
Entanglement entropy on the fuzzy sphere
hep-th: 1712.09464, 1310.8345, 1307.3517

Joanna Karczmarek

In collaboration with Hong Zhe Chen, Charles Rabideau and
Philippe Sabella-Garnier

July 10, 2018

Joanna Karczmarek In collaboration with Hong Zhe Chen, Charles Rabideau and Philippe Sabella-GarnierEntanglement entropy on the fuzzy sphere July 10, 2018 1 / 30



Entanglement Entropy is a measure of the quantum
entanglement between two subsystems of a larger system

It is widely used in information theory

Geometric entanglement entropy is a universaly-defined
observable in QFT

In the last number of years, entanglement entropy has been used
together with holography to understand the relationship between
quantum structure of gauge theories and the corresponding
geometry

Spacetime = quantum entanglement + holography

Would be great to use entanglement entropy to understand how
spacetime arises in matrix models

As a toy model, we will try to explore entanglement entropy in
noncommutative spaces, focusing mostly on the fuzzy sphere
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Entanglement entropy: example
Consider a pair of spin 1/2 particles:

A: Hilbert space HA with basis | ↑〉A and | ↓〉A
B: Hilbert space HB with basis | ↑〉B and | ↓〉B

The total Hilbert space is HA ⊗HB , with basis

| ↑〉A| ↑〉B , | ↑〉A| ↓〉B , | ↓〉A| ↑〉B , | ↓〉A| ↓〉B

Consider two different states in HA ⊗HB :

| ↑↑〉 = | ↑〉A| ↑〉B , and EPR =
1√
2

(| ↑〉A| ↓〉B + | ↓〉A| ↑〉B)

If we have access only to spin A, we must describe it with a density
matrix ρA(Ψ) = TrB |Ψ〉〈Ψ| = B〈↑ |Ψ〉〈Ψ| ↑〉B + B〈↓ |Ψ〉〈Ψ| ↓〉B

ρA(↑↑) = | ↑〉〈↑ | and ρA(EPR) =
1

2
| ↓〉〈↓ |+ 1

2
| ↑〉〈↑ |
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EE: example continued
ρA(↑↑) is a pure state, and can be described simply by | ↑〉A.
Eigenvalues 1 and 0.

ρA(EPR) is not a pure state, and is not equivalent to any φ ∈ HA.
No φ such that ρA(EPR) = |φ〉〈φ|
Eigenvalues not 1 and 0.

These represt two extremes: complete entanglement (EPR) and no
entanglement (pure state).
We measure the amount of entanglement by computing the
entanglement entropy

SA = −Tr ρA ln ρA

SA(↑↑) = 0 and SA(EPR) = ln 2
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Geometric EE in a local QFT

Consider a QFT on some space with d
spacial dimensions, and a region A with
boundary ∂A in this space.
H = HA ⊗HĀ

HA: Hilbert space of D of F inside A
HĀ: Hilbert space of D of F outside A

The vacuum EE is given by

S = −TrA (ρA ln ρA) , with ρ0 = TrĀ |0〉〈0|

Mark Srednicki 1993: such EE is proportional to the area of the
boundary ∂A rather than the volume of the region A.

Area law: Leading UV divergent part of S is proportional to |∂A|
εd−1
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Why is S ∼ |∂A|
εd−1

?

The Hamiltonian couples local degrees of freedom mostly with their
nearest neighbours
Entanglement is ‘monogamous’: if any D of F is fully entangled with
some subset of a system, it cannot also be entangled with any other
subset.
Quantum correlations between inside and outside are established via
the boundary only
EE is proportional to the number of degrees of freedom that are close
to the boundary of a region, which is |∂A|

εd−1
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Geometric EE in NC QFT
There are four length scales to consider:

UV cutoff ε

noncommutative geometry length scale
√

Θ, where [x̂ , ŷ ] = iΘ

the effective nonlocality scale, Θ/ε (UV-IR connection)

the size of the region (must be larger than ε and
√

Θ)

We would expect that EE would undergo a transition from extensive
(propotional to |A|) to area law (proportional to |∂A|) when the size
of the region is on the order of Lnonlocality.
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Why is this interesting?

Direct probe of the UV-IR connection

Behaviour of entanglement entropy is linked to the ability of a
quantum system to scramble information quickly: nonlocal
theories might emulate the scrambling behaviour of stretched
black hole horizons.

Since EE is best understood in local theories, it is interesting to
see which of its universal properties break down in the non-local
setting
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Fuzzy S2

Scaled N-dimensional irrep of SU(2) (spin J = (N − 1)/2)

Xi = R
Li
J

[Li , Lj ] = iεijkLk
∑
i

L2
i =

N2 − 1

4

A scalar field φ is represented by a Hermitian N × N matrix

H =
4π

N

1

2
Tr
(

(φ̇)2 − [Li , φ]2 + µφ2
)

In this model, we have

ε ∼ R/N

Θ = R2/J (NΘ ∼ R2)

Lnonlocality = Θ/ε ∼ R

It will be difficult to observe the transition from extensive to area law
behaviour, as even the largest possible region (half of the sphere) has
diameter on the order of Lnonlocality.
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Fuzzy S2: defining spherical cap regions
The D of F are N2 coupled harmonic oscillators, whose positions
correspond to the entries of φ.
We would like to compute EE for a spherical cap region.
Consider an operator Z : φ→ 1

2
(L3φ + φL3)

We associate inside of the spherical cap with the space spanned by
eigenvectors of Z with eigenvalues greater than J(2 cos θ − 1)
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Fuzzy S2: UV cutoff
To be able to control Lnonlocality and have Lnonlocality < R , we have to
control ε at fixed N .

The Laplacian operator ∆ : φ→ [Li , [Li , φ]] has eigenvalues k(k + 1)
for k from 0 to N(N − 1).
Consider the subspace spanned by eigenvectors of ∆ with eigvalues
from 0 to n(n − 1) for n < N . Let Pn be a projection operator onto
this subspace.
The corresponding UV cutoff is εn = R/n, Lnnonlocality ∼ n

N
R

PZ 6= ZP : lowering the UV cutoff makes the boundary of the cap
more ’fuzzy’
Consider then, the spectrum of PZP : the eigenvalues are still spread
from −J to J , so we will associate inside the cap with the space
spanned by eigenvectors of PZP with eigenvalues greater than
J(2 cos θ − 1).
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Detour: mutual information I
To convince you that this is definition leads to sensible results, start
with a quantity that does not appear to be affected by the UV-IR
coupling: mutual information.

UV-finite quantity defined for two disjoint regions A and B :
I (A,B) = S(A) + S(B)− S(A ∪ B). Subtle cancelations!

N=200
n=20, 40,. . .,200

Agrees with calculation on a discretized commutative sphere.
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EE as a function of θ
N = 100, n = N
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EE as a function of mass m
Inset shows EE between two HO as a function of their mass at fixed
coupling
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EE as a function of θ

N = 200, n = 20, 40, . . . , 200 (blue to red)
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Scaled EE S/N as a function of θ
N = 50, 100, 200, n = 20, 40, . . . , 200 (blue to red)
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Transition angle as a function of n

Recall that we predicted that Lnnoncommutativity ∼ n
N
R .
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Ryu-Takayanagi conjecture
EE of the region A is proportional to the area of the minimal surface
in AdS supported by ∂A on the boundary: S = Aminimal

4GN

Joanna Karczmarek In collaboration with Hong Zhe Chen, Charles Rabideau and Philippe Sabella-GarnierEntanglement entropy on the fuzzy sphere July 10, 2018 19 / 30



Holographic dual to NC N = 4 SYM in 3+1 dim
Bulk data:

ds2

R2
= u2

(
−dt2 + f (u)

(
dx2 + dy 2

)
+ dz2

)
+

du2

u2
+ dΩ2

5 ,

e2φ = g 2
s f (u) ,

Bxy = −1− f (u)

Θ
= −R2

α′ a2
Θu

4f (u) ,

f (u) =
1

1 + (aΘu)4
, (1)

Bxy is the only nonzero component of the NS-NS form
background.
x , y , z have units of length, while u has units of length inverse
(energy).
aΘ = (λ)1/4

√
Θ is

√
Θ scaled by a power of the ’t Hooft

coupling λ. It can be thought of as the length scale of
noncommutativity at strong coupling.
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Extremal surfaces
In 3 spacial directions, with x-y being the noncommutative plane,
consider a boundary region A = {(x , y , z) : 0 < x < l}. Distance in
open string metric.

For every strip width, there are up to three extremal surfaces:
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Holographic EE
Narrow strip:

|Aminimal| ∼
W 2l

ε3

Wide strip:

|Aminimal| ∼
W 2a2

Θ

ε4

Transition at

l = a2
Θ/ε = λ1/2Θ/ε

Clear transition from extensive to area law behaviour.
It would be very interesting to see whether the scale of
noncommutativity is modified in a similar way on a fuzzy sphere
when interactions are introduced (cf Okuno-Suzuki-Tsuchiya).
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NCG as a theory of strings
Earlier, we mentioned that a particle moving on the NC plane is
delocalized in the direction orthogonal to its motion.
Let the particle have momentum k in the x-direction, with
[x̂ , ŷ ] = iΘ. Its wavefunction is

φ̂k = exp(ikx̂) = exp(−i(Θk)p̂y )

with

〈x2, y2|φ̂k |x1, y1〉 = exp(k(x1 + x2)) exp

(
(y1 − y2 −Θk)2

4Θ

)
Using a bi-local presentation [Iso, Kawai, Kitazawa]:

φ̂ =

∫
x1,y1,x2,y2

φ((x1, y1), (x2, y2))|x1, y1〉〈x2, y2|

we see that φ̂k corresponds to a bi-local object with length Θk : a
string of sorts.
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Back to fuzzy sphere

Recall:

At a fixed region size θ, raising the UV cutoff increases EE only up to
a point. Once n is larger than Rθ, increasing UV cutoff no longer
increases S .
In the string intepretation, longer strings do not contribute to the EE.
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String picture
The length of the string is related to its momentum, so for an
eigenvector of the Laplacian ∆ : φ→ [Li , [Li , φ]] with eigenvalue
k(k + 1), the string would have length L = ΘR/k = 2Rk/N .

When a string is
longer than 2R sin θ,
it no longer ’fits’ in a
polar cap region:

Our use of the middle point of the string to determine
inside-vs-outside is motivated by EE calculations in SFT.

Intriguingly, when the UV cutoff is removed, EE
is almost exactly proportional to the minimal
area supported by the cap’s boundary:
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The string picture, which seems to use the embedding of the sphere
into three-dimensional space rather than the intrinsic two-dimensional
object might seem strange. It turns out to be crucial to model
another phenomenon: evolution of EE after a quench.
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EE after a quench
Example: mass quench. The mass parameter µ is changed at t = 0.

Before the quench, t < 0, the system is in a vacuum state.

After the quench, t > 0, the system is in an excited (squeezed)
state.

In ordinary QFT, this can be modelled using a ballistic model:
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EE after a quench on a fuzzy sphere
Excess entropy as a function of time. N = 200, θ = π/4,
n = 20, 40, . . . , 200 (blue to orange)

Shows the same behaviour as vacuum entanglement entropy:
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nmax vs sin(θ)

This plot strongly supports the relationship

Lmax = 2Rnmax/N = 2R sin θ
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A ballistic model applied to string middle points reproduces even
more complicated behaviour, such as that after a local quench.

We are still trying to understand the details and the limitations of
this model.
Perhaps by thinking of the BFSS matrix model as a String Field
Theory, we could identify geometric EE observables. This would open
a door to studying the emergent spacetime through the lens of EE.
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