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1.   Introduction



Motivation (1/2)
There has long been an expectation
that quantum mechanics has its origin in randomness.

Question: 
Can quantum gravity be treated in such a framework?

Main purpose of my talk is to show:

• One can introduce a geometry to any stochastic system
which is based on Markov-chain Monte Carlo (MCMC), 
s.t. it reflects the difficulty of transitions between
two configurations.

• Such geometry possesses a larger (or largest) symmetry
if the algorithm is optimized s.t. distances are minimized.

• This distance gives another method to introduce
a geometry to matrix models

[Nelson, Parisi-Wu, ...]



( )2 2( ) ( 1) 1
2

To think more concretely, 
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- This definition is universal for MCMC algorithms
that generate local moves in configuration space

- The distance gives an AdS geometry
when a simulated tempering is implemented 
for multimodal distributions with optimized parameters
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- This gives another method to introduce a distance
in matrix models
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Preparation 1: MCMC simulation (1/3)
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 We first would like to establish a mathematical framework 
 which enables the systematic understanding of relaxation

Preparation 1: MCMC simulation (2/3)
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Preparation 2: Transfer matrix (2/2)
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Preparation 3: Connectivity between configs (1/3)
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Preparation 3: Connectivity between configs (2/3)

normalized connectivity (“half-time overlap”):
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Preparation 3: Connectivity between configs (3/3)
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Definition of distance
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Alternative definition of distance
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Universality of distance (1/4)
The above distance is expected to be universal
for MCMC algorithms that generate local moves in config space.

"universal" in the sense that differences of distance 
between two such local MCMC algorithms
can always be absorbed into a rescaling of n
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Universality of distance (2/4)
This expectation can be explicitly checked using a simple model.

algorithm 1: Langevin
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Universality of distance (3/4)
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Transfer matrix for Langevin

Langevin equation (continuum)
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Example 1: Unimodal distribution (Gaussian)
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Example 2: Unimodal dist. (non-Gaussian)
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Example 3: Multimodal dist. (double well) (1/2)
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Example 3: Multimodal dist. (double well) (2/2)
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Simulated tempering (1/3)
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Simulated tempering (2/3)
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Simulated tempering (3/3)
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Distance for simulated tempering

The introduction of tempering should be seen
as the reduction of distance.

In fact,

10 39.1
50 19.2
100 16.9
500 13.2

1,000 11.7
5,000 8.46

n 2 ( 1, 1)nd − +
26.5
7.16
4.35
0.708
0.106

2.78 x 10^(-8)

2 ( 1, 1)nd − +

w/o tempering w/ tempering

rapid decreasing

[MF-Matsumoto-Umeda1]



Coarse-grained configuration space (1/4)
In MCMC simulations,
the most expensive part is the transitions
between configs in different modes,
and thus, configs in the same mode can be
effectively treated as a point.

This leads us to the idea of "coarse-grained config space" 

We would like to show that

 when the original config space is multimodal 
 with high degeneracy, 
 the extended coarse-grainined config space  
 naturally has an AdS geometry

× 

x

x
1− 1+

1− 1+

[MF-Matsumoto-Umeda1,2]



Coarse-grained configuration space (2/4)
[MF-Matsumoto-Umeda2]
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Coarse-grained configuration space (3/4)
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Coarse-grained configuration space (4/4)
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AdS geometry as a result of optimization (1/4)
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One can actually confirm that (##) is the best choice
for minimizing the distance in simulated tempering:
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AdS geometry as a result of optimization (2/4)
That is,
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This is the first example of the “emergence 
of AdS geometry” in nonequilibrium systems.



AdS geometry as a result of optimization (3/4)

Algorithm to determine the metric
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AdS geometry as a result of optimization (4/4)
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Conclusion and outlook
What we have done:
- We introduced the concept of “distance between configs”

in MCMC simulations
- The distance satisfies desired properties as distance
- This can be used for the optimization of parameters, 

and AdS geometry appears as a result of optimization

Future work:
- Establish a systematic method for optimization

- Investigate the relationship between the obtained result
and the Einstein equation

- Investigate the geometry of matrix models further

( )
[ ( )]

 would be found by simply solving
        the E-L eq of some functional
e.g.,  

 
a a

I a
β β
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Thank you.
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