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1.   Introduction



Motivation (1/2)
There has long been an expectation
that quantum mechanics has its origin in randomness.

Question: 
Can quantum gravity be treated in such a framework?

Main purpose of my talk is to show:

• One can introduce a geometry to any stochastic system
which is based on Markov-chain Monte Carlo (MCMC), 
s.t. it reflects the difficulty of transitions between
two configurations.

• Such geometry possesses a larger (or largest) symmetry
if the algorithm is optimized s.t. distances are minimized.

• This distance gives another method to introduce
a geometry to matrix models

[Nelson, Parisi-Wu, ...]
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To think more concretely, 
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- This definition is universal for MCMC algorithms
that generate local moves in configuration space

- The distance gives an AdS geometry
when a simulated tempering is implemented 
for multimodal distributions with optimized parameters
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- This gives another method to introduce a distance
in matrix models
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Preparation 1: MCMC simulation (2/3)
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Preparation 2: Transfer matrix (2/2)
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Preparation 3: Connectivity between configs (1/3)
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Preparation 3: Connectivity between configs (2/3)

normalized connectivity (“half-time overlap”):
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Preparation 3: Connectivity between configs (3/3)

1 2( , )properties of nF x x

( )
( )

1 2 2 1

1 2

1 2 1 2

1 2 1 2

( , ) ( , )
0 ( , ) 1

( , ) 1
lim ( , ) 1 ,

(1)  
(2)  
(3)   when  is finite
(4)  

n n

n

n

nn

F x x F x x
F x x

F x x x x n
x x x xF

→∞

=
 ≤ ≤
 = ⇔ =


= ∀

1 2

1 2

1 2

1 2

( , ) 1

( , ) 1

(A)  If  can be easily reached from  in 

(B)  If  and  are separated by high potential barr

 steps,
      then 

,
      then

ie s
 

r
n

n

x x n
F x x

x x
F x x











1 2 1 2 1 1 22 1 2

:
ˆ | 0 0 |

ˆ( , ) | | | 0 0 | ( , ) ( , ).

proof of (4)
In the limit , , and thus,n

n
n n n

n T
K x x x T x x x K x x K x x

 
 

→ ∞ → 〉〈 
 = 〈 〉 → 〈 〉〈 〉 = 

1 2
1 2

1 1 2 2

1 2

( ,( , )
( , ) ( , )

, / 2 / 2

)

| ,

n
n

n n

K x xx x
K x x K x x

x n x n

F =

= 〈 〉



Definition of distance
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Alternative definition of distance
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Universality of distance (1/4)
The above distance is expected to be universal
for MCMC algorithms that generate local moves in config space.

"universal" in the sense that differences of distance 
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can always be absorbed into a rescaling of n
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Universality of distance (2/4)
This expectation can be explicitly checked using a simple model.

algorithm 1: Langevin
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Universality of distance (3/4)
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Universality of distance (4/4)
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Transfer matrix for Langevin

Langevin equation (continuum)
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Example 1: Unimodal distribution (Gaussian)
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Example 2: Unimodal dist. (non-Gaussian)
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Example 3: Multimodal dist. (double well) (1/2)
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Example 3: Multimodal dist. (double well) (2/2)
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Simulated tempering (1/3)
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Simulated tempering (2/3)
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Simulated tempering (3/3)
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Distance for simulated tempering

The introduction of tempering should be seen
as the reduction of distance.

In fact,

10 39.1
50 19.2
100 16.9
500 13.2

1,000 11.7
5,000 8.46

n 2 ( 1, 1)nd − +
26.5
7.16
4.35
0.708
0.106

2.78 x 10^(-8)

2 ( 1, 1)nd − +

w/o tempering w/ tempering

rapid decreasing

[MF-Matsumoto-Umeda1]



Coarse-grained configuration space (1/4)
In MCMC simulations,
the most expensive part is the transitions
between configs in different modes,
and thus, configs in the same mode can be
effectively treated as a point.

This leads us to the idea of "coarse-grained config space" 

We would like to show that

 when the original config space is multimodal 
 with high degeneracy, 
 the extended coarse-grainined config space  
 naturally has an AdS geometry

× 

x

x
1− 1+

1− 1+

[MF-Matsumoto-Umeda1,2]



Coarse-grained configuration space (2/4)
[MF-Matsumoto-Umeda2]
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that are related with the half-time overlap  as
        

We have two different distances,  an
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θ

θ −= =

1 2( , ) always satisfies triangle inequality
but takes a complicated form even for Gaussian distribution.

n x xθ

1 2( , ) does not satisfy triangle ineq generically,
but gives a flat geometry for Gaussian distribution. 
This does satisfy triangle ineq in the coarse-grained config space.

nd x x

[ ]( )
( ,0)

1 cos2
 w/o tempering

for the action
distanc

  
e nd x

xS x β π= −

1 2( , )We will regard 
as more fundamental
when discussing
coarse-grained config space

nd x x
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Coarse-grained configuration space (3/4)

0 0
2( ; ) cos1action: xS x πβ β  

−  =  
  

= original config space:

x

( )S x

coarse-grained config space: 
   (1D lattice with spacin  g )= 

sim temp

[ ]{ ( , )}
extended coarse-grained config space: 
    (1D lattice with spacin ) g aX x xβ× = = ∈  

x

⊕



Coarse-grained configuration space (4/4)

( )2 2( , ), ( , ) const. q
n x x dx dxd β β β+ =

and set
( )2 2( , ), ( , ) ( )nd x x d f dβ β β β β+ =

( )2 2

2 2

( , ), ( , )
. )(          const

Then we have
     n

q

ds d x x dx d
d fx d

β β β
β β β

≡ +

= +

+

2( ) 1/If (#) is scale invariant (i.e.,  ),
this gives an AdS metric:

f β β∝
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2 2 2 2
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+= =+ ( )/2qz β −∝
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(This is actually an asymptotic AdS with a horizon)

∞
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boundary

xx dx+x
1
1
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 < 



aβ
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AdS geometry as a result of optimization (1/4)

/

0
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,
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one can show that geometry in becomes 
scale invariant, so that we will obtain an Ad
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One can actually confirm that (##) is the best choice
for minimizing the distance in simulated tempering:
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AdS geometry as a result of optimization (2/4)
That is,

( ) ( )

/

0
0
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2 2 2 2 /2

2 2

( 0,1, 2,..., )

. .

   for large 

 AdS metric :

    

 optimize  s.t. the distance is minimized
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This is the first example of the “emergence 
of AdS geometry” in nonequilibrium systems.



AdS geometry as a result of optimization (3/4)

Algorithm to determine the metric
2

2 2 2
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AdS geometry as a result of optimization (4/4)

Result
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Conclusion and outlook
What we have done:
- We introduced the concept of “distance between configs”

in MCMC simulations
- The distance satisfies desired properties as distance
- This can be used for the optimization of parameters, 

and AdS geometry appears as a result of optimization

Future work:
- Establish a systematic method for optimization

- Investigate the relationship between the obtained result
and the Einstein equation

- Investigate the geometry of matrix models further

( )
[ ( )]

 would be found by simply solving
        the E-L eq of some functional
e.g.,  

 
a a

I a
β β

β
=



Thank you.
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