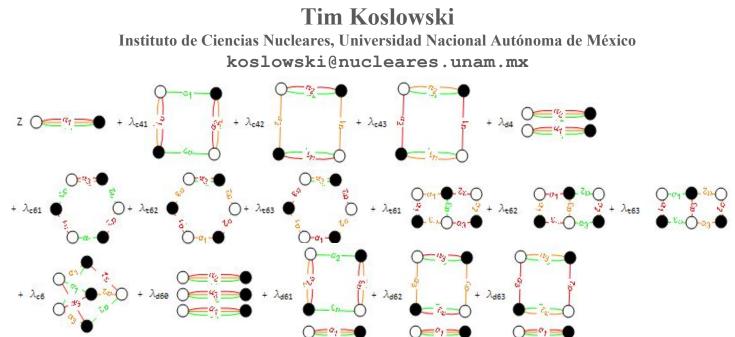
The continuum limit of matrix models with the FRGE



In this talk:

No noncommutative geometry, only non-critical ST (if you want), instead motivated by direct approaches to Quantum Gravity

based on work with A. Eichhorn: Phys.Rev. D88 (2013) 084016, Phys.Rev. D90 (2014) no.10, 104039 Ann. Inst. Henri Poncaré (2018) arXiv:1701.03029

and with J. Ben Geloun: arXiv:1606.04044

and A. Pereirra, D. Oriti and J. Ben Geloun: PRD (in print)

As well as work in progress with A. Eichhorn, A. Pereirra, J. Limma, V. Vitelli, A. Castro and J. Ben Geloun

On the road to Quantum Gravity

Each approach has built-in *features* and inherent *difficulties* \Rightarrow

Combine approaches to use built-in feature of one to solve difficulty of another approach

ESI workshop: "Matrix Models for Noncommutative Geometry and String Theory" Wien, July 09-13, 2018

Plan for this talk

- 1. **Preparation**: Continuum limit of lattice quantum gravity as large N limit
- 2. **Tool**: FRGE as a tool for large N limit
- 3. **Setup**: a) theory space
 - b) regulator \Rightarrow how to take the large N limit
 - c) symmetries \Rightarrow Ward Identities
 - d) scaling dimension
- 4. Results: a) Single trace approximation ⇒ Double scaling limit, multicritical points
 b) Tadpole approximation ⇒ All critical points and precision results
 c) Universality and Optimization
- 5. **Generalization**: tensor models \Rightarrow First results

Preparation: Continuum Limit of Lattice QG

Consider matrix model action

$$S[M] = \frac{1}{2} \operatorname{Tr}(A.A^{T}) + \frac{g}{4N} \operatorname{Tr}(A.A^{T}.A.A^{T})$$

for real matrices A to generate the partition function^A

$$Z = \int [dM]_N \exp(-S[M]) = \sum_{\gamma} A(\gamma) = \sum_{\Delta(\gamma)} e^{-(-\ln(A(\gamma)))}$$

$$\Rightarrow \text{ can be interpreted as a partition function for random square-tesselations with weights $-\ln(A(\gamma(\Delta)))$ expressible by the Regge action:$$

$$S_{\text{Regge}}(\Delta) = k_d N_d(\Delta) - k_{d-2} N_{d-2}(\Delta)$$

where
$$k_{d-2} - \alpha k_d \propto 1/G$$
 and $k_d \propto \Lambda/G$
with $k_{d-2} = \ln(N)$ and $k_d = \ln(g) - \frac{d(d-1)}{4} \ln(N)$

ESI workshop: "Matrix Models for Noncommutative Geometry and String Theory" Wien, July 09-13, 2018

 \mathbf{A}^{T}

Preparation: (contd.)

we want to take the continuum limit $a \to 0$ of the tesselation by squares at fixed volume $\langle V \rangle = a_o^d \langle N_d \rangle$

 \Rightarrow take matrix size N to infinity \Rightarrow G vanishes!

 \Rightarrow For finite G we need a critical scaling of g(N) with matrix size N in continuum limit.

 \Rightarrow to investigate the continuum limit of gravity on a random lattice we need to investigate the double scaling limit of the matrix model partition function

$$Z = \int [dM]_N \exp(-S[M]) = \sum_{\gamma} A(\gamma) = \sum_{\Delta(\gamma)} e^{-(-\ln(A(\gamma)))}$$

(see e.g. Brezin, Zinn-Justin: PLB 288 (1992) 54; C. Ayala: PLB 311 (1993) 55)

Tool: Functional Renormalization Group Equation Partition function $e^{W_k[J]} = \int [d\phi]_{\Lambda} e^{-S_o[\phi] - \frac{1}{2}\phi - R_k \cdot \phi + J \cdot \phi} \Rightarrow$ field vacuum expectation value $\phi = \frac{\delta W_k}{\delta J}$

with an IR suppression term $\frac{1}{2}\phi R_k \phi$ (scale-dependent "mass" term of order k for IR d.o.f.)

effective average action $\Gamma_k[\phi] = (\phi J_k[\phi] - W_k[J_k[\phi]]) - \frac{1}{2}\phi R_k \phi$

obeys a flow equation $\partial_k \Gamma_k = \frac{1}{2} \operatorname{Tr} \left(\partial_k R_k \left(\frac{\delta^2 \Gamma_k[\phi]}{\delta \phi \, \delta \phi} + R_k \right)^{-1} \right)$ (see e.g. Wetterich Phys. Lett. B, 301: 90)

Interpretation:

- UV limit: saddle point around $\frac{1}{2}\phi R_k \phi$ gives $\Gamma_{k\to\Lambda\to\infty}[\phi] \to S_o[\phi]$ IR limit: suppression term drops out $\Gamma_{k\to0}[\phi] \to \Gamma[\phi]$ 1.
- 2.

 \Rightarrow interpolation between bare action and quantum effective action

 \Rightarrow tool for systematic investigation of bare actions (limits $k \to \Lambda \to \infty$)

 $\Gamma_{k=\Lambda} = S$ $\Gamma_{k=0} = \Gamma$ Theory space (image from Wikipedia)

Tool: FRGE to find large N universality classes

The standard use of the FRGE is to investigate:

- UV limit: saddle point around $\frac{1}{2}\phi R_k \phi$ gives $\Gamma_{k\to\Lambda\to\infty}[\phi] \to S_o[\phi]$ IR limit: suppression term drops out $\Gamma_{k\to0}[\phi] \to \Gamma[\phi]$ 1.
- 2.

Hence, more generally it is an interpolation between bare action and quantum effective action, OR simply a tool to convert a high-dimensional *integration problem* into a *flow problem*.

 \Rightarrow use this approach for matrix model partition function

$$e^{-W_N[J]} = \int [dM]_{\Lambda} e^{-S[M] - \frac{1}{2}M.R_N.M + J.M}$$

such that the effective average action $\Gamma_N[M] := \sup_{I} \{J_N[M].M - W_N[J_N[M]]\} - \frac{1}{2}M.R_N.M$

satisfies the FRGE: $N\partial_N\Gamma_N[M] = \frac{1}{2} \operatorname{Tr} \left(\frac{N\partial_N R_N}{\Gamma^{(2)}[M] + R_N} \right)$

Where it is now very important that $\Delta_N S[M] = \frac{1}{2} M.R_N.M$ is not an IR suppression term (i.e. has NO dimension) BUT only an **abstract** suppression factor that we use to convert the integral into a flow

Setup I: Theory Space

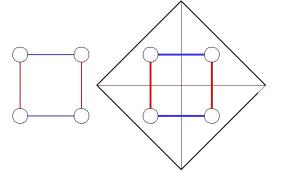
Bare action: $S_{matrix} = \frac{1}{2} \operatorname{Tr}(M.M^T) + \frac{g}{N} \operatorname{Tr}(M.M^T.M.M^T)$

 \Rightarrow Fundamental field: real matrix M

Fundamental symmetry: Invariance under bi-orthogonal trf. $M \rightarrow O_1.M.O_2^T$

- \Rightarrow generates even effective operators (i.e. of form $Tr(M^{2n_1})...Tr(M^{2n_k})$)
- \Rightarrow theory space $\Gamma_k[M] = f_k(\operatorname{Tr}(M^2), \operatorname{Tr}(M^4), \operatorname{Tr}(M^6), ...)$ has no occurrence of scale

Graphic representation:



ESI workshop: "Matrix Models for Noncommutative Geometry and String Theory" Wien, July 09-13, 2018

Setup II: Regulator

There is no natural scale, but we want to give a large suppression factor to matrix entries in upper-left corner (small index values)

 \Rightarrow invent a Laplacian, e.g. $\Delta M_{ab} := (a+b) M_{ab}$

⇒ we can construct a suppression term for the upper-left corner (with shape analogous to Litim's cut-off)

$$\Delta_N S[M] = M_{ab} R_N(a, b) M_{ab} \quad \text{with} \quad R_N(a, b) = Z\left(\frac{2N}{a+b} - 1\right) \theta\left(1 - \frac{2N}{a+b}\right)$$

Notice: The introduction of the Laplacian breaks bi-orthogonal symmetry! \Rightarrow broken Ward-Identity

Physikzetrum Bad Honnef, Quantum Spacetime and the Renormalization Group June 18, 2018

Setup III: Symmetries and Ward Identities

Assume an invariance of the bare action under a symmetry generated by $\mathcal{G}_{\epsilon} S[\phi] = \epsilon^{B} \frac{\delta S[\phi]}{\delta \phi^{A}} f^{A}_{B}[\phi]$

(for simplicity assume invariance of the measure $[d\phi]_{\Lambda}$ under this symmetry)

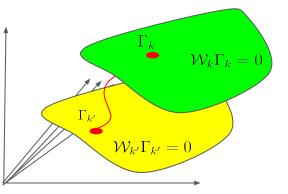
 $\Rightarrow \text{Legendre transform yields } \mathcal{W}_{k} = \mathcal{G}_{\epsilon} \Gamma_{k} - \frac{1}{2} \mathcal{G}_{\epsilon} \left(\langle \phi. R_{k}. \phi \rangle - \phi. R_{k}. \phi \right)$

Which ensures that the effective action satisfies the correct Ward identity $\lim_{k\to 0} W_k \Gamma_k = W\Gamma = 0$

Moreover: analogous to derivation of FRGE one finds

$$\partial_k \mathcal{W}_k \Gamma_k = -\frac{1}{2} \operatorname{Tr} \left((\Gamma_k^{(2)} + R_k)^{-1} \cdot \partial_k R_k \cdot (\Gamma_k^{(2)} + R_k) \cdot (\mathcal{W}_k \Gamma_k)^{(2)} \right)$$

 \Rightarrow if initial effective average action satisfies initial WTI then the effective action satisfies the normal WTI



 \Rightarrow symmetry improved flow by solving mWTI and using symmetric couplings as coordinates on $W_k\Gamma_k = 0$ ESI workshop: "*Matrix Models for Noncommutative Geometry and String Theory*" Wien, July 09-13, 2018

Setup IV: Scaling Dimension

There is no "canonical dimension" of operators in this theory space, but since we are interested in the large N limit,

we have to impose that the beta functions admit a I/N expansion, i.e. $\beta_{g_i} = b_i^1(g_1, ...) + 1/N b_i^2(g_1, ...) + O(1/N^2)$

this fixes the scaling of the operators, by generating upper and lower bounds that admit only one solution at the end.

E.g. tadpole of one $g_4 Tr(M^4)^{(2)}$ flows into Z

and two-vertex diagram with two $g_4 Tr(M^4)^{(2)}$ flows into g_4

 \Rightarrow once dimension of g_4 is fixed one can fix dimensions of all other operators.

 \Rightarrow for couplings defined as $\Gamma_N[M] = \sum g_{n_1...n_i}^i \operatorname{Tr}(M^{2n_1})...\operatorname{Tr}(M^{2n_i})$

one obtains the canonical dimension from 1/N expandability as

$$\dim(g_{n_1...n_i}^i) = N^{i-1+\sum_{k=1}^i n_k}$$

More generally: One can express the scaling dimension as function of faces and number of matrices/tensors

Results I: Matrix Model - Single Trace Truncation

1. Single trace truncation: $\Gamma_N[M] = \frac{Z}{2} \operatorname{Tr}(M^2) + \sum_{n\geq 2} \frac{\bar{g}_{2n}}{2n} \operatorname{Tr}(M^{2n})$ with dimensionless couplings $\bar{g}_i = Z^{\frac{i}{2}} N^{\frac{i}{2}-1} g_i$

 \Rightarrow beta functions: $\eta = g_4 [\dot{R} P^2]$

$$\beta(g_{2n}) = \left((1+\eta)n - 1\right)g_{2n} + 2n\sum_{i;\vec{m}:\sum m_k = n} (-1)^{\sum_i m_i} \left[\dot{R}P^{1+\sum_i m_i}\right] \left(\sum_{m_1, m_2, \dots} \right) \prod_i g_{2(i+1)}^{m_i}$$

Finding fixed points with one relevant direction, but $\theta \approx 1.0, ..., 1.1$ instead of analytic $\theta = 0.8$ (in all truncations) (and all other crit. exponents near negative integers and aligned with g_{2n} : n > 4)

2. Multitrace truncation: only $Tr(M^2)Tr(M^{2n})$ flow into single-trace operators at large N

 \Rightarrow include $g_{2,2}$ and $g_{2,4}$ in truncation, but critical exponents actually get *worse*:

 $\theta_1 = 1.21, \ \theta_2 = -0.69, \ \theta_3 = -1.01, \ \theta_4 = -1.88$

(inclusion of further multitrace operators does not improve result)

Results II: Matrix Model - Tadpole Approximation

O(N) symmetry is generated by $M \to O^T.M.O = \phi + \epsilon [M, A] + O(\epsilon^2)$

and leads to Ward-identity $\mathcal{W}_N \Gamma_N[M] = \mathcal{G}_{\epsilon} \Gamma_N[M] - \operatorname{tr}_{op} \left(\frac{[A, R_N]}{\Gamma_N^{[2]}[M] + R_N} \right) = 0$

Observation: Tadpole approximation of flowing WTI vanishes

(i.e. no index dependence of tadpoles of index-independent operators!)

1. Tadpole approximation of single trace truncation

 $\eta = 2g_4 x \qquad \beta(g_{2n}) = ((n-1) + n\eta)g_{2n} - 2n x g_{2(n+1)}$

 \Rightarrow find $\theta_1 = 1$ (is 20% off, but all further multicritical exponents with good accuracy)

2. Tadpole approximation with multirace operators

including multitrace operators g_{2n} , $g_{2,2n}$, $g_{4,2n}$, $g_{2,2,2n}$ in truncation gives arbitrarily close values to $\theta_1 = \frac{4}{5}$ and multicritical exponents also in O(1%) precision

Results III: Scheme dependence and Optimization

The tadpole approximation contains only traces of the form $\operatorname{Tr}(P.\dot{R}.P.F[M])$ \Rightarrow this reduces to one single constant under most projection rules, say *x*

 \Rightarrow FP values of "dimensionless" ratios such as $\frac{g_6}{g_4^2}$ and critical exponents can not depend on x

Optimization: in two-vertex approximation one has a ratio between *x* and Tr(P.R.P.F[M].P.F[M])

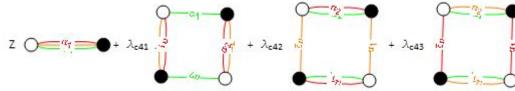
 \Rightarrow one can optimize this ratio s.t. e.g. $\frac{g_6}{g_4^2}$ has minimal scheme dependence

Optimization leads to an improvement of multi-critical exponents \Rightarrow deviations less than 1%

However: two-vertex beta functions possess structure that contains no new effective operators at double scaling limit \Rightarrow still 20% deviation from analytic values \Rightarrow go to three-vertex beta functions to optimize double scaling limit

Generalization to Tensor Models

Colored Tensor Models work analogous to matrix models: \Rightarrow example bare action for complex rank 3 model:



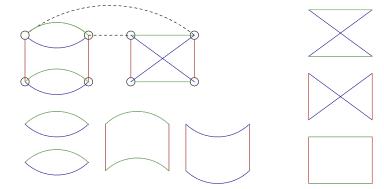
Feynman graphs have a dual geometric interpretation as triangulations of piecewise linear 3D manifolds

Regulator term: $\Delta T_{abc} = (a + b + c) T_{abc}$

Scaling dimension from 1/N expandibility:

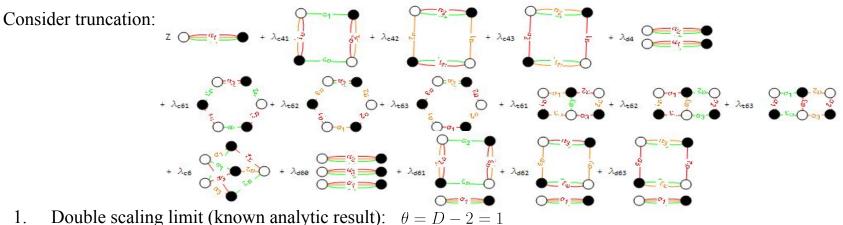
 $s(\gamma) = 3 - \frac{1}{2}(3p(\gamma) - F(\gamma))$

where p = #tensor pairs and F = #faces



(example: rank 3 real model)

Generalization to Tensor Models: First Results



There appears a fixed point with a single relevant direction and $\theta = 0.9, ..., 2.2$ in all truncations and approximation schemes and compatible with color symmetry.

(FRGE candidate for double scaling limit)

2. Multiscaling limit: There appears another fixed point with two relevant direction that appears in various truncations and approximations

- 1. We use the duality of matrix/tensor models and lattice gravity to explore the lattice continuum as a large N limit
 - \Rightarrow study universality classes using FRGE and replacing scale by matrix size N
 - \Rightarrow model does not have scale, FRGE is now dimesnionless a tool to investsigate large N
 - \Rightarrow 1/N expandibility of beta functions is a necessary requirement
- 2. Matrix model results:
 - a. FRGE is a tool to find asymptotic safety in GW model (previous work with A. Sfondrini: IJMP A 26 (2011) 4009)
 - b. FRGE finds double scaling limit and multicritical points in pure matrix models
 - c. FRGE achieves numerical accuracy when Ward-ID is respected
- 3. Tensor model results:
 - a. Setup can be applied to tensor models
 - b. FRGE finds various scaling limits in real and complex tensor models and tensor field theories
 - c. Ongoing work with A. Eichhorn, A. Perreira, J. Lumma, V. Vitelli, A. Castro and J. Ben Geloun

Thank you !