu} \otimes i \mathbb{1}+\tilde{F}_{\mu \nu} \otimes \gamma_{5}
$$

- The expressions of the various tensors are:

$$
\begin{aligned}
& T_{\mu \nu}^{a}=i\left[X_{\mu}+A_{\mu}, e_{\nu}{ }^{a}\right]-i\left[X_{\nu}+A_{\nu}, e_{\mu}{ }^{a}\right]-2\left\{e_{\mu b}, \omega_{\nu c}\right\} \epsilon^{a b c}-2\left\{\omega_{\mu b}, e_{\nu c}\right\} \epsilon^{a b c}-2 i\left[\omega_{\mu}{ }^{a}, \tilde{A}_{\nu}\right]+2 i\left[\omega_{\nu}{ }^{a}, \tilde{A}_{\mu}\right]-i \lambda C_{\mu \nu}{ }^{\rho} e_{\rho}{ }^{a} \\
& R_{\mu \nu}^{a}=i\left[X_{\mu}+A_{\mu}, \omega_{\nu}{ }^{a}\right]-i\left[X_{\nu}+A_{\nu}, \omega_{\mu}{ }^{a}\right]-2\left\{\omega_{\mu b}, \omega_{\nu c}\right\} \epsilon^{a b c}+\frac{1}{2}\left\{e_{\mu b}, e_{\nu c}\right\} \epsilon^{a b c}+\frac{i}{2}\left[e_{\mu}{ }^{a}, \tilde{A}_{\nu}\right]-\frac{i}{2}\left[e_{\nu}{ }^{a}, \tilde{A}_{\mu}\right]-i \lambda C_{\mu \nu}{ }^{\rho} \omega_{\rho}{ }^{a} \\
& F_{\mu \nu}=i\left[X_{\mu}+A_{\mu}, X_{\nu}+A_{\nu}\right]-i\left[e_{\mu}{ }^{a}, e_{\nu a}\right]+4 i\left[\omega_{\mu}{ }^{a}, \omega_{\nu a}\right]-i\left[\tilde{A}_{\mu}, \tilde{A}_{\nu}\right]-i \lambda C_{\mu \nu}{ }^{\rho}\left(X_{\rho}+A_{\rho}\right) \\
& \tilde{F}_{\mu \nu}=i\left[X_{\mu}+A_{\mu}, \tilde{A}_{\nu}\right]-i\left[X_{\nu}+A_{\nu}, \tilde{A}_{\mu}\right]+2 i\left[e_{\mu}{ }^{a}, \omega_{\nu a}\right]+2 i\left[\omega_{\mu}{ }^{a}, e_{\nu a}\right]-i \lambda C_{\mu \nu}{ }^{\rho} \tilde{A}_{\rho}
\end{aligned}
$$

- Commutative limit: Coincidence with the expressions of 3 -d gravity after applying the redefinitions
- The action we propose is Chern-Simons type:

$$
\mathcal{S}=\frac{1}{g^{2}} \operatorname{Tr} \operatorname{tr}\left(\frac{i}{3} C^{\mu \nu \rho} \mathcal{X}_{\mu} \mathcal{X}_{\nu} \mathcal{X}_{\rho}-\frac{\lambda}{2} \mathcal{X}_{\mu} \mathcal{X}^{\mu}\right)
$$

- Tr: Trace over matrices X; tr: Trace over the algebra
- The action can be written as:

$$
\mathcal{S}=\frac{1}{6 g^{2}} \operatorname{Tr} \operatorname{tr}\left(i C^{\mu \nu \rho} \mathcal{X}_{\mu} \mathcal{R}_{\nu \rho}\right)+\mathcal{S}_{\lambda}
$$

where $\mathcal{S}_{\lambda}=-\frac{\lambda}{6 g^{2}} \operatorname{Tr} \operatorname{tr}\left(\mathcal{X}_{\mu} \mathcal{X}^{\mu}\right)$

- Using the explicit form of the algebra trace:

$$
\operatorname{Tr} C^{\mu \nu \rho}\left(e_{\mu a} T_{\nu \rho}^{a}-4 \omega_{\mu a} R_{\nu \rho}^{a}-\left(X_{\mu}+A_{\mu}\right) F_{\nu \rho}+\tilde{A}_{\mu} \tilde{F}_{\nu \rho}\right)
$$

Variation of the action

- Two ways of variation lead to the (same) equations of motion:
- Variation with respect to the covariant coordinate, \mathcal{X}_{μ}
- Variation with respect to the gauge fields
- The equations of motion are:

$$
\begin{gathered}
\mathcal{R}_{\mu \nu}=0 \\
T_{\mu \nu}{ }^{a}=0, \quad R_{\mu \nu}{ }^{a}=0, \quad F_{\mu \nu}=0, \quad \tilde{F}_{\mu \nu}=0
\end{gathered}
$$

- Group of symmetries: $S O(4) \cong S \operatorname{pin}(4)=S U(2) \times S U(2)$
- Anticommutators do not close \rightarrow Extension to $U(2) \times U(2)$
- Each $U(2)$: four 4 x 4 matrices as generators:

$$
J_{a}^{L}=\left(\begin{array}{cc}
\sigma_{a} & 0 \\
0 & 0
\end{array}\right), J_{a}^{R}=\left(\begin{array}{cc}
0 & 0 \\
0 & \sigma_{a}
\end{array}\right), J_{0}^{L}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & 0
\end{array}\right), J_{0}^{R}=\left(\begin{array}{ll}
0 & 0 \\
0 & \mathbb{1}
\end{array}\right)
$$

- Identification of the correct nc dreibein and spin connection fields:

$$
P_{a}=\frac{1}{2}\left(J_{a}^{L}-J_{a}^{R}\right), M_{a}=\frac{1}{2}\left(J_{a}^{L}+J_{a}^{R}\right), \mathbb{1}=J_{0}^{L}+J_{0}^{R}, \gamma_{5}=J_{0}^{L}-J_{0}^{R}
$$

- Calculations give the CRs and aCRs

$$
\begin{array}{ll}
{\left[P_{a}, P_{b}\right]=i \epsilon_{a b c} M_{c}, \quad\left[P_{a}, M_{b}\right]=i \epsilon_{a b c} P_{c},} & {\left[M_{a}, M_{b}\right]=i \epsilon_{a b c} M_{c},} \\
\left\{P_{a}, P_{b}\right\}=\frac{1}{2} \delta_{a b} \mathbb{1}, \quad\left\{P_{a}, M_{b}\right\}=\frac{1}{2} \delta_{a b} \gamma_{5}, & \left\{M_{a}, M_{b}\right\}=\frac{1}{2} \delta_{a b} \mathbb{1} . \\
{\left[\gamma_{5}, P_{a}\right]=\left[\gamma_{5}, M_{a}\right]=0, \quad\left\{\gamma_{5}, P_{a}\right\}=2 M_{a}, \quad\left\{\gamma_{5}, M_{a}\right\}=2 P_{a}}
\end{array}
$$

- Gauging proceeds in the same way as before

Summary

- 3-d gravity described as C-S gauge theory
- Translation to nc regime (gauge theories through cov. coord.)
- 3-d nc spacetimes built from $S U(2)$ and $S U(1,1)$
- Gauge their symmetry groups
- Transformations of fields - Curvatures - Action - E.o.M.

Future plans

- Further analysis of the Lorentzian case space structure (algebra of functions, differential calculus, etc.)
- Study the quantum aspects of the model
- Move to the 4-d case of gravity as noncommutative gauge theory
- Embed gauge group and space structure into a larger symmetry Heckman-Verlinde '14, Madore-Burić '15

Thank you for your attention!

