Distance between configurations in MCMC simulations and the emergence of AdS geometry in the simulated tempering algorithm

Masafumi Fukuma (Dept of Phys, Kyoto Univ)
@ESI, July 9, 2018
"Matrix Models for Noncommutative Geometry and String Theory "
based on work with
N. Matsumoto (Kyoto Univ) and N. Umeda (PWC) [arXiv:1705.0609, JHEP 1712 (2017) 001 (FMN1), arXiv:1806.10915 (FMN2)]

1. Introduction

Motivation (1/2)

There has long been an expectation that quantum mechanics has its origin in randomness.

Question:

Can quantum gravity be treated in such a framework?
Main purpose of my talk is to show:

- One can introduce a geometry to any stochastic system which is based on Markov-chain Monte Carlo (MCMC), s.t. it reflects the difficulty of transitions between two configurations.
- Such geometry possesses a larger (or largest) symmetry if the algorithm is optimized s.t. distances are minimized.
- This distance gives another method to introduce a geometry to matrix models

Motivation (2/2)

Separation of $A-B$ and that of $B-C$ are almost the same in x space.

However, in MCMC simulations,
A can be reached from B easily $\quad \checkmark$ "close" in MC
C cannot be reached from B easily \checkmark "far" in MC

We introduce a measure that enumerates this "distance".

Main results

- This definition is universal for MCMC algorithms that generate local moves in configuration space
- The distance gives an AdS geometry when a simulated tempering is implemented for multimodal distributions with optimized parameters

extended config space $\{(x, \beta)\}$

- This gives another method to introduce a distance in matrix models

Plan

1. Introduction (done)
2. Definition of distance

- preparation
- definition of distance
- universality of distance

3. Examples

- unimodal case
- multimodal case

4. Distance for simulated tempering

- simulated tempering
- emergence of AdS geometry
- AdS geometry from matrix models

5. Conclusion and outlook

Plan

1. Introduction
2. Definition of distance

- preparation
- definition of distance
- universality of distance

3. Examples

- unimodal case
- multimodal case

4. Distance for simulated tempering

- simulated tempering
- emergence of AdS geometry
- AdS geometry from matrix models

5. Conclusion and outlook

Preparation 1: MCMC simulation (1/3)

$\mathcal{M}=\{x\}$: configuration space $S(x)$: action

We want to estimate VEVs of operators $\mathcal{O}(x)$:

$$
\langle\mathcal{O}(x)\rangle \equiv \frac{1}{Z} \int d x e^{-S(x)} \mathcal{O}(x) \quad\left(Z=\int d x e^{-S(x)}\right)
$$

In MCMC simulations:

- Regard $p_{\text {eq }}(x) \equiv \frac{1}{Z} e^{-S(x)}$ as a PDF
- Introduce a Markov chain

$$
p_{n-1}(x) \rightarrow p_{n}(x)=\int d y P(x \mid y) p_{n-1}(y)=\int d y P^{n}(x \mid y) p_{0}(y)
$$

s.t. $p_{n}(x)$ converges uniquely to $p_{\text {eq }}(x)$ in the limit $n \rightarrow \infty$
$\left[\begin{array}{c}\text { i.e., } \\ P^{n}(x \mid y) \simeq p_{\text {eq }}(x) \\ \left(n \geq n_{0}\right)\end{array}\right]$

Preparation 1: MCMC simulation (2/3)

- Starting from an initial value x_{0}, generate x_{1}, x_{2}, \ldots following the transition matrix $P\left(x_{i} \mid x_{i-1}\right)$

$$
\begin{aligned}
& x_{0} \xrightarrow{P} x_{1}^{P} \rightarrow \cdots \xrightarrow{P} x_{n_{0}} \xrightarrow{P} x_{n_{0}+1} \xrightarrow{P} x_{n_{0}+2} \xrightarrow{P} \cdots \xrightarrow{P} x_{n_{0}+M} \xrightarrow{P} \cdots \\
& \equiv y_{1} \quad \equiv y_{2} \quad \equiv y_{M} \\
& \text { relaxation } \\
& \text { generated with } \sim p_{\text {eq }}(x)
\end{aligned}
$$

- Take a sample $\left\{y_{m}\right\}_{m=1, \ldots, M}$ after the system is well relaxed
- Estimate VEVs of operators $\mathcal{O}(x)$ as a sample average:

$$
\langle\mathcal{O}(x)\rangle \approx \frac{1}{M} \sum_{m=1}^{M} \mathcal{O}\left(y_{m}\right)
$$

We first would like to establish a mathematical framework which enables the systematic understanding of relaxation

Preparation 1: MCMC simulation (3/3)

We assume that
(1) $P(x \mid y)$ satisfies the detailed balance condition:

$$
P(x \mid y) p_{\mathrm{eq}}(y)=P(y \mid x) p_{\mathrm{eq}}(x)\left(\Leftrightarrow P(x \mid y) e^{-S(y)}=P(y \mid x) e^{-S(x)}\right)
$$

(2) all of the eigenvalues of P are positive

NB : (1) can be written as

$$
\hat{P} e^{-S(\hat{x})}=e^{-S(\hat{x})} \hat{P}^{T}
$$

$$
\binom{P(x \mid y)=\langle x| \hat{P}|y\rangle}{\hat{x} \equiv \int d x x|x\rangle\langle x|}
$$

NB : (2) is not too restrictive
In fact, if P has negative eigenvalues,
then we instead can use P^{2} as the elementary transition matrix, for which

- all the eigenvalues are positive
- the same detailed balance condition is satisfied as P :

$$
P^{2}(x \mid y) e^{-S(y)}=P^{2}(y \mid x) e^{-S(x)}
$$

Preparation 2: Transfer matrix (1/2)

We introduce the "transfer matrix" :

$$
\hat{T} \equiv e^{S(\hat{x}) / 2} \hat{P} e^{-S(\hat{x}) / 2}\left(\Leftrightarrow T(x \mid y)=e^{S(x) / 2} P(x \mid y) e^{-S(y) / 2}\right)
$$

properties:
(1) $\hat{T}=\hat{T}^{T}\left(\Leftrightarrow \hat{P} e^{-S(\hat{x})}=e^{-S(\hat{x})} \hat{P}^{T}\right)$
(2) same eigenvalue set as \hat{P} (thus all positive)

We order the EVs as

$$
\lambda_{0}=1>\lambda_{1} \geq \lambda_{2} \geq \cdots>0
$$

spectral decomposition:

$$
\hat{T}=\sum_{k \geq 0} \lambda_{k}|k\rangle\langle k|=|0\rangle\langle 0|+\sum_{k \geq 1} \lambda_{k}|k\rangle\langle k|
$$

where

$$
\langle x \mid 0\rangle=\frac{1}{\sqrt{Z}} e^{-s(x) / 2}=\sqrt{p_{\mathrm{eq}}(x)}
$$

Preparation 2: Transfer matrix (2/2)

Note that $\hat{P}^{n} \Leftrightarrow \hat{T}^{n}=|0\rangle\langle 0|+\sum_{k \geq 1} \lambda_{k}^{n}|k\rangle\langle k| \quad\left(\lambda_{0}=1>\lambda_{1} \geq \lambda_{2} \geq \cdots>0\right)$
relaxation to equilibrium
\Leftrightarrow relaxation of \hat{T}^{n} to $|0\rangle\langle 0|$ in the limit $n \rightarrow \infty$
\Leftrightarrow decoupling of modes $|k\rangle$ with $k \geq 1$

NB:
decoupling occurs earlier for higher modes (i.e. for larger k)
NB:
relaxation time τ can be estimated from $\lambda_{1} \sim e^{-1 / \tau}$
slow relaxation $\Leftrightarrow \lambda_{1} \sim 1$

Preparation 3: Connectivity between configs (1/3)

[MF-Matsumoto-Umeda1]
$\mathbf{X}_{n} \equiv($ set of sequences of n processes in $\mathcal{M})$

$\mathbf{X}_{n}\left(x_{1}, x_{2}\right)$
$\equiv\binom{$ set of sequences of n processes in $\mathcal{M}}{$ that start from x_{2} and end at $x_{1}}$

We define the connectivity between two configs as

$$
f_{n}\left(x_{1}, x_{2}\right) \equiv \frac{\left|\mathbf{X}_{n}\left(x_{1}, x_{2}\right)\right|}{\left|\mathbf{X}_{n}\right|}
$$

$=\left(\right.$ prob to obtain x_{1} from $\left.x_{2}\right) \times\left(\right.$ prob to have $\left.x_{2}\right)$

$$
=P^{n}\left(x_{1} \mid x_{2}\right) \frac{1}{Z} e^{-S\left(x_{2}\right)}\left(=P^{n}\left(x_{2} \mid x_{1}\right) \frac{1}{Z} e^{-S\left(x_{1}\right)}=f_{n}\left(x_{2}, x_{1}\right)\right)
$$

Preparation 3: Connectivity between configs (2/3)

normalized connectivity ("half-time overlap"):

$$
F_{n}\left(x_{1}, x_{2}\right) \equiv \frac{f_{n}\left(x_{1}, x_{2}\right)}{\sqrt{f_{n}\left(x_{1}, x_{1}\right) f_{n}\left(x_{2}, x_{2}\right)}}
$$

$$
=\sqrt{\frac{P^{n}\left(x_{1} \mid x_{2}\right) P^{n}\left(x_{2} \mid x_{1}\right)}{P^{n}\left(x_{1} \mid x_{1}\right) P^{n}\left(x_{2} \mid x_{2}\right)}}=\frac{K_{n}\left(x_{1}, x_{2}\right)}{\sqrt{K_{n}\left(x_{1}, x_{1}\right) K_{n}\left(x_{2}, x_{2}\right)}}
$$

$$
\left(K_{n}\left(x_{1}, x_{2}\right) \equiv\left\langle x_{1}\right| \hat{T}^{n}\left|x_{2}\right\rangle\right)
$$

$F_{n}\left(x_{1}, x_{2}\right)$ is actually the overlap between two normalized "half-time" elapsed states:

$$
\begin{gathered}
F_{n}\left(x_{1}, x_{2}\right) \equiv\left\langle x_{1}, n / 2 \mid x_{2}, n / 2\right\rangle \\
\left(|x, n / 2\rangle \equiv \hat{T}^{n / 2}|x\rangle / \| \hat{T}^{n / 2}|x\rangle \|\right)
\end{gathered}
$$

Preparation 3: Connectivity between configs $(3 / 3)$

properties of $F_{n}\left(x_{1}, x_{2}\right)$
(1) $F_{n}\left(x_{1}, x_{2}\right)=F_{n}\left(x_{2}, x_{1}\right)$
(2) $0 \leq F_{n}\left(x_{1}, x_{2}\right) \leq 1$
(3) $F_{n}\left(x_{1}, x_{2}\right)=1 \Leftrightarrow x_{1}=x_{2}$ (when n is finite)
(4) $\lim _{n \rightarrow \infty} F_{n}\left(x_{1}, x_{2}\right)=1\left(\forall x_{1}, x_{2}\right)$

$$
\begin{aligned}
F_{n}\left(x_{1}, x_{2}\right) & =\frac{K_{n}\left(x_{1}, x_{2}\right)}{\sqrt{K_{n}\left(x_{1}, x_{1}\right) K_{n}\left(x_{2}, x_{2}\right)}} \\
& =\left\langle x_{1}, n / 2 \mid x_{2}, n / 2\right\rangle
\end{aligned}
$$

Definition of distance

[MF-Matsumoto-Umeda1]

$$
\theta_{n}\left(x_{1}, x_{2}\right) \equiv \arccos \left(F_{n}\left(x_{1}, x_{2}\right)\right)
$$

properties of $\theta_{n}\left(x_{1}, x_{2}\right)$
(1) $\theta_{n}\left(x_{1}, x_{2}\right)=\theta_{n}\left(x_{2}, x_{1}\right)$
(2) $\theta_{n}\left(x_{1}, x_{2}\right) \geq 0$
$\left\{\right.$ (3) $\theta_{n}\left(x_{1}, x_{2}\right)=0 \Leftrightarrow x_{1}=x_{2}$ (when n is finite)
(4) $\lim _{n \rightarrow \infty} \theta_{n}\left(x_{1}, x_{2}\right)=0\left(\forall x_{1}, x_{2}\right)$
(5) $\theta_{n}\left(x_{1}, x_{2}\right)+\theta_{n}\left(x_{2}, x_{3}\right) \geq \theta_{n}\left(x_{1}, x_{3}\right)$

(A) If x_{1} can be easily reached from x_{2} in n steps, then $\theta_{n}\left(x_{1}, x_{2}\right)$: small
(B) If x_{1} and x_{2} are separated by high potential barriers, then $\theta_{n}\left(x_{1}, x_{2}\right)$: large

Alternative definition of distance

Instead of $\theta_{n}\left(x_{1}, x_{2}\right)=\arccos \left(F_{n}\left(x_{1}, x_{2}\right)\right)$, one can also use the following as distance:

$$
d_{n}^{2}\left(x_{1}, x_{2}\right) \equiv-2 \ln F_{n}\left(x_{1}, x_{2}\right) \quad \text { we will mainly use this }
$$

or

$$
D_{n}^{2}\left(x_{1}, x_{2}\right) \equiv 2\left[1-\ln F_{n}\left(x_{1}, x_{2}\right)\right]
$$

$$
\left(\begin{array}{l}
F_{n}\left(x_{1}, x_{2}\right) \\
=\cos \theta_{n}\left(x_{1}, x_{2}\right)=e^{-(1 / 2) d_{n}^{2}\left(x_{1}, x_{2}\right)}=1-\frac{1}{2} D_{n}^{2}\left(x_{1}, x_{2}\right) \\
\text { They agree when } \theta_{n} \approx 0
\end{array}\right)
$$

NB: analogy in quantum information
$\left\{\begin{array}{l}\theta_{n}\left(x_{1}, x_{2}\right): \text { Bures length } \\ D_{n}\left(x_{1}, x_{2}\right): \text { Bures distance }\end{array}\right.$ for two pure states $\rho_{1,2}=\left|x_{1,2}, n / 2\right\rangle\left\langle x_{1,2}, n / 2\right|$

Universality of distance (1/4)

[MF-Matsumoto-Umeda1]
The above distance is expected to be universal for MCMC algorithms that generate local moves in config space.
("universal" in the sense that differences of distance between two such local MCMC algorithms can always be absorbed into a rescaling of n
In fact,
universality of $d_{n}^{2}\left(x_{1}, x_{2}\right) \Leftrightarrow$ univ. of $K_{n}\left(x_{1}, x_{2}\right)=\left\langle x_{1}\right| \hat{T}^{n}\left|x_{2}\right\rangle$

$$
\Leftrightarrow \text { univ. of } \hat{T} \equiv e^{-\epsilon \hat{H}}
$$

and,
If algorithms are sufficiently local,
then \hat{H} are expected to be local operators
acting on functions over \mathcal{M} in almost the same way.

The wave functions $\langle x \mid k\rangle$ must be almost the same for small k

Universality of distance (2/4)

This expectation can be explicitly checked using a simple model.
algorithm 1: Langevin

$$
\begin{gathered}
x_{n+1}=x_{n}+\sqrt{\epsilon} v_{n}-\epsilon S^{\prime}\left(x_{n}\right) \text { with }\left\langle v_{n} v_{m}\right\rangle_{v}=2 \delta_{n, m} \\
\square\langle x| \hat{T}|y\rangle=\langle x| e^{-\epsilon \hat{H}}|y\rangle \simeq \frac{1}{\sqrt{4 \pi \epsilon}} e^{-\frac{1}{4 \epsilon}(x-y)^{2}-\epsilon V\left(\frac{x+y}{2}\right)} \\
\text { with } V(x)=(1 / 4)\left(S^{\prime}(x)\right)^{2}-(1 / 2) S^{\prime \prime}(x)
\end{gathered}
$$

algorithm 2: Metropolis (with Gaussian proposal of variance σ^{2})

$$
\begin{aligned}
\langle x| \hat{T}|y\rangle & =\langle x| \hat{P}|y\rangle \times e^{S(x) / 2-S(y) / 2} \\
& =\min \left(1, e^{-S(x)+S(y)}\right) \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}(x-y)^{2}}} \times e^{S(x) / 2-S(y) / 2} \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-y)^{2}-\frac{1}{2}|S(x)-S(y)|}
\end{aligned}
$$

Universality of distance (3/4)

With the identification $\sigma^{2} \sim \epsilon$,
both Hamiltonians $\hat{H}\left(\equiv-\frac{1}{\epsilon} \ln \hat{T}\right)$ become local in the limit $\epsilon \rightarrow 0$,
and have the same tendency to enhance transitions when $|x-y|$ and $|S(x)-S(y)|$ are small.

The low energy structure of \hat{H} should be almost the same.

The global structure of distance should be almost the same.
(The argument for universality is more trustworthy) as the DOF of the system become larger.

In fact,

the universality actually holds more than expected even for a single DOF

Universality of distance (4/4)

eigenvalues : $\quad S(x)=\frac{\beta}{2}\left(x^{2}-1\right)^{2} \quad(\beta=20)$

	$E_{k}($ Lang $)$	$E_{k} / E_{1}($ Lang $)$	$E_{k}($ Met $)$	E_{k} / E_{1} (Met)
0	0	0	0	0
1	$7.81 \times 10^{\wedge}(-4)$	1	$7.62 \times 10^{\wedge}(-4)$	1
2	36.2	$4.63 \times 10^{\wedge} 4$	34.2	$4.49 \times 10^{\wedge} 4$
3	58.2	$7.45 \times 10^{\wedge} 4$	54.7	$7.17 \times 10^{\wedge} 4$

eigenfunctions:

(almost indistinguishable)

Plan

1. Introduction

2. Definition of distance

- preparation
- definition of distance
- universality of distance

3. Examples

- unimodal case
- multimodal case

4. Distance for simulated tempering

- simulated tempering
- emergence of AdS geometry
- AdS geometry from matrix models

5. Conclusion and outlook

Transfer matrix for Langevin

Langevin equation (continuum)

$$
\begin{aligned}
\dot{x}_{t}= & v_{t}-S^{\prime}\left(x_{t}\right) \text { with }\left\{\begin{array}{l}
x_{t=0}=x_{0} \\
\left\langle v_{t} v_{t^{\prime}}\right\rangle_{v}=2 \delta\left(t-t^{\prime}\right)
\end{array}\right. \\
\vec{\square} & x_{t}=x_{t}\left(x_{0},[v]\right) \\
\square & P_{t}\left(x \mid x_{0}\right) \equiv\left\langle\delta\left(x-x_{t}\left(x_{0},[v]\right)\right)\right\rangle_{v}=\langle x| e^{-t \hat{t}_{\mathrm{FP}}}\left|x_{0}\right\rangle \\
& \text { with } \hat{H}_{\mathrm{FP}}=-\partial_{x}\left[\partial_{x}+S^{\prime}(x)\right]
\end{aligned}
$$

$$
K_{t}(x, y)=e^{S(x) / 2} P_{t}(x \mid y) e^{-S(y) / 2}=\langle x| e^{-\epsilon \hat{H}}|y\rangle
$$

$$
\text { with } \hat{H}=e^{S(\hat{x}) / 2} \hat{H}_{\mathrm{FP}} e^{-S(\hat{x}) / 2}=-\partial_{x}^{2}+V(\hat{x})
$$

$$
\left[V(x)=(1 / 4)\left(S^{\prime}(x)\right)^{2}-(1 / 2) \hat{S^{\prime \prime}}(x)\right]
$$

$$
F_{t}\left(x_{1}, x_{2}\right)=\frac{K_{t}\left(x_{1}, x_{2}\right)}{\sqrt{K_{t}\left(x_{1}, x_{1}\right) K_{t}\left(x_{2}, x_{2}\right)}}=e^{-\frac{1}{2} d_{t}^{2}\left(x_{1}, x_{2}\right)}
$$

Example 1: Unimodal distribution (Gaussian)

$$
\begin{aligned}
& S(x)=\frac{\omega}{2} x^{2} \\
& \square \hat{H}=-\partial_{x}^{2}+V(\hat{x}) \text { with } V(x)=(1 / 4)\left(S^{\prime}(x)\right)^{2}-(1 / 2) S^{\prime \prime}(x) \\
& K_{t}(x, y)=\langle x| e^{-t \hat{H}}|y\rangle \quad=\frac{\omega^{2}}{4} x^{2}-\frac{\omega}{2} \sqrt{\text { subtracts }} \\
& =\sqrt{\frac{\omega}{2 \pi\left(1-e^{-2 \omega t}\right)}} \exp \left[-\frac{\omega}{4 \sinh \omega t}\left[\left(x_{1}^{2}+x_{2}^{2}\right) \cosh \omega t-2 x_{1} x_{2}\right]\right] \\
& \square d_{t}^{2}\left(x_{1}, x_{2}\right)=\frac{\omega}{2 \sinh \omega t}\left|x_{1}-x_{2}\right|^{2} \sim e^{-\omega t}\left|x_{1}-x_{2}\right|^{2}
\end{aligned}
$$

We see that:

- geometry is flat and translationally invariant
- relaxation time τ is given by $\tau \sim 1 / \omega\left[\omega^{2} \sim V^{\prime \prime}(x)\right]$

Example 2: Unimodal dist. (non-Gaussian)

$S(x)=\frac{\omega}{2} x^{2}+\frac{\lambda}{4} x^{4}$
perturbative expansion in λ :

$$
\begin{aligned}
d_{t}^{2}\left(x_{1}, x_{2}\right)= & \left|x_{1}-x_{2}\right|^{2}\left\{\frac{\omega}{2 s}-\frac{\lambda}{8 \omega s^{4}}\left[12\left(s^{3}-3 s^{2} c+3 \omega t+2 \omega t s^{3}-\omega t s^{2} c\right)\right.\right. \\
& +\omega\left(s^{3}+3 s-3 \omega t c\right)\left(x_{1}-x_{2}\right)^{2} \\
& \left.\left.+3 \omega\left(s^{3}+3 s-3 \omega t c+3 \omega t-3 s c+2 \omega t s^{2}\right)\left(x_{1}+x_{2}\right)^{2}\right]+O\left(\lambda^{2}\right)\right\} \\
(c \equiv \cosh & \omega t, s \equiv \sinh \omega t)
\end{aligned}
$$

We see that:

- geometry is no longer flat or translationally invariant
- relaxation time τ is again given by $\tau \sim 1 / \omega\left[\omega^{2} \sim V^{\prime \prime}(x)\right]$

Example 3: Multimodal dist. (double well) (1/2)

$$
\begin{aligned}
& S(x)=\frac{\beta}{2}\left(x^{2}-1\right)^{2} \quad(\beta \gg 1) \\
& \Rightarrow \hat{H}=-\partial_{x}^{2}+V(\hat{x}) \\
& \quad \text { with } \begin{aligned}
V(x) & =\beta^{2} x^{6}-2 \beta^{2} x^{4}+\left(\beta^{2}-3 \beta\right) x^{2}+\beta \\
& =\beta^{2} x^{2}\left(x^{2}-1\right)^{2}+O(\beta)
\end{aligned}
\end{aligned}
$$

Example 3: Multimodal dist. (double well) (2/2)

For $\beta=20$:
$E_{0}=0$
$E_{1}=7.81 \times 10^{-4}$ instanton $e^{-O(\beta)}$
$\hat{H}=-\partial_{x}^{2}+V(\hat{x})$
$E_{2}=36.2$
$E_{3}=58.2$
$\langle x \mid k\rangle(k=2,3, \ldots)$: decouple quickly $\langle x \mid 1\rangle$: decouples very slowly

In fact,

n	$d_{n}^{2}(-1,+1)$
10	39.1
50	19.2
100	16.9
500	13.2
1,000	11.7
5,000	8.46

Plan

1. Introduction

2. Definition of distance

- preparation
- definition of distance
- universality of distance

3. Examples

- unimodal case
- multimodal case

4. Distance for simulated tempering

- simulated tempering
- emergence of AdS geometry
- AdS geometry from matrix models

5. Conclusion and outlook

Simulated tempering $(1 / 3)$

Basic idea of tempering: [Marinari-Parisi]

Even when the original action $S\left(x ; \beta_{0}\right)$ is multimodal, it often happens that $S(x ; \beta)$ becomes less multimodal if we take smaller β.

We extend the configuration space s.t. configurations in different modes can be reached from each other by passing through small β^{\prime} s.
original config space $\{x\}$

$S\left(x ; \beta_{0}\right)=\frac{\beta_{0}}{2}\left(x^{2}-1\right)^{2} \quad\left(\beta_{0} \gg 1\right)$
extended config space $\{(x, \beta)\}$

Simulated tempering $(2 / 3)$

Realization

- Extend the config space $\mathcal{M}=\{x\}$ to $\mathcal{M} \times \mathcal{A}=\left\{X=\left(x, \beta_{a}\right)\right\}(x \in \mathcal{M} ; a=0,1, \ldots, A)$
- Introduce a stochastic process

$$
P_{n}(X) \rightarrow P_{n+1}(X)
$$

s.t. $P_{n}(X) \xrightarrow{n \rightarrow \infty} P_{\text {eq }}(X)=P_{\text {eq }}\left(X, \beta_{a}\right)=w_{a} e^{-S\left(x, \beta_{a}\right)}$

- Estimate the VEV by only using the subsample with $\beta_{a=0}$

NB : (appearance probability of a-th subsample)

$$
=\int d x P_{e q}\left(x, \beta_{a}\right)=w_{a} Z_{a} \quad\left(Z_{a}=\int d x e^{-S\left(x, \beta_{a}\right)}\right)
$$

w_{a} is often set as $w_{a} \propto 1 / Z_{a}$, which ensures that the desired 0 -th configs appear
consideration not necessary for parallel tempering with nonvanishing probability $(=1 /(A+1))$

Simulated tempering $(3 / 3)$

Algorithm

(1) Generate a transition in the x direction,

$$
X=\left(x, \beta_{a}\right) \rightarrow X^{\prime}=\left(x^{\prime}, \beta_{a}\right)
$$

with some proper algorithm (such as Langevin or Metropolis)
(2) Generate a transition in the β direction,

$$
X=\left(x, \beta_{a}\right) \rightarrow X^{\prime}=\left(x, \beta_{a^{\prime}=a+1}\right)
$$

with the probability $\min \left(1, \frac{w_{a^{\prime}} e^{-S\left(x, \beta_{a}\right)}}{w_{a} e^{-S\left(x, \beta_{a}\right)}}\right)$

(3) Extract a subsample with $\beta_{a=0} ;\left\{\left(x_{m}, \beta_{0}\right)\right\}(m=1, \ldots, M)$
(4) Evaluate VEVs as $\langle\mathcal{O}(x)\rangle_{\beta_{0}} \simeq \frac{1}{M} \sum_{m=1}^{M} \mathcal{O}\left(x_{m}\right)$

NB : a-dependence of β_{a} should be chosen
s.t. the transition in the β-direction is easy.

This adjustment is usually done manually or adaptively.
We will show that this can be done geometrically.

Distance for simulated tempering

[MF-Matsumoto-Umeda1]
The introduction of tempering should be seen as the reduction of distance.

In fact,

w/o tempering		w/ tempering
n	$d_{n}^{2}(-1,+1)$	$d_{n}^{2}(-1,+1)$
10	39.1	26.5
50	19.2	7.16
100	16.9	4.35
500	13.2	0.708
1,000	11.7	0.106
5,000	8.46	$2.78 \times 10^{\wedge}(-8)$

rapid decreasing

Coarse-grained configuration space (1/4)

[MF-Matsumoto-Umeda1,2]
In MCMC simulations, the most expensive part is the transitions between configs in different modes, and thus, configs in the same mode can be effectively treated as a point.

This leads us to the idea of "coarse-grained config space" $\overline{\mathcal{M}}$

We would like to show that
when the original config space is multimodal with high degeneracy,
the extended coarse-grainined config space $\overline{\mathcal{M}} \times \mathcal{A}$ naturally has an AdS geometry

Coarse-grained configuration space (2/4)

NB

We have two different distances, $\theta_{n}\left(x_{1}, x_{2}\right)$ and $d_{n}\left(x_{1}, x_{2}\right)$ that are related with the half-time overlap $F_{n}\left(x_{1}, x_{2}\right)$ as

$$
F_{n}\left(x_{1}, x_{2}\right)=\cos \theta_{n}\left(x_{1}, x_{2}\right)=e^{-d_{n}^{2}\left(x_{1}, x_{2}\right) / 2}
$$

$\theta_{n}\left(x_{1}, x_{2}\right)$ always satisfies triangle inequality
but takes a complicated form even for Gaussian distribution.
$d_{n}\left(x_{1}, x_{2}\right)$ does not satisfy triangle ineq generically, but gives a flat geometry for Gaussian distribution. This does satisfy triangle ineq in the coarse-grained config space.

We will regard $d_{n}\left(x_{1}, x_{2}\right)$ as more fundamental when discussing coarse-grained config space

Coarse-grained configuration space (3/4)

action: $S\left(x ; \beta_{0}\right)=\beta_{0}\left[1-\cos \left(\frac{2 \pi x}{\epsilon}\right)\right]$
original config space: $\mathcal{M}=\mathbb{R}$
coarse-grained config space:
$\overline{\mathcal{M}}=(1 \mathrm{D}$ lattice with spacing ϵ)
\oplus sim temp
extended coarse-grained config space:

$$
\overline{\mathcal{M}} \times \mathcal{A}=\left\{X=\left(x, \beta_{a}\right)\right\}[x \in(1 \mathrm{D} \text { lattice with spacing } \epsilon)]
$$

Coarse-grained configuration space (4/4)

We assume that

$$
d_{n}^{2}((x, \beta),(x+d x, \beta))=\text { const. } \beta^{q} d x^{2}\binom{q=1 \text { when not tempered }}{q<1 \text { when tempered }}
$$

and set

$$
d_{n}^{2}((x, \beta),(x, \beta+d \beta))=f(\beta) d \beta^{2}
$$

If (\#) is scale invariant (i.e., $f(\beta) \propto 1 / \beta^{2}$), this gives an AdS metric:

$$
d s^{2}=\text { const. } \beta^{q} d x^{2}+\text { const. } \frac{d \beta^{2}}{\beta^{2}}=\frac{\text { const }}{z^{2}}\left(d x^{2}+d z^{2}\right) \quad\left(z \propto \beta^{-q / 2}\right)
$$

(This is actually an asymptotic AdS with a horizon)

AdS geometry as a result of optimization (1/4)

If $\beta_{a}(a=0,1, \ldots, A)$ is chosen as

$$
\beta_{a}=\beta_{0}\left(\frac{\beta_{A}}{\beta_{0}}\right)^{a / A}
$$

one can show that geometry in β direction becomes scale invariant, so that we will obtain an AdS geometry, as we saw before.

One can actually confirm that (\#\#) is the best choice for minimizing the distance in simulated tempering:
[Consider the action :

$$
\begin{gathered}
S\left(\mathbf{x} ; \beta_{0}\right)=\beta_{0} \sum_{i=1}^{2}\left[1-\cos \left(2 \pi x_{i}\right)\right] \\
\\
\left(\beta_{0}=10^{5}\right)
\end{gathered}
$$

Search for $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{8}\right\}$ that minimize $\left.d_{n}^{2}\left(\left(0, \beta_{0}\right),\left(+1, \beta_{0}\right)\right)\right]$

AdS geometry as a result of optimization (2/4)

That is,
optimize β_{a} s.t. the distance is minimized

AdS metric:

$$
d s^{2}=\text { const. } \beta^{q} d x_{i}^{2}+\text { const. } \frac{d \beta^{2}}{\beta^{2}}=\frac{\text { const }}{z^{2}}\left(d x_{i}^{2}+d z^{2}\right) \quad\left(z \propto \beta^{-q / 2}\right)
$$

This is the first example of the "emergence of AdS geometry" in nonequilibrium systems.

AdS geometry as a result of optimization (3/4)

Algorithm to determine the metric
(1) Set an ansatz: $d s^{2}=\ell^{2}\left(\frac{d \beta^{2}}{\beta^{2}}+\alpha \beta^{q} \sum_{i=1}^{N} d x_{i}^{2}\right)$
geodesic distance between $(\mathbf{0}, \beta)$ and (\mathbf{x}, β) :

$$
I(\mathbf{x}, \beta ; \ell, \alpha, q)=\frac{4 \ell}{q} \ln \frac{\sqrt{(q \sqrt{\alpha}|\mathbf{x}|)^{2}+16 \beta^{-q}}+q \sqrt{\alpha}|\mathbf{x}|}{4 \beta^{-q / 2}}
$$

(2) Calculate distances $d_{n}\left(\left(\mathbf{0}, \beta_{a}\right),\left(\mathbf{x}, \beta_{a}\right)\right)$ for various \mathbf{x} and β_{a}
(3) Find the values of (ℓ, α, q) that minimize the cost function

$$
C(\ell, \alpha, q) \equiv \sum_{\mathbf{x}} \sum_{a}\left[d_{n}\left(\left(\mathbf{0}, \beta_{a}\right),\left(\mathbf{x}, \beta_{a}\right)\right)-I\left(\mathbf{x}, \beta_{a} ; \ell, \alpha, q\right)\right]^{2}
$$

AdS geometry as a result of optimization (4/4)

Result ($N=2$)

$$
d s^{2}=\ell^{2}\left(\frac{d \beta^{2}}{\beta^{2}}+\alpha \beta^{q} \sum_{i=1}^{2} d x_{i}^{2}\right) \quad\left\{\begin{array}{l}
\ell=(5.3 \pm 0.3) \times 10^{-3} \\
\alpha=(4.1 \pm 1.0) \times 10^{4} \\
q=0.39 \pm 0.02
\end{array}\right.
$$

Plan

1. Introduction
2. Definition of distance

- preparation
- definition of distance
- universality of distance

3. Examples

- unimodal case
- multimodal case

4. Distance for simulated tempering

- simulated tempering
- emergence of AdS geometry
- AdS geometry from matrix models

5. Conclusion and outlook

Conclusion and outlook

What we have done:

- We introduced the concept of "distance between configs" in MCMC simulations
- The distance satisfies desired properties as distance
- This can be used for the optimization of parameters, and AdS geometry appears as a result of optimization

Future work:

- Establish a systematic method for optimization
e.g., $\beta_{a}=\beta(a)$ would be found by simply solving the $\mathrm{E}-\mathrm{L}$ eq of some functional $I[\beta(a)]$
- Investigate the relationship between the obtained result and the Einstein equation
- Investigate the geometry of matrix models further

Thank you.

