Quantized cosmological spacetimes and higher spin in the IKKT model

Harold Steinacker

Department of Physics, University of Vienna

ESI Vienna, july 2018

Motivation

Matrix Models ... natural framework for fundamental theory

- pre-geometric, constructive
- dynamical "quantum" (NC) spaces, gauge theory
- stringy features
 max. SUSY → inherit good behavior of critical string (UV)
- avoid string compactifications
 - → need different mechanism for gravity & chirality
- IKKT: allows to describe "beginning of time"!

outline:

- matrix models & matrix geometry
- 4D covariant quantum spaces: fuzzy S_N^4 , H_n^4
- cosmological space-times: M^{3,1} & BB!
- fluctuations → higher spin gauge theory
- metric, vielbein; gravity?

HS, arXiv:1606.00769
M. Sperling, HS arXiv:1707.00885
HS, arXiv:1709.10480, arXiv:1710.11495
M. Sperling, HS arXiv:1806.05907

The IKKT model

IKKT or IIB model

Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

$$S[X,\Psi] = - \text{Tr} \left([X^a, X^b][X^{a'}, X^{b'}] \eta_{aa'} \eta_{bb'} + \bar{\Psi} \gamma_a [X^a, \Psi] \right)$$
 $X^a = X^{a\dagger} \in \text{Mat}(N, \mathbb{C}) \,, \qquad a = 0, ..., 9, \qquad N \,\, ext{large}$ gauge symmetry $X^a \to U X^a U^{-1}, \,\, SO(9,1), \,\, ext{SUSY}$

proposed as non-perturbative definition of IIB string theory

- quantized Schild action for IIB superstring
- reduction of 10D SYM to point, N large
- add m²X^aX_a to set scale, IR regularization

$$Z = \int dX d\Psi e^{iS[X]}$$

Kim, Nishimura, Tsuchiya arXiv:1108.1540 ff

different points of view:

classical solutions = "branes"

justified by max. SUSY (cf. critical string thy)

generically NC geometry, "matrix geometry"

fluctuations \to field theory, 3+1D physics, dynamical geometry UV/IR mixing \to IKKT model \to unique 4D NC gauge theory

hypothesis

space-time = (near-) classical solution of IIB model

 10 bulk physics: sugra arises in M.M. from quantum effects (loops)

Kabat-Taylor, IKKT,...

"holographic"

cf. HS arXiv:1606.00646

Motivation Matrix geometry Fuzzy S_N^4 fields & kinematics fuzzy H_n^4 Cosmological space-times towards gravity

"matrix geometry" (\approx NC geometry):

- $S_E \sim \text{Tr}[X^a, X^b]^2 \Rightarrow \text{config's with small } [X^a, X^b] \neq 0 \text{ dominate}$
 - i.e. "almost-commutative" configurations
- \exists quasi-coherent states $|x\rangle$, minimize $\sum_{a} \langle x | \Delta X_a^2 | x \rangle$

$$X^a \approx \text{diag.}, \text{ spectrum} =: \mathcal{M} \subset \mathbb{R}^{10}$$

$$\langle x|X^a|x'\rangle \approx \delta(x-x')x^a, \qquad x\in\mathcal{M}$$

X a

hypothesis: classical solutions dominate
 "condensation" of matrices, geometry

NC branes embedded in target space \mathbb{R}^{10}

$$X^a \sim x^a$$
: $\mathcal{M} \hookrightarrow \mathbb{R}^{10}$

cf. Q.M: replace functions $x^a \rightsquigarrow$ matrices / observables X^a

typical examples: quantized Poisson manifolds

• Moyal-Weyl quantum plane \mathbb{R}^4_θ :

$$[X^a, X^b] = i\theta^{ab} \mathbf{1}$$

quantized symplectic space (\mathbb{R}^4, ω)

admits translations, no rotation invariance

fuzzy 2-sphere S_N²

$$X_1^2 + X_2^2 + X_3^2 = R_N^2, \quad [X_i, X_j] = i\epsilon_{ijk}X_k$$

fully covariant under SO(3)

(Hoppe; Madore)

generically:

fluctuations \rightarrow NC gauge theory, & dynamical geometry

issues for NC spaces / field theory:

- quantization → UV / IR mixing
 - → max. SUSY model: IKKT, BFSS, BMN
- Lorentz / SO(4) covariance in 4D?
 - <u>obstacle</u>: NC spaces: $[X^{\mu}, X^{\nu}] =: i\theta^{\mu\nu} \neq 0$ breaks Lorentz invariance
 - \exists fully covariant fuzzy four-sphere S_N^4

```
Grosse-Klimcik-Presnajder 1996; Castelino-Lee-Taylor; Ramgoolam; Kimura: Abe
```

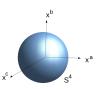
```
Hasebe; Medina-O'Connor; Karabali-Nair; Zhang-Hu 2001 (QHE!) ...
```

price to pay: "internal structure" → higher spin theory

covariant fuzzy four-sphere S_N^4

5 hermitian matrices X_a , a = 1, ..., 5 acting on \mathcal{H}_N

$$\sum_{a} X_a^2 = R^2$$



covariance: $X_a \in End(\mathcal{H}_N)$ transform as vectors of SO(5)

$$[\mathcal{M}_{ab}, X_c] = i(\delta_{ac}X_b - \delta_{bc}X_a),$$

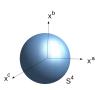
$$[\mathcal{M}_{ab}, \mathcal{M}_{cd}] = i(\delta_{ac}\mathcal{M}_{bd} - \delta_{ad}\mathcal{M}_{bc} - \delta_{bc}\mathcal{M}_{ad} + \delta_{bd}\mathcal{M}_{ac}).$$

 \mathcal{M}_{ab} ... so(5) generators acting on \mathcal{H}_N

covariant fuzzy four-sphere S_N^4

5 hermitian matrices X_a , a = 1, ..., 5 acting on \mathcal{H}_N

$$\sum_{a} X_a^2 = R^2$$



covariance: $X_a \in End(\mathcal{H}_N)$ transform as vectors of SO(5)

$$[\mathcal{M}_{ab}, X_c] = i(\delta_{ac}X_b - \delta_{bc}X_a),$$

$$[\mathcal{M}_{ab}, \mathcal{M}_{cd}] = i(\delta_{ac}\mathcal{M}_{bd} - \delta_{ad}\mathcal{M}_{bc} - \delta_{bc}\mathcal{M}_{ad} + \delta_{bd}\mathcal{M}_{ac}).$$

 \mathcal{M}_{ab} ... so(5) generators acting on \mathcal{H}_N

oscillator construction:

Grosse-Klimcik-Presnajder 1996; ...

$$egin{array}{lll} m{X}_a &= \psi^\dagger \gamma_a \psi, & \left[\psi^\beta, \psi^\dagger_lpha
ight] = \delta^eta_lpha \ m{\mathcal{M}}^{ab} &= \psi^\dagger \Sigma^{ab} \psi \end{array}$$

acting on $\mathcal{H}_N=\psi_{\alpha_1}^\dagger...\psi_{\alpha_N}^\dagger|0\rangle\cong (\mathbb{C}^4)^{\otimes_S N}\cong (0,N)_{\mathfrak{sg}(5)}$

relations:

$$\begin{array}{rcl} X_aX_a&=R^2\sim \frac{1}{4}r^2N^2\\ [X^a,X^b]&=ir^2\,\mathcal{M}^{ab}&=:i\Theta^{ab}\\ \\ \epsilon^{abcde}X_aX_bX_cX_dX_e&=(N+2)R^2r^3 & \text{(volume quantiz.)} \end{array}$$

geometry from coherent states |p>:

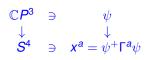
$$\{p_a = \langle p|X_a|p\rangle\} = S^4$$

closer inspection:

degeneracy of coherent states, "internal" S2 fiber

cf. Karczmarek, Yeh, arXiv:1506.07188

semi-classical picture: hidden bundle structure



Ho-Ramgoolam, Medina-O'Connor, Abe, ...

fuzzy case:

oscillator construction $[\Psi, \Psi^{\dagger}] = \delta \rightarrow \text{functions on fuzzy } \mathbb{C}P_N^3$

fuzzy S_N^4 is really fuzzy $\mathbb{C}P_N^3$, hidden extra dimensions S^2 !

Poisson tensor

$$\theta^{\mu\nu}(\mathbf{X},\xi)\sim -i[\mathbf{X}^{\mu},\mathbf{X}^{\nu}]$$

local $SO(4)_x$ rotates fiber $\xi \in S^2$

averaging over fiber $\rightarrow [\theta^{\mu\nu}(x,\xi)]_0 = 0$, local SO(4) preserved!

... 4D "covariant" quantum space

fields and harmonics on S_N^4

"functions" on S_N^4 :

$$End(\mathcal{H}_N)\cong \bigoplus_{s=0}^N \ \mathcal{C}^s$$

$$End(\mathcal{H}_N) \cong \bigoplus_{s=0}^N \mathcal{C}^s$$
 $\qquad \qquad \mathcal{C}^s = \bigoplus_{n=0}^N (n, 2s) \ni \boxed{\qquad}$

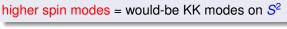
(n,0) modes = scalar functions on S^4 :

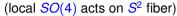
$$\phi(X) = \phi_{a_1...a_n} X^{a_1}...X^{a_n} = \square \square$$

(n, 2) modes = selfdual 2-forms on S^4

$$\phi_{bc}(X)\theta^{bc} = \phi_{a_1...a_nb;c}X^{a_1}...X^{a_n}\theta^{bc} = \Box$$

 $End(\mathcal{H}) \cong \text{ fields on } S^4 \text{ taking values in } \mathfrak{hs} = \oplus$





relation with spin s fields: one-to-one map

$$\mathcal{C}^{s} \cong \mathcal{T}^{*\otimes_{S}s}S^{4}$$

$$\phi^{(s)} = \phi_{b_{1}...b_{s};c_{1}...c_{s}}^{(s)}(x) \theta^{b_{1}c_{1}} \dots \theta^{b_{s}c_{s}} \mapsto \phi_{c_{1}...c_{s}}^{(s)}(x) = \phi_{b_{1}...b_{s};c_{1}...c_{s}}^{(s)}x^{b_{1}} \dots x^{b_{s}}$$

$$\{x^{c_{1}}, ..., \{x^{c_{s}}, \phi_{c_{1}...c_{s}}^{(s)}(x)\}...\} \leftarrow \phi_{c_{1}...c_{s}}^{(s)}(x)$$

... "symbol" of $\phi \in \mathcal{C}^s$

M. Sperling & HS, arXiv:1707.00885

 $C^s \cong \text{symm.}$, traceless, tang., div.-free rank s tensor field on S^4

$$\phi_{c_1...c_s}(x)x^{c_i} = 0,$$

$$\phi_{c_1...c_s}(x)g^{c_1c_2} = 0,$$

$$\partial^{c_i}\phi_{c_1...c_s}(x) = 0.$$

Poisson calculus: (semi-classical limit)

M. Sperling & HS, 1806.05907

 $\mathbb{C}P^3$ = symplectic manifold, $\{x^a, x^b\} = \theta^{ab}$

$$\eth^{a}\phi := -\frac{1}{r^{2}R^{2}}\theta^{ab}\{x_{b},\phi\}, \qquad \{x^{a},\cdot\} = \theta^{ab}\eth_{b}$$

satisfy

$$\eth^a x^c = P_T^{ac} = g^{ac} - \frac{1}{B^2} x^a x^c$$

matrix Laplacian:

$$\Box = [x^a, [x_a, .]] \sim -\{x^a, \{x_a, .\}\} = -r^2 R^2 \eth^a \eth_a$$

covariant derivative:

$$\nabla = P_T \circ \eth, \qquad \nabla \theta^{ab} = 0$$

curvature

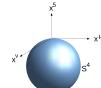
$$\mathcal{R}_{ab} := \mathcal{R}[\eth_a, \eth_b] = [\nabla_a, \nabla_b] - \nabla_{[\eth_a, \eth_b]}$$

... Levi-Civita connection on S4

local description: pick north pole $p \in S^4$

→ tangential & radial generators

$$X^a = \begin{pmatrix} X^{\mu} \\ X^5 \end{pmatrix}, \qquad \mu = 1, ..., 4...$$
tangential coords at p



separate SO(5) into SO(4) & translations

$$\mathcal{M}^{ab} = \begin{pmatrix} \mathcal{M}^{\mu\nu} & \mathcal{P}^{\mu} \\ -\mathcal{P}^{\mu} & 0 \end{pmatrix} \qquad \text{where} \quad \mathcal{P}^{\mu} = \mathcal{M}^{\mu 5}$$

Poisson algebra $\{P_{\mu}, X^{\nu}\} \approx \delta^{\nu}_{\mu}$ locally

Motivation

local form of spin s harmonics: e.g. spin 2:

$$\phi^{(2)} = \phi_{\mu\nu}(x)P^{\mu}P^{\nu} + \omega_{\mu:\alpha\beta}(x)P^{\mu}\mathcal{M}^{\alpha\beta} + \Omega_{\alpha\beta;\mu\nu}(x)\mathcal{M}^{\alpha\beta}\mathcal{M}^{\mu\nu}$$

$$\text{recall } \textit{End}(\mathcal{H}) = \oplus \mathcal{C}^s, \ \mathcal{C}^s \cong \text{rank } s \text{ tensor fields } \phi_{a_1...a_s}(x)$$

$$\text{unique irrep } (n,2s) \in \textit{End}(\mathcal{H}) \Rightarrow \text{constraints!}$$

$$\omega_{\mu;\alpha\beta} \propto \partial_{\alpha}\phi_{\mu\beta} - \partial_{\beta}\phi_{\mu\alpha}$$

$$\Omega_{\alpha\beta;\mu\nu} \propto \mathcal{R}_{\alpha\beta\mu\nu}[\phi]$$

... linearized spin connection and curvature determined by $\phi_{\mu\nu}$

similarly:

Motivation

cosmological quantum space-times $\mathcal{M}_n^{3,1}$:

- exactly homogeneous & isotropic
- finite density of microstates
- mechanism for Big Bang
- starting point: fuzzy hyperboloid H_n⁴

Euclidean fuzzy hyperboloid H_n^4

Hasebe arXiv:1207.1968

 \mathcal{M}^{ab} ... hermitian generators of $\mathfrak{so}(4,2)$,

$$[\mathcal{M}_{ab}, \mathcal{M}_{cd}] = i(\eta_{ac}\mathcal{M}_{bd} - \eta_{ad}\mathcal{M}_{bc} - \eta_{bc}\mathcal{M}_{ad} + \eta_{bd}\mathcal{M}_{ac})$$
.

 $\eta^{ab} = \operatorname{diag}(-1,1,1,1,1,-1)$ choose "short" discrete unitary irreps \mathcal{H}_n ("minireps", doubletons) special properties:

- irreps under 50(4, 1), multiplicities one, minimal oscillator rep.
- positive discrete spectrum

$$\operatorname{spec}(\mathcal{M}^{05}) = \{E_0, E_0 + 1, ...\}, \qquad E_0 = 1 + \frac{n}{2}$$

lowest eigenspace of \mathcal{M}^{05} is n+1-dim. irrep of $SU(2)_L$: fuzzy S_n^2

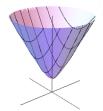
fuzzy hyperboloid H_n^4

def.

$$\begin{array}{ll} X^a &:= r\mathcal{M}^{a5}, & a=0,...,4 \\ [X^a,X^b] &= ir^2\mathcal{M}^{ab} =: i\Theta^{ab} \end{array}$$

5 hermitian generators $X^a = (X^a)^{\dagger}$ satisfy

$$\eta_{ab}X^aX^b = X^iX^i - X^0X^0 = -R^2\mathbf{1}, \qquad R^2 = r^2(n^2 - 4)$$



one-sided hyperboloid in $\mathbb{R}^{1,4}$, covariant under SO(4,1)

note: induced metric: Euclidean AdS4

oscillator construction: 4 bosonic oscillators $[\psi_{\alpha}, \bar{\psi}^{\beta}] = \delta_{\alpha}^{\beta}$ \mathcal{H}_n = suitable irrep in Fock space

Then

$$\mathcal{M}_{ab} = \bar{\psi} \Sigma_{ab} \psi, \qquad \gamma_0 = \textit{diag}(1, 1, -1, -1)$$
 $\mathcal{X}^a = r \bar{\psi} \gamma^a \psi$

$$H_n^4$$
 = quantized $\mathbb{C}P^{1,2} = S^2$ bundle over H^4 , selfdual $\theta^{\mu\nu}$

analogous to S_N^4 , finite density of microstates

fuzzy "functions" on H_n^4 :

$$End(\mathcal{H}_n) \cong \bigoplus_{s=0}^n \ \mathcal{C}^s = \int_{\mathbb{C}P^{1,2}} d\mu \ f(m) |m\rangle \langle m|$$

= fields on H^4 taking values in $\mathfrak{hs} = \oplus_s \longrightarrow \mathcal{M}^{a_1b_1}...\mathcal{M}^{a_sb_s}$

spin s sectors C^s selected by spin Casimir

$$S^{2} = \sum_{a < b \leq 4} [\mathcal{M}^{ab}, [\mathcal{M}_{ab}, \cdot]] + r^{-2} [X_{a}, [X^{a}, \cdot]],$$

can show:

$$S^2|_{C^s} = 2s(s+1), \qquad s = 0, 1, ..., n$$

M. Sperling & H.S. 1806.05907

open FRW universe from H_n^4

$$Y^{\mu} := X^{\mu}, \text{ for } \mu = 0, 1, 2, 3 \quad \text{(drop } X^{4} \text{ !)}$$

 $\mathcal{M}_n^{3,1}$ = projected H_n^4 embedded in $\mathbb{R}^{1,3}$ via projection

$$Y^{\mu} \sim y^{\mu}: \; \mathbb{C} P^{1,2} \rightarrow H^4 \; \stackrel{\Pi}{\longrightarrow} \; \mathbb{R}^{1,3} \; .$$

satisfies

Motivation

$$\begin{split} [Y^{\mu},[Y^{\mu},Y^{\nu}]] &= \textit{ir}^2[Y^{\mu},\mathcal{M}^{\mu\nu}] \qquad \text{(no sum)} \\ &= r^2 \left\{ \begin{array}{ll} Y^{\nu}, & \nu \neq \mu \neq 0 \\ -Y^{\nu}, & \nu \neq \mu = 0 \\ 0, & \nu = \mu \end{array} \right. \end{split}$$

hence

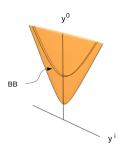
$$\square_{Y}Y^{\mu} = [Y^{\nu}, [Y_{\nu}, Y^{\mu}]] = 3r^{2}Y^{\mu}$$
.

.... solution of IKKT with $m^2 = 3r^2$.

→ HS arXiv:1710.11495 ∽ Q Q

properties:

Motivation



- SO(3,1) manifest \Rightarrow foliation into SO(3,1)-invariant space-like 3-hyperboloids H_t^3
- double-covered FRW space-time with hyperbolic (k = -1) spatial geometries

$$ds^2 = dt^2 - a(t)^2 d\Sigma^2$$

 $d\Sigma^2$... SO(3,1)-invariant metric on space-like H^3

metric properties

reference point $p \in H^4 \subset \mathbb{R}^{1,4}$

$$p^a = R(\cosh(\eta), \sinh(\eta), 0, 0, 0)$$

induced metric:

$$g_{\mu\nu} = (-1, 1, 1, 1) = \eta_{\mu\nu}, \qquad \mu, \nu = 0, 1, 2, 3$$
 (Minkowski!)

→ Milne metric:

$$ds_a^2 = -dt^2 + t^2 d\Sigma^2$$

however: induced metric ≠ effective ("open string") metric

effective metric (for scalar fields)

H.S. arXiv:1003.4134

encoded in
$$\square_Y = [Y_\mu, [Y^\mu, .]] \sim \frac{1}{\sqrt{|G|}} \partial_\mu (\sqrt{|G|} G^{\mu\nu} \partial_\nu.)$$
:

$$G^{\mu\nu} = \alpha \gamma^{\mu\nu} , \qquad \alpha = \sqrt{\frac{|\theta^{\mu\nu}|}{|\gamma^{\mu\nu}|}} ,$$

$$\gamma^{\mu\nu} = g_{\mu'\nu'} [\theta^{\mu'\mu} \theta^{\nu'\nu}]_{S^2}$$

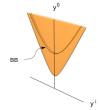
where $[.]_{S^2}$... averaging over the internal S^2 .

$$\gamma^{\mu\nu} = \frac{\Delta^4}{4} \operatorname{diag}(c_0(\eta), c(\eta), c(\eta), c(\eta))$$

at p, where

$$c(\eta) = 1 - \frac{1}{3} \cosh^2(\eta)$$

 $c_0(\eta) = \cosh^2(\eta) - 1 \ge 0$



signature change at $c(\eta) = 0$

$$\cosh^2(\eta_0) = 3$$
 ...Big Bang!

Euclidean for $\eta < \eta_0$, Minkowski (+---) for $\eta > \eta_0$

conformal factor
$$\alpha = \sqrt{\frac{|\theta^{\mu\nu}|}{|\gamma^{\mu\nu}|}} = \frac{4}{\Delta^4} |c(\eta)|^{-\frac{3}{2}}$$

from SO(4,2)-inv. (Kirillov-Kostant) symplectic ω on $\mathbb{C}P^{1,2}$

→ effective metric at p

$$G_{\mu
u} = ext{diag}\Big(rac{|c(\eta)|^{rac{3}{2}}}{c_0(\eta)}, -|c(\eta)|^{rac{1}{2}}, -|c(\eta)|^{rac{1}{2}}, -|c(\eta)|^{rac{1}{2}}\Big)$$

FLRW metric and scale factor (after BB)

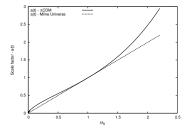
$$ds_G^2 = dt^2 - a^2(t)d\Sigma^2$$

late times:

linear coasting cosmology

$$a(t) \approx \frac{3\sqrt{3}}{2}t$$
.

- $a(t) \sim t$ is remarkably close to observation:
 - age of univ. $13.9 \times 10^9 y$ from present Hubble parameter



artificial within GR, natural in M.M., provided gravity emerges below cosm. scales

can reasonably reproduce SN1a (without acceleration)

cf. Nielsen, Guffanti, Sarkar Sci.Rep. 6 (2016)

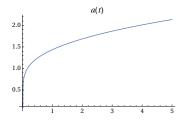
Motivation

Big Bang:

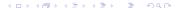
Motivation

shortly after the BB $\eta \gtrsim \eta_0$:

$$a(t) \propto c(t)^{\frac{1}{4}} \propto t^{1/7}$$

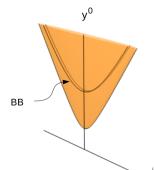


conformal factor & 4-volume form $|\theta^{\mu\nu}|$ responsible for singular expansion!



other features:

- ∃ Euclidean pre-BB era
- 2 sheets with opposite intrinsic "chirality" (i.e. $\theta^{\mu\nu}$ (A)SD)



- ∃ higher-spin fluctuation modes
 - → higher-spin gauge theory
- small n possible (even n = 0)

other cosmological solutions

Motivation

• "momentum embedding" (same $\mathcal{M}_n^{3,1}$, different metric) k=-1M. Sperling & H.S. 1806.05907

- expanding closed universe k = 1
- recollapsing universe k=1

HS arXiv:1709.10480

momentum embedding:

$$T^{\mu}:=rac{1}{R}\mathcal{M}^{\mu4}$$

$$\Box_{\mathcal{T}}T^{\mu}=-3rac{1}{R^2}T^{\mu}\;.$$

... solution of IKKT model with mass

- $[T^{\mu}, X^{\nu}] = if(t)\eta^{\mu\nu}$, momentum generator (cf. Hanada, Kawai, Kimura hep-th/0508211])
- similar expansion of functions $f(X) + f_{\mu}(X)T^{\mu} + ...$, higher-spin modes on $\mathcal{M}^{3,1}$
- similar eff. SO(3, 1) -invariant FRW metric, k = -1
- similar late-time behavior
- BB, initial $a(t) \sim t^{1/5}$, no signature change
- ... work in progress M. Sperling & HS

- \exists further FRW solutions with k = +1, in presence of SO(4,1)-breaking mass $-m^2Y^iY^i + m_0^2Y^0Y^0$
 - expanding closed universe from projection of fuzzy H_n^4
 - recollapsing closed universe from projection of fuzzy S_N^4

HS, arXiv:1709.10480

Motivation

fluctuations & higher spin gauge theory on H_n^4

$$S[Y] = Tr(-[Y^a, Y^b][Y_a, Y_b] + m^2 Y^a Y_a) = S[U^{-1} YU]$$

background solution: S_N^4 , H_n^4

add fluctuations $Y^a = X^a + A^a$

expand action to second oder in A^a

$$S[Y] = S[X] + \frac{2}{g^2} \operatorname{Tr} \mathcal{A}_{\mathbf{a}} \underbrace{\left(\left(\Box + \frac{1}{2}\mu^2 \right) \delta_b^a + 2[[X^a, X^b], .] - [X^a, [X^b, .]] \right)}_{\mathcal{D}^2} \mathcal{A}_{\mathbf{b}}$$

$$\Box = [X^a, [X_a, .]]$$

- ullet fluctuations \mathcal{A}_a describe gauge theory (NCFT) on \mathcal{M} ("open strings" ending on \mathcal{M})
- for S_N^4 , H_n^4 : A_a ... hs-valued gauge field, incl. spin 2

Motivation

4 indep. tangential fluctuation modes $A_a \in End(\mathcal{H}) \otimes (5)$

$$\mathcal{A}_{a}^{(1)} = \eth_{a}\phi^{(s)},
\mathcal{A}_{a}^{(2)} = \theta^{ab}\eth_{b}\phi^{(s)} = \{x^{a}, \phi^{(s)}\}
\mathcal{A}_{a}^{(3)} = \phi_{a}^{(s)}
\mathcal{A}_{a}^{(4)} = \theta^{ab}\phi_{b}^{(s)}.$$

where $\phi^{(s)} \in End(\mathcal{H})$... spin s mode, $\phi_a^{(s)} \propto \{x_a, \phi^{(s)}\}_{s-1}$

eigenmodes of \mathcal{D}^2 :

Motivation

$$\begin{array}{ll} \mathcal{B}_{a}^{(1)} &= \mathcal{A}_{a}^{(1)} - \frac{\alpha_{s}}{R^{2}r^{2}} (\Box - 2r^{2}) \mathcal{A}_{b}^{(4)}, \\ \mathcal{B}_{a}^{(2)} &= \mathcal{A}_{a}^{(2)} + \alpha_{s} (\Box - 2r^{2}) \mathcal{A}_{a}^{(3)}, \\ \mathcal{B}_{a}^{(3)} &= \mathcal{A}_{a}^{(3)} \\ \mathcal{B}_{a}^{(4)} &= \mathcal{A}_{a}^{(4)} \end{array}$$

can diagonalize \mathcal{D}^2 all tangential modes are stable!

+ radial modes (unstable)

M. Sperling & H.S. 1806.05907

metric and vielbein

consider scalar field $\phi = \phi(X)$ (= transversal fluctuation)

kinetic term

$$-\mathit{Tr}[X^a,\phi][X_a,\phi] \sim \int \mathbf{e}^a \phi \mathbf{e}_a \phi = \int \gamma^{\mu
u} \partial_\mu \phi \partial_
u \phi$$

vielbein

$$egin{array}{ll} \mathbf{e}^{a} &:= \{ X^{a},. \} = \mathbf{e}^{a\mu} \partial_{\mu} \ \mathbf{e}^{a\mu} &= \theta^{a\mu} \end{array}$$

metric

$$\gamma^{\mu\nu} = \eta_{\alpha\beta} \mathbf{e}^{\alpha\mu} \mathbf{e}^{\beta\nu} = \frac{1}{4} \Delta^4 g^{\mu\nu}$$

Poisson structure → frame bundle!

perturbed vielbein:
$$Y^a = X^a + A^a$$

$$e^a:=\{Y^a,.\}\sim e^{a\mu}[\mathcal{A}]\partial_{\mu}$$
 ... vielbein $\delta_{\mathcal{A}}\gamma^{ab}=:H^{ab}[\mathcal{A}]=\theta^{ca}\{\mathcal{A}_c,x^b\}+(a\leftrightarrow b)$

linearize & average over fiber \rightarrow

$$G^{ab} = \gamma^{ab} + h^{ab}$$
, $h^{ab} \sim [H^{ab}]_0$

spin 2 graviton:

$$h_{ab}[\mathcal{B}^{(4)}] = 2\alpha_1(\Box - 2r^2)\phi_{ab}, \qquad \nabla^a h_{ab} = 0$$

all other modes drop out: $h_{ab}[\mathcal{B}^{(i)}] = 0$

quadratic action for spin 2 graviton $h_{ab}[\mathcal{B}] = 2\alpha_1(\Box - 2r^2)\phi_{ab}$:

$$S_2[h_{ab}] \propto \int \mathcal{B}_a \mathcal{D}^2 \mathcal{B}^a \propto \int h_{ab}[\mathcal{B}] h_{ab}[\mathcal{B}]$$

hab doesn't propagate in classical model

due to field redefinitions via $(\Box - 2r^2)$

coupling to matter:

Motivation

$$S[\text{matter}] \sim \int_{\mathcal{M}} d^4 x \, h^{ab} T_{ab}$$

 \rightarrow auxiliary field $h_{ab} \sim T_{ab}$!

HS, arXiv:1606.00769, M. Sperling, HS arXiv:1707.00885

however:

- **1** quantum effects \rightarrow induced gravity action $\sim \int h_{\mu\nu} \Box h^{\mu\nu}$
 - → (lin.) Einstein equations (+ possibly c.c. and/or mass)
- consider different action (however: UV/IR mixing)
- for cosmological space-times:

... to be worked out

GR not renormalizable ⇒ need different starting point

→ emergent gravity ?

present model might be healthy candidate

towards higher-spin gravity on $\mathcal{M}^{3,1}$

momentum embedding $Y^a = T^a$ best suited

- space of modes = tangential modes on H⁴, similar structure clean separation of higher spin modes
- manifest SO(3,1), local Lorentz-invar. not guaranteed
 (could be bi-metric...)
- conjecture: no ghosts
- compute mass spectrum (to exclude tachyons, instabilities)

work in progress

M. Sperling, HS

summary

- matrix models: promising framework for quantum theory of space-time & matter
- ∃ nice cosmological FRW space-time solutions
 - reg. BB, finite density of microstates
 - IKKT allows to address origin of time!
- all ingredients for gravity, good UV behavior (SUSY)
- regularized higher spin theory, cf. Vasiliev
- may not lead to gravity at classical level; emergent gravity?
 more work required for cosm. space-times

stay tuned!

gauge transformations:

$$Y^a o UY^aU^{-1}=U(X^a+\mathcal{A}^a)U^{-1}$$
 leads to
$$\delta\mathcal{A}^a=i[\Lambda,X^a]+i[\Lambda,\mathcal{A}^a]$$

expand

Motivation

$$\Lambda = \Lambda_0 + \frac{1}{2} \Lambda_{ab} \mathcal{M}^{ab} + ...$$

... $U(1) \times SO(5) \times ...$ - valued gauge trafos

<u>diffeos</u> from $\delta_{\mathbf{v}} := i[\mathbf{v}_{\rho} \mathbf{P}^{\rho}, .]$

$$\delta h_{\mu\nu} = (\partial_{\mu} \mathbf{v}_{\nu} + \partial_{\nu} \mathbf{v}_{\mu}) - \mathbf{v}^{\rho} \partial_{\rho} h_{\mu\nu} + (\Lambda \cdot h)_{\mu\nu}$$

$$\delta A_{\mu\rho\sigma} = \frac{1}{2} \partial_{\mu} \Lambda_{\sigma\rho} (\mathbf{x}) - \mathbf{v}^{\rho} \partial_{\rho} A_{\mu\rho\sigma} + (\Lambda \cdot A)_{\mu\rho\sigma}$$

etc.

further solutions: expanding closed universe

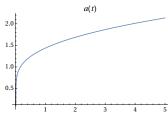
$$S[Y] = \frac{1}{g^2} \text{Tr} \Big([Y^a, Y^b][Y^{a'}, Y^{b'}] \eta_{aa'} \eta_{bb'} - m^2 Y^i Y^i + m_0^2 Y^0 Y^0 \Big) .$$

∃ solution:

$$Y^{i} = X^{i}$$
, for $i = 1, ..., 4$, $Y^{0} = \kappa X^{5}$ for X^{a} ... fuzzy H_{n}^{4}

FRW cosmology with spatial S^3 , k = 1

cosm. scale factor: late time $a(t) \sim t^{1/3}$, BB $a(t) \sim t^{1/7}$



further solutions: recollapsing closed universe

$$S[Y] = \frac{1}{g^2} \text{Tr} \Big([Y^a, Y^b][Y^{a'}, Y^{b'}] \eta_{aa'} \eta_{bb'} - m^2 Y^i Y^i + m_0^2 Y^0 Y^0 \Big) .$$

∃ solution

$$Y^{i} = X^{i}$$
, for $i = 1, ..., 4$, $Y^{0} = \kappa X^{5}$ for X^{a} ... fuzzy S_{N}^{4}

FRW cosmology with spatial S^3 , k = 1

cosm. scale factor:

BB
$$a(t) \sim t^{1/7}$$

