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1 Introduction

Lie groups are of great importance in modern theoretical physics. Their main applica-
tion is in the context of symmetries. Symmetries are typically certain transformations
(rotations, ...) of a physical system

Φ : M → M (1)

which map allowed configurations (such as solutions of some equation of motion) into
other allowed configurations. It turns out that this is an extremely powerful concept, be-
cause it restricts the dynamics of a system, and allows to use the powerful mathematical
tools of group theory.

Since symmetry transformations are specific maps of some configuration space, they are
associative, they can be iterated, and hopefully reversed. This leads immediately to the
concept of a group. Lie groups are continuous groups, i.e. they contain infinitely many
(more precisely a continuum of) different transformations which are related in a differen-
tiable way. It turns out that their structure is essentially encoded in their associated Lie
algebras, which are very useful for explicit calculation. In fact, pretty much everything
in the context of group theory can in principle be calculated. If applicable, group theory
provides a natural description and organization of a physical system. For example, in
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the context of Lagrangian systems (= almost all systems), symmetries arising from Lie
groups lead to conservation laws via Noethers Theorem.

Some of the applications of Lie groups in physics are as follows:

• translations, leading to plane waves, Fourier transforms, the concepts of energy
and momentum, and most of your homework problems so far

• rotations in R3 (i.e. SO(3)), which leads to the concept of angular momentum

• In Quantum Mechanics, rotations are generalized to SU(2), leading to the concept
of spin (and precise calculations of Hydrogen atoms etc. etc.)

• Einstein understood that the rotations in R3 should be extended to rotations in
Minkowski space, which are described by SO(1, 3) leading e.g. to E = mc2.

• Wigner realized that SO(1, 3) should be extended to the Poincaré group, leading to
the correct (“kinematical”) description of elementary particles: they are irreducible
unitary representations of the Poincaré group.

• Modern theories of the dynamics of elementary particles are based on the concept
of gauge groups, which are infinite-dimensional Lie groups based on classical Lie
groups. For the standard model it is SU(3) × SU(2) × U(1), and people try to
extend it to groups like SU(5), SO(8), E6, ....

The concept of a quark is entirely based on the group theory of SU(3), and will
be explained later.

At least sometimes gauge groups can be considered as something like SU(∞).

There are further “approximate” symmetries, broken symmetries, ... which are
very useful in elementary particle theory.

• In string theory, the whole zoo of Lie groups and -algebras occurs including infinite-
dimensional ones like the Virasoro algebra, affine Lie algebras, etc.

The examples above are Lie groups. Some interesting discrete groups are:

• crystallographic groups, leading to a classification of crystals

• lattice translations, leading to Bloch waves etc. in solid state physics

• the symmetric group (permutation group), leading e.g. to the concept of Fermions
and Bosons

Notice that all of these are transformation groups, i.e. they act on some space of states
via invertible transformations.
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2 Groups

Definition 1 A group is a set G, together with a map

µ : G×G → G,

(g1, g2) 7→ g1 · g2 (2)

with the following properties:

1. Associativity: for all g1, g2 ∈ G,

g1 · (g2 · g3) = (g1 · g2) · g3. (3)

2. There exists an element e (the identity element) in G such that for all g ∈ G,

g · e = e · g = g. (4)

3. For all g ∈ G, there exists an element g−1 ∈ G (the inverse element) with

g · g−1 = g−1 · g = e. (5)

If g ·h = h · g for all g, h ∈ G, then the group is said to be commutative (or abelian).

It is easy to show that the identity element e is unique, and so is the inverse for each
g ∈ G.

Examples of groups are the integers Z with the group law being addition, the per-
mutation group (symmetric group) of n elements, and the integers Zn modulo n with
addition.

A Lie group is a group which is also a differentiable manifold; the precise definition
will be given later.

Typical examples of Lie groups are the reals R with the group law being addition, R−{0}
and C − {0} with the group law being multiplication, the complex numbers with unit
modulus S1 and multiplication, and matrix groups such as SU(n), SO(n), GL(n),... .

Definition 2 A subgroup of a group G is a subset H of G with the following properties:

1. The identity is an element of H.
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2. If h ∈ H, then h−1 ∈ H.

3. If h1, h2 ∈ H, then h1h2 ∈ H .

It follows that H is a group, with the same product operation as G (but restricted to H).
A typical example of a subgroup is the group of orthogonal matrices SO(n) ⊂ GL(n).

Definition 3 Let G and H be groups. A map ϕ : G→ H is called a homomorphism
if ϕ(g1g2) = ϕ(g1)ϕ(g2) for all g1, g2 ∈ G. If in addition, ϕ is bijective, then ϕ is called
an isomorphism.

It is easy to see that if eG the identity element of G, and eH the identity element of
H and ϕ : G → H is a homomorphism, then ϕ(eG) = eH , and ϕ(g

−1) = ϕ(g)−1 for all
g ∈ G.

The main use of groups in physics is as transformation groups, which means that a (Lie)
group G acts on some space M of states of a physical system. This is formalized as
follows:

Definition 4 A left action of a Lie group G on a space M is a map

G×M → M,

(g, ψ) 7→ g ▷ ψ (6)

which respects the group law, (g1g2) ▷ ψ = (g1) ▷ (g2 ▷ ψ) and e ▷ ψ = ψ. Equivalently, it
is a group homomorphism

π : G→Map(M,M) (7)

from G into the invertible maps from M to itself, given by (π(g)) ▷ ψ = g ▷ ψ (“trans-
formation group”).

Usually one only needs linear transformations, i.e. maps π : G→ GL(V ) on some vector
space V . Because this is so important, one attaches a name to that concept:

Definition 5 Let G be a group. Then a (real, complex) representation of G is a
group homomorphism

π : G→ GL(V )

where V is a (real, complex) vector space (i.e. V = Rn resp. V = Cn essentially).
Equivalently, it is given by a map G× V → V as above.

One of the main results of the theory of Lie groups is the classification and description
of such “linear” representations. The principal tool is to reduce this problem to an
analogous problem for Lie algebras. The goal of this lecture is to explain these things.
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3 Examples of Lie groups in physics

3.1 The rotation group SO(3) and its universal covering group
SU(2)

SO(3) is the rotation group of R3 which is relevant in classical Mechanics. It acts on
the space R3 as

SO(3)× R3 → R3,

(g, x⃗) 7→ g · x⃗ (8)

In particular, this is the simplest of all representations of SO(3), denoted by π3 :
SO(3) → GL(R3).

If a physical system is isolated, one should be able to rotate it, i.e. there there should
be an action of SO(3) on the space of states M (=configuration space). In Quantum
Mechanics, the space of states is described by a vector space V (the Hilbert space),
which therefore should be a representation of SO(3).

It turns out that sometimes (if we deal with spin), SO(3) should be “replaced” by the
“spin group” SU(2). In fact, SU(2) and SO(3) are almost (but not quite!) isomorphic.
More precisely, there exists a Lie group homomorphism ϕ : SU(2) → SO(3) which maps
SU(2) onto SO(3), and which is two-to-one. This is a nice illustration of the importance
of global aspects of Lie groups.

To understand this, consider the space V of all 2 × 2 complex matrices which are her-
mitean and have trace zero,

V = {hermitean traceless 2× 2 matrices} = {
(

x3, x1 − ix2

x1 + ix2, −x3
)
, xi ∈ R} (9)

This is a three-dimensional real vector space with the following basis

σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
(the Pauli matrices), hence any x ∈ V can be written uniquely as x = xiσi. We may
define an inner product on V by the formula

⟨x, y⟩ = 1

2
trace(xy)

(Exercise: check that this is an inner product.) A direct computation shows that
{σ1, σ2, σ3} is an orthonormal basis for V . Hence we can identify V with R3. Now
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if U is an element of SU(2) and x is an element of V , then it is easy to see that UxU−1

is in V . Thus for each U ∈ SU(2), we can define a linear map ϕU of V to itself by the
formula

ϕ : SU(2)× V → V

(U, x) → ϕU(x) = UxU−1 (10)

Moreover, given U ∈ SU(2), and x, y ∈ V , note that

⟨ϕU(x), ϕU(y)⟩ =
1

2
trace(UxU−1UyU−1) =

1

2
trace(xy) = ⟨x, y⟩

Thus ϕU is an orthogonal transformation of V ∼= R3, which we can think of as an element
of O(3). It follows that the map U → ϕU is a map of SU(2) into O(3). It is very easy to
check that this map is a homomorphism (i.e., ϕU1U2 = ϕU1ϕU2), and that it is continuous.

Now recall that every element of O(3) has determinant ±1. Since SU(2) is connected
(Exercise), and the map U → ϕU is continuous, ϕU actually maps into SO(3). Thus

ϕ : SU(2) → SO(3)

U → ϕU (11)

is a Lie group homomorphism of SU(2) into SO(3). In particular, every representation
of SO(3) is automatically a representation of SU(2), but the converse is not true. The
map U → ϕU is not one-to-one, since for any U ∈ SU(2), ϕU = ϕ−U . (Observe that if U
is in SU(2), then so is −U .) In particular, only rotations around 720 degree lead back
to the identity in SU(2). This happens for spin in Q.M.

This was illustrated by Dirac as follows: ...

It is now easy to show that ϕU is a two-to-one map of SU(2) onto SO(3). Moreover,
SU(2) is simply connected, and one can show that it is in a sense the “universal cover”
of SO(3), i.e. the “universal rotation group” (i.e. there is no other covering-group of
SU(2)).

3.1.1 Finite and “infinitesimal” rotations

The rotation operators (or rotation matrices) of vectors in R3 are well-known to be

R(ϕe⃗x) :=

 1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

 , R(ϕe⃗y) :=

 cos(ϕ) 0 − sin(ϕ)
0 1 0

sin(ϕ) 0 cos(ϕ)

 , und

R(ϕe⃗z) :=

 cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

 .
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One can show (exercise!) that rotations around the axis ϕ⃗

|ϕ⃗|
by the angle |ϕ⃗| take the

form
R(ϕ⃗) = eiϕ⃗·J⃗ ∈ SO(3)

for ϕ⃗ ∈ R3 and

Jx :=

 0 0 0
0 0 −i
0 i 0

 , Jy :=

 0 0 i
0 0 0
−i 0 0

 , und

Jz :=

 0 −i 0
i 0 0
0 0 0

 .

Note that
R((φ1 + φ2)e⃗) = R(φ1e⃗)R(φ2e⃗).

for any e⃗. “Infinitesimal” rotations therefore have the form

R(εϕ⃗) = 11 + iεϕ⃗ · J⃗

Therefore the Ji are called “generators” of rotations, and one can check that they satisfy

[Ji, Jj] = iϵijkJk. (12)

This is the “rotation algebra”, i.e. the Lie algebra so(3) of SO(3). In general, any (linear)
operators Ji ∈ GL(V ) satisfying (12) are called “angular momentum generators”, and

R(ϕ⃗) = eiϕ⃗·J⃗ für ϕ⃗ ∈ R3 are called rotation operators (in mathematics usually iJi is
used). The fact that the generators don’t commute reflects the fact that the group is
non-abelian. One can show that the group structure (i.e. the “table of multiplication”)
of SO(3) is (almost) uniquely determined by these commutation relations. The precise
statement will be given later.

There are many non-equivalent “realizations” (i.e. representations) of (12), one for each
half-integer spin. The “simplest“ (smallest, fundamental) one is the spin 1

2
representa-

tion, given by the Pauli-matrices: J (1/2)
i =

1
2
σi, where

σx =

(
0 1
1 0

)
, σy =

(
o −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Finite rotations of spin 1
2
objects are obtained as

R(1/2)(ϕ⃗) = eiϕ⃗·J⃗
(1/2) ∈ SU(2)

They act on ”spinors“, i.e. elements of C2. One can easily verify that the spin 1
2

representation of a rotation around 2π is equal to −11 , and rotations around 4π give
the identity. One can now show that every representation of the rotation algebra so(3)
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induces automatically a representation of SU(2) on the representation space V of the
generators Ji using the formula

π : SU(2) → GL(V )

U = eiϕ⃗·J⃗
(1/2) 7→ eiϕ⃗·J⃗ (13)

This is a group homomorphism! For example, the group homomorphism (11) can be
written as

Φ(eiϕ⃗·J⃗
(1/2)

) = eiϕ⃗·J⃗
(1)

However, not every representation of so(3) induces a representation of SO(3): this is
prevented by global subtleties (related to rotations around 2π). This relation between
Lie groups and Lie algebras is very general, and constitutes the core of the theory of Lie
groups.

There are also some less obvious applications of these groups in physics. For example,
we briefly discuss isospin in nuclear physics.

Isospin Nuclear physics studies how protons p and neutrons n bind together to form
a nucleus. The dominating force is the strong force, which is much stronger that the
electromagnetic and weak forces (not to mention gravity).

A lot of nuclear physics can be explained by the simple assumption that the strong force
is independent of the particle type (”flavor“) - that is, it is the same for protons and
neutrons.

Based on previous experience with QM, one is led to the idea that the neutron and

the proton form a doublet

(
p
n

)
, which transforms like a spin 1/2 representation of

an “isospin” group SU(2). (This is the most interesting group which has 2-dimensional
representations ). The symmetries are generated by I1,2,3 which satisfies the usual su(2)
algebra [Ii, Ij] = iϵijkIk (hence the name) and act via Pauli-matrices on the isospin
doublets:

Ii

(
p
n

)
=

1

2
σi

(
p
n

)
etc. That is, a proton is represented by

|p⟩ =
(

1
0

)
∈ C2,

and a neutron by

|n⟩ =
(

0
1

)
∈ C2.
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Invariance of the strong (nuclear) force under this isospin SU(2) would mean that the
Hamiltonian which describes this system commutes with Ii,

[H, Ii] = 0.

Therefore the eigenstates will be isospin multiplets, and the energy (mass!) should
depend only on the total isospin I and not on I3. In practice, this is approximately
correct.

For example, consider a system of 2 nucleons, which according to this idea can form the
following states

|I = 1, I3 = 1⟩ = |p⟩|p⟩,

|I = 1, I3 = 0⟩ =
1√
2
(|p⟩|n⟩+ |n⟩|p⟩),

|I = 1, I3 = −1⟩ = |n⟩|n⟩,

|I = 0, I3 = 0⟩ =
1√
2
(|p⟩|n⟩ − |n⟩|p⟩)

as in systems of 2 spin 1
2
particles. Now consider the three nuclei 6He, 6Li and 6Be,

which can be regarded respectively as nn, np, and pp system attached to a 4He core
(which has I = 0). After correcting for the Coulomb interaction and the neutron-proton
mass difference, the observed nuclear masses are as follows

Figure 1: fig:nuclear-mass

This idea of isospin is a precursor of the current understanding that |p⟩ = |uud⟩ and

|n⟩ = |udd⟩, where the up and down quarks form an isospin doublet

(
u
d

)
. Later,

a third quark flavor (”strange quarks”) was discovered, leading to te extension of the
SU(2) isospin to SU(3), the famous “eight-fold way” of Gell-Mann etal. We will consider
this later.

Another important application of SU(3) in physics is “color SU(3)”, which is an exact
symmetry (as opposed to the above “flavor symmetry”, which is only approximate) of
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QCD, the theory of strong interactions. Larger Lie group such as SU(5), SO(10), and
even exceptional groups such as E8 (see later) play a central role in modern quantum
field theory and string theory.

Lie groups and -algebras are also essential in many other branches of physics.

3.2 The Lorentz group SO(3, 1) and its universal cover SL(2,C)

This section explains the relativistic concept of spin, more precisely spin 1
2
. The existence

of spin 1
2
objects in physics implies that there should be a representation of the Lorentz

group (or a suitable generalization of it) on 2-component objects. It is easy to extend
the argument in Sec. 3.1 to show that SL(2,C) is the universal covering group of the
Lorentz group SO(3, 1). This provides the relativistic concept of spin.

Consider the (Lie) group

SL(2,C) = {M ∈Mat(2,C); det(M) = 1}, (14)

and the following (real) vector space

X = {hermitean 2× 2 matrices} = {
(

x0 + x3, x1 − ix2

x1 + ix2, x0 − x3

)
, xµ ∈ R} (15)

Hence any x ∈ X can be written uniquely as x = xµσµ, where

σ0 =

(
1 0
0 1

)
; σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
Observe that

det(x) = (x0)2 − (x1)2 − (x2)2 − (x3)2 (16)

is just the Minkowski metric on X ∼= M4.

Now consider a fixed U ∈ SL(2,C). Using it, we define a linear map

ϕU : X → X

x → ϕU(x) := UxU † (17)

check: rhs ∈ X for any U ∈ SL(2,C). Moreover, given any U ∈ SL(2,C) and x ∈ X,
we have again

det(ϕU(x)) = det(UxU †) = det(x)

because det(U) = 1. Thus ϕU preserves the Minkowski metric on X, and because it is
linear it must be an element of the pseudo-orthogonal group O(3, 1) ⊂ GL(X). Hence
we have defined a map

ϕ : SL(2,C) → O(3, 1)

U → ϕU (18)
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check: this map is a group homomorphism, and continuous.

Since ϕ(11 ) = 11 and SL(2,C) is connected, it follows that ϕ(SL(2,C)) is contained
in the component of SO(3, 1) connected to the identity, hence ϕ : SL(2,C) → L↑

+, the
proper orthochronous Lorentz group (i.e. preserves sign of time, and ∈ SO(3, 1)).

Again, ϕ : SL(2,C) → SO(3, 1) is two-to-one, since for any U ∈ SL(2,C), ϕU = ϕ−U .
It is again the “universal covering group” of the Lorentz group.

Due to the map SL(2,C) → SO(3, 1), every action (representation) of SO(3, 1) yields
also an action (representation) of SL(2,C), but the converse is not true. Indeed there are
objects in relativistic physics which transform under SL(2,C) but not under SO(3, 1).
The basic such objects are columns or 2-component spinors

ψ =

(
ψ+

ψ−

)
∈ C2

with the obvious action

SL(2,C)× C2 → C2,

(M,ψ) → M · ψ
These are spinors (Weyl spinors; a Dirac spinor consists of 2 Weyl spinors), which are
the “most basic” non-trivial objects which are consistent with special relativity. They
describe e.g. neutrinos2.

Finally, the Poincare group is defined as a combination of Lorentz transformations with
translations. It consists of pairs (Λ, a) ∈ SO(3, 1) × R4 which act on Minkowski space
as

xµ → Λµ
νx

ν + aµ. (19)

Accordingly, the group law is given by

(Λ, a) · (Λ′, a′) = (ΛΛ′,Λa′ + a) (20)

It plays a fundamental role in quantum field theory, but since it structure is somewhat
outside of the main focus of these lectures (i.e. semi-simple Lie algebras), we will not
discuss it any further here.

4 Basic definitions and theorems on Lie groups

We now give the general theory of Lie groups. Because they are manifolds, this requires
some background in differentiable manifolds.

2Strictly speaking the Lorentz group (resp. SL(2,C)) should be augmented to the Poincare group
in this context, so that the spinors can depend on spacetime.
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4.1 Differentiable manifolds

Here is a very short summary of the definitions and main concepts on differentiable
manifolds. This is not entirely precise. The proofs can be found e.g. in [Warner].

Definition 6 A topological space M is a m-dimensional differentiable manifold
if it comes with a family {(Ui, φi)} of coordinate systems (“charts”) such that

1. Ui ⊂M open, ∪iUi =M and

φi : Ui → Vi ⊂ Rm is a homeomorphism (=continuous and invertible)

2. φi ◦ φ−1
j is smooth (C∞) where defined.

(Picture)

Notation:

φ(p) =

 x1(p)
...

xm(p)

 , p ∈M

Definition: smooth maps are

C∞(M) = {f :M → R, C∞}
C∞(M,N) = {Φ :M → N, C∞}

the latter means that φN ◦ f ◦ φ−1
M is smooth for all coordinate systems if defined.

A smooth invertible map between manifolds Φ :M → N is called a diffeomorphism.

Tangential space: let p ∈M . The tangential space of M at p is defined as the space
of all derivations (=”directional derivatives”) of functions at p, i.e.

Tp(M) = {X : C∞(M) → R derivation}

which means that

X[λf + µg] = λX[f ] + µX[g], f, g ∈ C∞(M), λ, µ ∈ R
X[fg] = f(p)X[g] + g(p)X[f ]

In particular, this implies
X[c] = 0

14



for any constant function c.

example:

let φ =

x1

...
xm

 be a coordinate system containing the point p. Then

Xi :=
∂

∂xi |p
: f → R partial derivative at p

i.e.

Xi[f ] =
∂

∂xi |p
[f ] =

∂(f ◦ φ−1)

∂xi |p

Theorem 7

Tp(M) = ⟨ ∂
∂xi

⟩R ∼= Rm is a m-dimensional vector space

i.e. a general tangent vector at p has the form

Xp =
∑

ai
∂

∂xi |p
, ai ∈ R

The point is that these are first-order differential operators, not higher-order ones. This
is encoded in the coordinate-independent concept of a derivation. The theorem can be
proved easily using a Taylor expansion of f near p.

A vector field X ∈ T (M) is an assignment of a tangent vector for every p ∈ M . It has
the form

X =
∑

ai(x)
∂

∂xi

(in some local coordinate system), and is parametrized by m “component functions”
ai :M → R. They depend of course on the coordinate system, and transform as follows
under change of coordinates:

∂

∂xi
=

(
∂yj

∂xi

)
∂

∂yj
.

(chain rule).

The differential of a map or “tangential map”: let

Φ :M → N

15



be a smooth map. Then one defines the “push-forward” map

dΦ : Tp(M) → TΦ(p)(N),

X → (dΦ(X))[f ] := X[f ◦ Φ]

where f : N → R. Sometimes this is also written as dΦ = TΦ = Φ∗. Notice that this is
indeed a derivation (Exercise)!

For example, consider a (smooth) curve in M ⊂ Rn,

γ : R →M, γ(0) = p ∈M.

Denote with V0 =
d
dt
the unit tangential vector at 0 ∈ R, which means that V0[g] =

d
dt
[g].

Then the tangential vector along γ at p is obtained by

Xp = dγ(V0)

i.e. for f ∈ C(Rn) we have

Xp[f ] = dγ(V0)[f ] = V0[f ◦ γ] = d

dt
(f ◦ γ) = ∂f

∂xi
dγi

dt
=
dγ⃗

dt
· ∇⃗ [f ]

which is indeed the “directional derivative” along γ. Hence

Xp = dγ(
d

dt
) =

dγi

dt

∂

∂xi
,

and the components are just the components of dγ⃗
dt

Examples:

1. If (xi) are coordinates on M and (yi) coordinates on N , then the chain rule on Rn

gives

dΦ(
∂

∂xi
|p) =

∑ ∂(yj ◦ Φ)
∂xi

∂

∂yj
|Φ(p) (21)

2. Consider a map φ :M → Rt. Specializing the above to Φ = φ, we obtain

dφ(
∂

∂xk
|p) =

∑ ∂φ

∂xk
d

dt

3. Consider some individual coordinate function xi : M → Rt of a chart containing
p. Specializing the above to φ = xi, we obtain

dxi(
∂

∂xk
|p) =

∑ ∂xi

∂xk
d

dt
= δik

d

dt
.

This means that one can identify dxi as the dual of ∂
∂xk .
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4. if φ :M → R, then we obtain by comparing the last two relations we obtain

dφ =
∂φ

∂xi
dxi

The tangential map satisfies the chain rule: if Φ :M → N and Ψ : N → P , then

Theorem 8
d(Ψ ◦ Φ) = dΨ ◦ dΦ

more precisely
d(Ψ ◦ Φ)m = dΨΦ(m) ◦ dΦm

Note that the proof is trivial in this framework, and reduces to the usual chain rule in
coordinates (Exercise!).

Lie brackets of vector fields: Let X, Y vector fields on M . Then one can define a
new vector field [X, Y ] on M via

[X, Y ]p(f) = Xp[Y [f ]]− Yp[X[f ]].

One then easily shows

Theorem 9 • [X, Y ] is indeed a vector field on M (derivation!)

• [X,X] = 0, hence [X, Y ] = −[Y,X]

• [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0.

• [fX, gY ] = fg[X, Y ] + fX[g]Y − gY [f ]X.

• Given a map ϕ : M → N , let X̃, Ỹ be vector fields on N such that dϕ(X) = X̃
and dϕ(Y ) = Ỹ (i.e. X and X̃ are “ϕ-related”, etc.). Then [X, Y ] is ϕ-related to
[X̃, Ỹ ], i.e.

dΦ([X, Y ]) = [X̃, Ỹ ] = [dΦ(X), dΦ(Y )]

In particular, the space of all vector fields is a (infinite-dimensional) Lie algebra! (see
later...)

Proof: easy verification.
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In a coordinate system, we can write the vector fields as

X = X i(x)
∂

∂xi

and similar Y . Then

[X, Y ] = X i(x)
∂

∂xi
Y j(x)

∂

∂xj
− Y j(x)

∂

∂xj
X i(x)

∂

∂xi

= X i(x)
∂Y j(x)

∂xi
∂

∂xj
− Y j(x)

∂X i(x)

∂xj
∂

∂xi
(22)

because the partial derivatives commute. This shows explicitly that the rhs is indeed
again a vector field (as opposed to e.g. XY !!)

4.2 Lie groups

A Lie group G is a group which is also a differentiable manifold, such that the maps

µ : G×G → G

(g1, g2) 7→ g1 · g2

and

ν : G → G

g 7→ g−1

are smooth.

A Lie subgroup H of G is a (topological) subgroup which is also a (smooth) submanifold.

The left translations on G are the diffeomorphisms of G labeled by the elements g ∈ G
and defined by

Lg : G → G

g′ 7→ g · g′

(similarly the right translations). They satisfy

LgLg′ = Lgg′ .

A homomorphism between Lie groups is a smooth map ϕ : G → H which is a group
homomorphism.

18



If H = GL(V ) for some vector space V , this is called a representation of G. One
considers in particular the following types of representations:

π : G→ GL(n,R) n− dimensional “real” representation

π : G→ GL(n,C) n− dimensional “complex” representation

π : G→ U(n) n− dimensional “unitary” representation

An important problem both in physics and math is to find (ideally all) representations
of G. This can be solved completely for a large class of Lie groups, and will be explained
later in this course.

Examples for Lie groups:

• (Rn,+) . The left-translation is Lx(y) = x+ y, i.e. indeed translations of y by x.

• C∗ = (C− {0}, ·)

• the complex numbers with unit modulus U(1) = S1 and multiplication

• matrix groups:
GL(n,R) := {A ∈Mat(n,R); det(A) ̸= 0}

similarly GL(n,C), and

SL(n,R) := {A ∈Mat(n,R); det(A) = 11 },
O(n) := {A ∈Mat(n,R); AAT = 11 },

SO(n) := {A ∈Mat(n,R); AAT = 11 , det(A) = 1},
U(n) := {A ∈Mat(n,C); AA† = 11 },

SU(n) := {A ∈Mat(n,C); AA† = 11 , det(A) = 1},

SP (n,R) := {A ∈Mat(2n,R); ATJA = J, J =

(
0 11 n

−11 n 0

)
}

(symplectic group)

the Lorentz group

O(3, 1) = {A ∈Mat(n,R); AηAT = η}, η = (1,−1,−1,−1),

etc.

• the Poincare group (=Lorentz plus translations)

there are many more! exceptional groups, ...
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4.3 Lie algebras

A Lie algebra g over R (resp. C etc... any field) is a vector space over R resp. C and an
operation ( a Lie bracket)

[., .] : g× g → g

which is bilinear over R (resp. C) and satisfies

[X,X] = 0

and the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

The first property implies

[X, Y ] = −[Y,X] “antisymmetry”

Note: for any associative algebra A, there is an associated Lie algebra g, which is A as
a vector space and

[X, Y ] := X · Y − Y ·X “commutator”

The Jacobi identity is then trivial.

Examples: let
gl(n,R) :=Mat(n,R) =Mat(n× n,R)

with [x, y] = xy − yx.

The following Lie algebras are particularly important:

sl(n,R) := {A ∈ gl(n,R); Tr(A) = 0},
so(n) := {A ∈ gl(n,R); AT = −A,Tr(A) = 0},
u(n) := {A ∈ gl(n,C); A† = −A},
su(n) := {A ∈ gl(n,C); A† = −A,Tr(A) = 0},
sp(n) := {A ∈ gl(2n,R); AT = JAJ},

where the Lie algebra is again defined by the commutator.

Also, the space of vector fields on a manifold M together withe the Lie bracket forms
an infinitesimal Lie algebra.

Further definitions:
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A subalgebra of a Lie algebra is a subspace h ⊂ g such that [H1, H2] ∈ h whenever
H1, H2 ∈ h. It is easy to check that the above Lie algebras are indeed Lie subalgebras
of gl(n,R).

A Lie algebra homomorphism is a linear map φ : g → h such that

φ([X, Y ]) = [φ(X), φ(Y )] ∀X, Y ∈ g.

One can show that essentially all (finite-dimensional) Lie algebras are subalgebras of
gl(n) (Varadarajan, see e.g. [Hall]).

A representation of a Lie algebra g is a Lie-algebra homomorphism

π : g → gl(n,R) “real” representation

π : g → gl(n,C) “complex” representation

Structure constants. Let g be a finite-dimensional Lie algebra, and let X1, · · · , Xn

be a basis for g (as a vector space). Then for each i, j, [Xi, Xj] can be written uniquely
in the form

[Xi, Xj] =
n∑

k=1

ckijXk.

The constants ckij are called the structure constants of g (with respect to the chosen
basis). Clearly, the structure constants determine the bracket operation on g. (Often
in physics one uses ig in order to have hermitian generators, which leads to [Xi, Xj] =
i
∑

k c
k
ijXk.)

The structure constants satisfy the following two conditions,

ckij + ckji = 0 (antisymmetry)∑
m

(cmij c
l
mk + cmjkc

l
mi + cmkic

l
mj) = 0 (Jacobi identity)

4.4 The Lie algebra of a Lie group

Let G be a Lie group. Recall left translations on G, defined by Lg : G→ G, g′ 7→ g · g′.
Define

g := {left-invariant vector fields X on G}

i.e.
dLg(X) = X ∀g ∈ G
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or more precisely, dLg(Xg′) = Xgg′ .

Example: consider G = (Rn,+)

We have La⃗(x⃗) = x⃗ + a⃗. Then (Exercise) dLa(f
i(x) ∂

∂xi |x) = f i(x)∂(Lax)j

∂xi
∂

∂xj |x+a =
f i(x) ∂

∂xi |x+a, hence dLa⃗(X) = X for all a⃗ ∈ Rn implies f i(x⃗) = f i(x⃗ + a⃗) ∀a⃗ , hence
f i = const and

g = {f i ∂

∂xi
} ∼= Rn.

Observe:

• g ∼= Rn ∼= TeG

• in general: given Xe, define Xg := dLg(Xe)

can show (easy): is left-invariant V.F.

(Proof: dLg′(Xg) = dLg′(dLg(Xe)) = d(Lg′Lg)(Xe) = dLg′g(Xe) = Xg′g)

• g is a Lie algebra: for X, Y ∈ g; define [X, Y ] ... Lie-bracket of left-invariant V.F.

Lemma: [X, Y ] is again left-invariant V.F., because

dLg([X, Y ]) = [dLg(X), dLg(Y )] = [X, Y ]

by theorem 9.

The relation between Lie groups and their Lie algebras is contained in the following
central theorem:

Theorem 10 Let G and H be Lie groups with Lie algebras g and h, respectively. Then:

1. If ϕ : G → H is a homomorphism of Lie groups, then dϕ : g → h is a homomor-
phism of Lie algebras.

2. If φ : g → h is a homomorphism of Lie algebras and G is simply connected (and
connected), then there exists a unique homomorphism of Lie groups ϕ : G → H
such that φ = dϕ.

3. If h ⊂ g is a Lie subalgebra, then there exists a (connected) Lie subgroup H ⊂ G
such that h is the Lie algebra of H.
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Proof:

1. let X, Y ∈ g. Define X̃, Ỹ to be those left-invariant vector fields on H such that
X̃e = dϕ(Xe) and Ỹe = dϕ(Ye).

We observe that X̃ is related to X through dϕ, i.e. X̃ = dϕ(X) and Ỹ = dϕ(Y )
on ϕ(G) ⊂ H (not only at the unit element). To see this, let h = ϕ(g), then
Lh ◦ ϕ = ϕ ◦ Lg since ϕ is a group homomorphism. Therefore

dLh(dϕ(X)) = d(Lh ◦ ϕ)(X) = d(ϕ ◦ Lg)(X) = dϕdLg(X) = dϕ(X),

using the chain rule. Therefore dϕ(X) must agree with X̃ on ϕ(G) ⊂ H. Using
Theorem 9, we now get

[dϕ(X), dϕ(Y )] = [X̃, Ỹ ] = dϕ[X, Y ]

which means that dϕ : g → h is a homomorphism of Lie algebras.

2. very nontrivial, see e.g. [Warner].

3. also nontrivial! (existence of a smooth submanifold etc.), see e.g. [Warner].

qed

For example, consider the homomorphism ϕ : SU(2) → SO(3). Because this is invert-
ible near e, theorem 10 implies that their Lie algebras are isomorphic, su(2) ∼= so(3).
Moreover SU(2) is simply connected, hence the statement 2) applies: As soon as we
know that su(2) ∼= so(3) (by simply checking it, see later!) it follows that there exists a
group homomorphism ϕ as above. This is obviously a strong statement!

This example generalizes as follows: One can show that for every Lie group G, there
exists a so-called “universal covering (Lie) group” G̃, which means that G̃ is a simply
connected Lie group and that there exists a surjective group-homomorphism

ϕ : G̃→ G

which is locally an isomorphism (i.e. in a neighborhood of the identity), but not globally.
Globally, the map Φ is such that the inverse image of each g ∈ G consists of k points
in G̃ for some integer k (more precisely, the inverse image of a small U ⊂ G consists of
k homeomorphic copies of U). In particular, the Lie algebras of G̃ and G coincide by
the above theorem, g̃ = g, and dim(G) = dim(G̃). For example, SU(2) is the universal
cover of SO(3).

This implies that whenever we have a homomorphism of Lie algebras φ : g → h, there
exists a homomorphism of Lie groups ϕ : G̃→ H. This is the reason why
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1. it is “better” (i.e. more general) to use SU(2) rather than SO(3)

2. it is essentially enough to consider representations of Lie algebras, which is a
“linear” problem and can be handled. The theorem then guarantees the existence
of the representation of the Lie group G̃, and one can then decide if this also gives
a rep. of G.

3. there is a one-to-one correspondence between representations of a (simply con-
nected) Lie group G̃ and its Lie algebra g. The latter is much easier to handle.
Later.

This extremely important result really depends on the full machinery of Lie groups,
hence this lengthy preparation. But from now on, we will get more down to earth.

The most important examples of Lie groups (but not all!) are matrix groups, i.e. sub-
groups of GL(N,R) (or GL(N,C)). In this case, the above general concepts become
more transparent.

4.4.1 The Lie algebra of GL(n,R)

Recall that GL(n,R) is an open subset of Rn2
. A natural coordinate system on GL(n,R)

near the unit element e = 11 is given by the “Cartesian matrix coordinates”,

xij(g) := gij (i.e. x : GL(n) ↪→ Rn2

!)

where g =
(
gij
)
. A basis of tangent vectors Te(GL(n)) is then given by the partial

derivatives ∂
∂xij |e, i.e. a general tangent vector at e has the form

XA
e = Aij

∂

∂xij
|e, Aij ∈ R

(sum convention). Hence Te(GL(n,R)) =Mat(n,R) = gl(n,R) as vector space.

Denote with gl(n) =Mat(n) the space of n× n matrices. We want to show that

Lie(GL(n)) = gl(n)

as Lie algebras (with the commutator for gl(n)), not just as vector spaces; the latter is
evident.

Let us calculate the corresponding left-invariant vector field XA
g = dLg(X

A
e ). We can use

the same coordinates near e and g, so that the map Lg has the “coordinate expression”

(Lgx)
ij = (gx)ij = gikxkj.
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Then using (21), we have

dLg(
∂

∂xij
|e) =

∂(Lgx)
kl

∂xij
|e

∂

∂xkl
|g =

∂(gkmxml)

∂xij
|e

∂

∂xkl
|g = δljgki

∂

∂xkl
|g = gki

∂

∂xkj
|g

Therefore for general Xe = Aij
∂

∂xij |e, we have

XA
g = dLg(X

A
e ) = gkiAij

∂

∂gkj

where we write gij = xij(g) for the (Cartesian) coordinate functions on GL(n).

Now we can calculate the commutator: Let XA, XB be left-invariant vector fields as
above. Noting that ∂

∂gij
|ggkl = δikδjl, and using (22) we have

[XA, XB] = gkiAij
∂

∂gkj
gk

′i′Bi′j′
∂

∂gk′j′
− gkiBij

∂

∂gkj
gk

′i′Ai′j′
∂

∂gk′j′

= gkiAij Bjj′
∂

∂gkj′
− gkiBij Ajj′

∂

∂gkj′

= gki(Aij Bjj′ −Bij Ajj′)
∂

∂gkj′
= gki[A,B]ij′

∂

∂gkj′
= X [A,B] (23)

But this is precisely the left-invariant vector-field associated to the commutator of the
matrices A,B. Therefore we can identify

gl(n,R) ≡ Lie(GL(n,R)) ∼= {Mat(n,R); [A,B] = AB −BA}

which we considered before. Similarly one obtains

gl(n,C) ≡ Lie(GL(n,C)) ∼= {Mat(n,C); [A,B] = AB −BA}

4.4.2 Subgroups of GL(n)

Now one can obtain the Lie algebras corresponding to the other matrix Lie groups such
as SO(n) considered before: because they are subgroups of GL(n), there is a (trivial)
Lie group homomorphism

ϕ : SO(n) → GL(n)

etc., which by differentiating induces a Lie algebra homomorphism

dϕ : so(n) → gl(n)

which is in fact injective. This means that we can consider e.g. so(n) as a subalgebra
of gl(n,R), i.e.

so(n) ⊂ gl(n,R) .
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In particular, we can just as well work with gl(n,R), where the Lie algebra is given
by the commutator [A,B] for elements of gl(n). We will show below that this gives
precisely the matrix Lie algebras defined in section 4.3.

A similar observation applies to representations: any representation defines a group
homomorphism π : G → GL(V ), which means that dπ([X, Y ]) = [dπ(X), dπ(Y )] is the
commutator of the matrices dπ(X) and dπ(Y ). This means again that we can work
with gl(V ) and use the explicit matrix commutators.

It is quite easy to work with matrix groups. In particular, the exponential mapping
(which exists for any Lie group, see later) is very transparent and useful here:

5 Matrix Lie groups and the exponential map

5.1 The Matrix Exponential

The exponential map plays a crucial role in the theory of Lie groups. This is the tool
for passing explicitly from the Lie algebra to the Lie group.

Let X be a n× n real or complex matrix. We wish to define the exponential of X, eX

or expX, by the usual power series

eX =
∞∑

m=0

Xm

m!
. (24)

It is easy to show that for any n×n real or complex matrix X, this series (24) converges,
and that the matrix exponential eX is a smooth function of X.

Proposition 11 Let X, Y be arbitrary n× n matrices. Then

1. e0 = I.

2. eX is invertible, and
(
eX
)−1

= e−X . In particular, eX ∈ GL(n).

3. e(α+β)X = eαXeβX for all real or complex numbers α, β.

4. If [X, Y ] = 0, then eX+Y = eXeY = eY eX .

5. If C is invertible, then eCXC−1
= CeXC−1.
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The proof is elementary (Analysis lecture).

Note that in general eX+Y ̸= eXeY , although equality holds by 4) if X and Y commute.
This is a crucial point which one should never forget. There exists a formula – the Baker-
Campbell-Hausdorff formula (52) – which allows to calculate products of the form (4)
in terms of X and Y .

For example, consider

Jx :=

 0 0 0
0 0 −i
0 i 0


which is a “rotation generator”, i.e. iJx ∈ so(3). We claimed previously that

R(ϕe⃗x) :=

 1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

 = eiϕe⃗x·J⃗ = eiϕJx

Lets see if this is true: using J2
x =

 0 0 0
0 1 0
0 0 1

, we get

eiϕJx =
∞∑

m=0

(iϕJx)
m

m!
= 1 + J2

x

∞∑
n=1

(iϕ)2n

(2n)!
+ Jx

∞∑
n=0

(iϕ)2n+1

(2n+ 1)!

= 11 + J2
x(cos(ϕ)− 1) + iJx sin(ϕ) =

 1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

 (25)

as desired.

Remark: One good way to calculate the exponential of a Matrix is to diagonalize it if
possible: if X = UDU−1, then eX = UeDU−1 = Udiag(edi)U−1 by (5). Otherwise, one
can bring X to Jordan normal form.

Further important formulas for the matrix exponential are as follows:

Theorem 12 Let X be an n× n real or complex matrix. Then

det
(
eX
)
= etrace(X).

Proof: Case 1: X is diagonalizable. Suppose there is a complex invertible matrix C such
that

X = Cdiag(xi)C
−1.
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Then
eX = Cdiag(exi)C−1.

Thus trace(X) =
∑
λi, and det(eX) =

∏
eλi = e

∑
λi . (Recall that trace(CDC−1) =

trace(D).)

Case 2: X arbitrary. Not difficult, use e.g. Jordan normal form, or analytic continua-
tion. q.e.d

Also, check it in the explicit example above.

5.2 One-parameter subgroups and the exponential map

Fix an axis v⃗ with ∥v⃗∥ = 1. Lets consider again rotations: we wrote finite rotations in
the form

R(ϕ) := R(ϕv⃗) := eiϕv⃗·J⃗ (26)

We claim that these are rotations around the axis v⃗ and angle ϕ. How do we know this?

The rotations around v⃗ are clearly an abelian (1-parameter) subgroup of SO(3), labeled
by the angle ϕ ∈ R. This means that R(ϕ) is a group homomorphism from R to G,

R(ϕ+ ψ) = R(ϕ)R(ψ).

Clearly the axis is fixed once we know that this is true for “infinitesimal” ϕ, and this
must define a rotation around the angle ϕ. “Infinitesimal rotations” are given by 1 +
iϕv⃗ · J⃗ +O(ϕ2). Note that

d

dϕ

∣∣∣∣R(ϕ)ϕ=0 = iv⃗ · J⃗

is a tangential vector to SO(3) at the origin, i.e. it is an element of the Lie algebra
so(3).

Lets see what this means explicitly: Using

iJxey =

 0 0 0
0 0 1
0 −1 0

 0
1
0

 =

 0
0
−1

 = −ez

etc, we see that
iJjek = −εjklel.

Hence “infinitesimal rotations” are given by

(1 + iϕv⃗ · J⃗)x⃗ = 1− ϕv⃗ × x⃗.

28



This really is an ‘infinitesimal rotation” for “infinitesimal” ϕ, hence the claim is justified.
Note that an infinitesimal rotation has the form (11 + εJ) for J ∈ so(3).

More generally, consider a n× n matrix X ∈ gl(n). Recall that the Lie algebra gl(n) =
Lie(GL(n)) is just the set of tangent vectors at 11 . Hence to every X ∈ gl(n) we can
associate a curve γ(t) = etX , which satisfies

γ(t+ s) = γ(t)γ(s) ∀t, s ∈ R

by the properties of exp. This means that we have a Lie group homomorphism

γ : R → GL(n)

which satisfies
d

dt

∣∣∣∣
t=0

γ(t) = X (27)

More generally for any Lie groupG, eachX ∈ Lie(G) determines uniquely a 1-parameter
subgroup in G. This is defined as follows: any given Xe ∈ g = Lie(G) defines a (trivial)
Lie algebra homomorphism or R to g. Then by by theorem 10, there exists a unique
Lie group homomorphism γ : R → G such that dγ[ d

dt
]t=0 = Xe ∈ g. Such a Lie group

homomorphism γ : R → G is called a one-parameter subgroup of G. (One can show that
γ(t) is the integral curve of the left-invariant vector field determined by X, which is etX

for GL(n)). This leads to the general definition of the exponential map, which works
for any Lie group:

Definition 13 Let G be a Lie group, and g its Lie algebra. Let X ∈ g. Let

expX : R → G

be the unique (by theorem 10) homomorphism of Lie groups such that

d expX(
d

dt
) = X.

Then define
exp : g → G,

by setting
exp(X) = expX(1)

In the case G = GL(n), this reduces to the matrix exponential as we’ve seen above.
One can now show that all statements on proposition 11 remain true, and we will use
the notation exp(X) = eX interchangably. (The last property of proposition 11 leads to
the adjoint representation.)

exp defines a diffeomorphism of a neighborhood of 0 ∈ g onto a neighborhood of e ∈ G
(picture). In the GL(n) case, this can be seen easily since the local inverse is given by
the matrix logarithm:
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Theorem 14 The function

logA =
∞∑

m=1

(−1)m+1 (A− I)m

m
(28)

is well-defined and smooth on the set of all n×n complex matrices A with ∥A− I∥ < 1,
and logA is real if A is real.

For all A with ∥A− I∥ < 1,
elogA = A.

For all X with ∥X∥ < log 2,
∥∥eX − 1

∥∥ < 1 we have

log eX = X.

Moreover, one can show that
exp : g → G

is surjective for compact G. However, it is usually not injective. Furthermore, it is easy
to show that if ϕ : G→ H is a Lie group homomorphism, then the diagram

G
ϕ−−−→ H

exp

x xexp

g
dϕ−−−→ h

(29)

commutes (using the uniqueness of the one-parameter subgroups).

This explains the Physicist’s notion of “infinitesimal group elements”: near the unit
element, any group element can be written as g = eX , and “infinitesimal” group elements
are those of the form

eϵX = 1 + ϵX + o(ϵ2) ≈ 1 + ϵX

for X ∈ Lie(G) and “infinitesimal” ϵ.

The elements X ∈ Lie(G) are called “generators” in physics.

For many arguments it is enough to consider these “infinitesimal group elements”, which
essentially amounts to working with the Lie algebra.

As a nice application of (29), we can obtain the following useful identity

det(eA) = etrA
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This follows from the following diagram

Gl(V )
det−−−→ R+

exp

x xe

gl(V )
tr−−−→ R

(30)

noting that d(det)|11 = tr, which is easy to check.

5.2.1 The classical subgroups of GL(n) and their Lie algebras.

One can use exp to calculate explicitly the most important Lie subgroups of GL(n) and
their Lie algebras. Recall the definitions of section 4.2, 4.3. Start with

SO(n) and so(n):

Recall that
so(n) := {A ∈Mat(n,R); AT = −A} ⊂ gl(n).

(this coincides with o(n)!)

Let A ∈ o(n). Then (eA)T = e−A = (eA)−1, which means that eA ∈ O(n) is an orthogonal
matrix. Conversely, consider g ∈ O(n) near 11 , so that g = eA for some A ∈ gl(n) (by
theorem 14). Then eA

T
= gT = g−1 = e−A. Because exp is a local diffeomorphism (resp.

by taking the matrix log), this implies that

AT = −A.

This means that
exp(so(n)) = SO(n) ⊂ GL(n),

therefore so(n) is the Lie algebra of SO(n). (recall theorem 10 which states that there
exists a Lie subgroup of GL(n) whose Lie algebra is so(n), and the commutative diagram
(29) which states that exp for so(n) is really obtained by restriction of gl(n) to so(n)).

The explicit form of the Lie algebra (the commutation relations) depends on the choice
of basis. One useful basis for so(n) is the following: Let

(Mab)jk = δajδbk − δbjδak,

which are antisymmetric Mab = −Mba. One can easily check that they satisfy the
commutation relations

[Mab,Mcd] = δbcMad − δacMbd − δbdMac + δadMbc.
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SL(n) and sl(n):

Recall that
sl(n,R) := {A ∈Mat(n,R); Tr(A) = 0}.

Let A ∈ sl(n). Then det(eA) = eTr(A) = 1, which means that eA ∈ SL(n). Conversely,
consider g ∈ SL(n) near 11 , so that g = eA for some A ∈ gl(n) (by theorem 14). Then
1 = deteA = eTr(A). This implies that Tr(A) = 0, hence

exp(sl(n)) = SL(n) ⊂ GL(n),

therefore sl(n) = Lie(SL(n)).

U(n) and u(n):

Recall that
u(n) := {A ∈Mat(n,C); A† = −A}.

Let A ∈ u(n). Then (eA)† = e−A = (eA)−1, which means that eA ∈ U(n) is a unitary
matrix. Conversely, consider g ∈ U(n) near 11 , so that g = eA for some A ∈ gl(n) (by
theorem 14). Then eA

†
= g† = g−1 = e−A. Because exp is a local diffeomorphism (resp.

by taking the matrix log), this implies that A† = −A, hence

exp(u(n)) = U(n) ⊂ GL(n),

therefore u(n) = Lie(U(n)).

Similarly, su(n) = Lie(SU(n)) = {A ∈Mat(n,C); A† = −A, Tr(A) = 0}.

We can now easily compute the dimensions of these Lie groups, simply by computing
the dimension of their Lie algebras. One finds that

U(n) has dimension n2 (as real manifold!!),
SU(n) has dimension n2 − 1 (as real manifold!!),
SL(n,C) has dimension 2n2 − 2,
SL(n,R) has dimension n2 − 1,
O(n,R) and SO(n,R) have dimension n(n− 1)/2,

There are various “real sectors” of these classical Lie groups resp. algebras. A typical
example is the Lorentz group:
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5.3 Example: Lie algebra and exponential map for SO(3) and
SU(2).

To illustrate this, reconsider SO(3) in detail. According to the above, its Lie algebra is

so(3) := {A ∈Mat(n,R); AT = −A, Tr(A) = 0}.

A convenient basis of so(3) is given by

X1 :=

 0 0 0
0 0 1
0 −1 0

 , X2 :=

 0 0 −1
0 0 0
1 0 0

 , X3 :=

 0 1 0
−1 0 0
0 0 0


hence any u ∈ so(3) can be written uniquely as u = ukXk, and any element of SO(3)
can be written as

eu = eukXk ∈ SO(3).

Their Lie algebra is
[Xi, Xj] = −ϵijkXk. (31)

It is easy to calculate the exponentials explicitly, reproducing finite rotation matrices.

In physics, one often allows complex coefficients, defining

Jk := −iXk

which are hermitian J†
i = Ji and satisfy the “rotation algebra”

[Ji, Jj] = iϵijkJk

as known from Quantum Mechanics. Technically speaking one complexifies the Lie
algebra: Given any “real” Lie algebra such as so(3) = ⟨X1, X2, X3⟩R with some basis
Xi, one simply allows linear combinations over C, i.e. replaces g ∼= Rn by gC ∼= Cn,
extending the commutation relations linearly over C: so(3)C = ⟨X1, X2, X3⟩C. From
now on we work with Lie algebras over C, which is very useful and much easier than R.
Then finite rotations are given by

eu = eiukJk = R(u⃗) ∈ SO(3)

Similarly, consider SU(2). According to the above, its Lie algebra is

su(2) := {A ∈Mat(n,C); A† = −A = 0, T r(A) = 0}.

A convenient basis of su(2) is given by (i) times the Pauli matrices, Xi =
i
2
σi for

σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
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hence any u ∈ su(2) can be written uniquely as u = uj(iσj). Then

eu = euj(iσj) ∈ SU(2).

Again, one defines the complexified generators

Jk =
1

2
σk,

which satisfy

[Ji, Jj] = iϵijkJk, [Xi, Xj] = −ϵijkXk.

therefore
so(3) ∼= su(2).

This is the “algebraic” reason why SO(3) and SU(2) are “locally isomorphic”, and
according to Theorem 10 it implies that there is a Group-homomorphism

Φ : SU(2) 7→ SO(3)

We have seen this explicitly in the beginning.

5.4 SO(3, 1) and so(3, 1)

The Lorentz group SO(3, 1) is defined by

M i
i′M

j
j′η

i′j′ = ηij,

where

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


i.e.

MηMT = η

or
Mη = ηM−1T

and detM = 1. The set of these M is certainly a Lie group. Considering “infinitesimal
group elements” or

M = eiL

this leads to
Lη = −ηLT

34



A (complexified) basis is given by

Kx = −i


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , Ky = −i


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , Kz = −i


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ,

(“boost generators”), and the usual “space-like” generators of rotations

Jx = −i


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , Jy = −i


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 , Jz = −i


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 ,

The structure constants are:

[Kx, Ky] = −iJz, etc,
[Jx, Kx] = 0, etc,

[Jx, Ky] = iKz, etc,

[Jx, Jy] = iJz, etc, (32)

It is interesting to note that if we allow complex coefficients in the Lie algebra, then

A⃗ :=
1

2
(J⃗ + iK⃗),

B⃗ :=
1

2
(J⃗ − iK⃗), (33)

commute:

[Ax, Ay] = iAz, etc,

[Bx, By] = iBz, etc,

[Ai, Bj] = 0,∀i, j (34)

Hence formally, so(3, 1)C ∼= su(2)C ⊕ su(2)C. However, this is only for the complexified
Lie algebra! “Real” elements of SO(3, 1) have the form

Λ = ei(xjJj+yjKj) = e
i
2
((x+iy)iBi+(x−iy)iAi)

with real xi, yi. In terms of the generators A and B, the coefficients are not real any
more! Nevertheless, this is very useful to find representations . In particular, there are
2 inequivalent 2-dimensional representations :

a) Ai =
1
2
σi, Bi = 0: “undotted spinors”, corresponding to the 2-dim. rep.

ψα = ψ =

(
ψ+

ψ−

)
∈ C2
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of SL(2,C). with the obvious action

SL(2,C)× C2 → C2,

(M,ψ) → M · ψ

This is NOT a rep. of SO(3, 1) !! The exponential map takes the form

M = e
i
4
(x−iy)iσi

b) Ai = 0, Bi =
1
2
σi: “dotted spinors”, corresponding to the 2-dim. rep.

ψ̃α̃ = ψ̃ =

(
ψ̃+

ψ̃−

)
∈ C2

of SL(2,C). with the action

SL(2,C)× C2 → C2,

(M, ψ̃) → M∗ · ψ̃

This is also NOT a rep. of SO(3, 1), and it is in no sense equivalent the the above one.

These are Weyl spinors. In the standard model, all leptons are described by (or built
up by) such Weyl spinors.

Finite boosts:

We already know finite rotations. Finite boosts can be calculated similarly, e.g.

K2
x = −


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

we get

eiϵKx =
∞∑

m=0

(iϵKx)
m

m!
= 1−K2

x

∞∑
n=1

(ϵ)2n

(2n)!
+ iKx

∞∑
n=0

(ϵ)2n+1

(2n+ 1)!

= 11 −K2
x(cosh(ϵ)− 1) + iKx sinh(ϵ) =


cosh(ϵ) sinh(ϵ) 0 0
sinh(ϵ) cosh(ϵ) 0 0

0 0 1 0
0 0 0 1



=


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

 (35)
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as desired, where β = tanh(ϵ) and γ = cosh(ϵ) = 1√
1−β2

.

Observe that so(3, 1)C = so(4)C. More generally, to understand the structure of the
(finite-dimensional) representations, we can (and will) restrict ourselves to Lie algebras
corresponding to compact Lie groups.

6 A first look at representation theory

6.1 Definitions

The main application of groups in physics is to exploit symmetries of physical systems.
A symmetry is given by a group (e.g. rotations, permutations, reflections, ...), which
can “act” on a physical system and puts it in another but “equivalent” state. This is
particularly simple in Quantum Mechanics: The states of the system form a Hilbert
space H, which is a vector space. A symmetry of the system therefore amounts to an
action of a group G (rotations, say) on H. Hence we have a map

G×H → H,
(g, ψ) 7→ g ▷ ψ (36)

which of course should respect the group law, (g1g2)▷ψ = (g1)▷(g2▷ψ) and e▷ψ = ψ. Due
to the superposition principle, it should be linear in the second argument. Equivalently,

π : G→ GL(H) (37)

should satisfy

π(g1)π(g2) = π(g1g2), π(e) = 11 , π(g−1) = π(g)−1. (38)

This is precisely the definition of a representation of G on H:

Definition 15 Let G be a group. Then a (real, complex) representation of G is a
group homomorphism

π : G→ GL(V )

where V is a (real, complex) vector space (i.e. Rn resp. Cn).

A unitary representation of G is a group homomorphism

π : G→ U(H)

into the unitary operators on some Hilbert space H.
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We will mainly consider finite-dimensional representations. Understanding the repre-
sentations is one of the main issues in group theory (and crucial in physics).

Now we can apply theorem 10, and we obtain “by differentiating” from each represen-
tation of G a Lie algebra homomorphism dπ : g → gl(V ). This yields the following
definition:

Definition 16 A (finite-dimensional, real, complex) representation of a Lie
algebra g is a Lie algebra homomorphism

g → gl(V )

where V is a (finite-dimensional, real, complex) vector space.

Note that if G is simply-connected, then theorem 10 implies conversely that every repre-
sentation of the Lie algebra g induces a representation of the Lie group G. For example,
recall that the spin 1/2 rep of the angular momentum aglebra [Ji, Jj] = ϵijkJk leads to
a representation of SU(2), but not of SO(3). This means that we can basically restrict
ourselves to studying representations of Lie algebras.

Furthermore, note that if π : G → U(H) is a unitary representationof G and we write
π(g) = eiaiπ(Ji) ∈ G where Ji ∈ g, then π is unitary if and only if π(Ji) is hermitian.
Hence unitary representations of G correspond to representations of g with hermitian
(or anti-hermitian...) operators.

Definition 17 Let π be a representation of a group G, acting on a space V . A subspace
W of V is called invariant if π(g)w ∈ W for all w ∈ W and all g ∈ G. A representation
with no non-trivial invariant subspaces (apart from W = {0} and W = V ) is called
irreducible. A representation which can be written as the direct sum of irreps V =
V1 ⊕ V2, π = π1 ⊕ π2 (or more) is called completely reducible.

Note that

Lemma 18 (finite-dimensional) Unitary representations are always completely reducible.

proof: Assume that the unitary representation H is not irreducible, and let W ⊂ H be
an invariant subspace. Then W⊥ is also invariant (since ⟨w, π(g)v⟩ = ⟨π(g)†w, v⟩ = 0),
and

H = W ⊕W⊥.
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Repeat if W⊥ is not irreducible. qed

For example, the basic representation of SO(3) is the one in which SO(3) acts in the
usual way on R3. More generally, If G is a subgroup of GL(n;R) or GL(n;C), it acts
naturally on Rn resp. Cn. There are many different and non-equivalent representations,
though. A less trivial example is the action of SO(3) on “fields”, i.e. functions on R3

or S2, via g ▷ f(x) = f(g−1x). This is an infinite-dimensional representation, which
however can be decomposed further. This leads to the spherical harmonics, which are
precisely the (finite-dimensional) irreps of SO(3).

(Exercise: work this out. Consider polynomial functions (on S2), decompose by degree,
express in spherical coordinates ...).

6.2 The representation theory of su(2)

Recall the rotation algebra (39) su(2)C ∼= so(3)C,

Rising-and lowering operators

A convenient basis of su(2)C is given by the rising-and lowering operators, which in
terms of

J± := J1 ± iJ2, J0 := 2J3

satisfy
[J0, J±] = ±2J±, [J+, J−] = J0 (39)

This is very useful if one studies representations, and we want to determine all finite-
dimensional irreps V = Cn of this Lie algebra.

Because V is finite-dimensional (and we work over C!), there is surely an eigenvector vλ
of J0 with

J0 vλ = λ vλ.

using the above CR, we have

J0(J± vλ) = J±J0 vλ ± 2J± vλ = (λ± 2) (J± vλ)

Hence J±vλ is again an eigenvector of J0, with eigenvalue (λ ± 2). This is why J± are
called rising-and lowering operators. We can continue like this acting with J+. Each
time we get an eigenvector of J0 whose eigenvalues is increased by 2. From linear algebra
we know that these are all linearly independent, so at some some point we must have a
vΛ with

J+ vΛ = 0 (40)
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This vΛ ̸= 0 ∈ V is called the “highest weight vector” of V . Now consider

vΛ−2n := (J−)
n vΛ, i.e. vm−2 = J−vm (41)

(hence vm−2 = J−vm) which for the same reason have eigenvalues

J0 vΛ−2n = (Λ− 2n) vΛ−2n.

One says that (Λ− 2n) is the weight of vΛ−2n, i.e. the eigenvalue of J0. Now we claim
that J+ vΛ−2n is proportional to vΛ−2n+2, i.e.

J+ vΛ−2n = rn vΛ−2n+2.

for some rn ∈ R. To see this, consider

J+ vΛ−2n = J+J− vΛ−2n+2 = (J−J+ + J0) vΛ−2n+2 .

The claim now follows by induction on n, starting with r0 = 0. We can thus proceed as

J+ vΛ−2n = (J−J+ + J0) vΛ−2n+2 = (rn−1 + Λ− 2n+ 2) vΛ−2n+2 (42)

Hence we obtain the recursion relation rn = (rn−1 +Λ− 2n+2) for rn, which is easy to
solve (exercise):

rn = n(Λ− n+ 1).

Because V is finite-dimensional, there is a maximal integer N such that vΛ−2N ̸= 0 but

J− vΛ−2N = 0.

This implies

0 = J+J− vΛ−2N = (J−J+ + J0) vΛ−2N = (rN + Λ− 2N) vΛ−2N .

Substituting rn = n(Λ− n+ 1), this yields the equation N2 + (1− Λ)N − Λ = 0 which
we can solve for Λ. This gives

N = Λ

which is a non-negative integer. The dimension of V is then

dimV = N + 1 = Λ + 1

In physics, one usually defines the spin as

j =
1

2
Λ.

Then
dimV = 2j + 1.
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We have thereby classified all possible finite-dimensional representations of su(2). This
means that up to a choice of basis, all irreps are equivalent to some “highest weight”
irrep

VΛ := {vΛ−2n, n = 0, 1, 2, ..., N, Λ = N},

i.e. they are characterized by their dimension.

Irreps are also characterized by the value of the Casimir operator

J⃗2 = J1J1 + J2J2 + J3J3

which satisfies
[J⃗2, Ji] = 0.

Therefore it takes the same value on any vector in the irrep. VΛ. Using

J⃗2 =
1

4
J0(J0 + 2) + J−J+

it is easy to evaluate it on the highest weight vector vΛ, which gives

J⃗2 =
1

4
Λ(Λ + 2) = j(j + 1)

in the irrep VΛ.

In physics, one is usually interested in unitary representations of the group SU(2). This
means that eixaJa is unitary, hence

J†
a = Ja.

Hence this is equivalent to a representation of su(2) with hermitian generators Ja. One
can easily show that all the above representations are actually unitary in this sense, if
one defines an inner product on Cn such that states with different weight are orthogonal:
for suitable normalization,

|Λ− 2n⟩ := cn vΛ−2n = cn (J−)
n vΛ (43)

satisfy
⟨Λ− 2n,Λ− 2m⟩ = δn,m.

It is easy to see that

J+|2(m− 1)⟩ =
√

1

2
(Λ + 2m)(Λ− 2m+ 2)|2m⟩.
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6.3 The adjoint representation

For every Lie algebra g, there is a natural representation on itself considered as a vector
space. One defines

ad : g → gl(g)

defined by the formula
adX(Y ) = [X, Y ].

It is easy to see (check !!!! Jacobi) that ad is a Lie algebra homomorphism, and is
therefore a representation of g, called the adjoint representation.

For example, consider SO(3) with generators Ji. Then so(3) acts on X ∈ so(3) as

adJi(x) = [Jj, X]

This is an infinitesimal rotation of X ∈ so(3). In fact it is 3-dimensional, which is the
dimension of the vector (3) rep. By uniqueness, it follows that the basic representation
and the adjoint representation are equivalent.

In a basis with [Xi, Xk] = ckijXk, this is

adXi
(Xj) = ckijXk (44)

hence the matrix which represents adXi
is

(adXi
)kl = ckil.

Hence the structure constants always define the adjoint representation.

Group version

The adjoint representation of g on g should lift to a representation of G on g. This
works as follows:

Let G be a Lie group with Lie algebra g. For each g ∈ G, consider the map

Adg : g → g,

X → gXg−1 (45)

The rhs is in fact ∈ g. One way to see this is the following (for matrix groups): egXg−1
=

geXg−1 ∈ G, therefore (exp is locally invertible!) gXg−1 ∈ g. We can view Ad as map

Ad : G → GL(g),

g → [X → gXg−1] (46)
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which is clearly a representation (group homom.). Then we have

ad = d(Ad) (47)

(proof:

d(Ad)X =
d

dt
|0 Ad(etX) ∈ gl(g),

which if applied to Y ∈ g gives

d(Ad)X(Y ) =
d

dt
|0 Ad(etX)(Y ) =

d

dt
|0 etXY e−tX = [X, Y ].

)

By the diagram 29, this implies
Ad(eX) = eadX (48)

i.e.

eXY e−X = (eadX )(Y ) = (1+adX+
1

2!
ad2X+ ...)Y = Y +[X, Y ]+

1

2!
[X, [X, Y ]]+ ...) (49)

(of course this can also be verified directly). Equation (48) is correct for any Lie group
resp. algebra.

For example, for so(3) this means that

eiϕ⃗·J⃗Xe−iϕ⃗·J⃗ = R(ϕ⃗)XR(−ϕ⃗) = eiϕ⃗j [Jj ,.]X

Now [Jj, X] is an infinitesimal rotation of X ∈ so(3), hence eiϕ⃗j [Jj ,.]X is the correspond-
ing finite rotation of X. This means that a vector X ∈ so(3) can be rotated by either
rotating it directly (rhs) or conjugating it with the corresponding rotation matrices. We
know this from Quantum mechanics: The rotation of angular momentum operators can
be achieved by conjugation with rotation operators, i.e. by rotating the states in the
Hilbert space.

The Killing form Define the following bilinear inner product on g:

(X, Y ) := κ(X, Y ) := Trad(adXadY ) = Trad([X, [Y, .]]) (50)

This makes sense because adX is a map from g to g. It is easy to show that this is a
symmetric bilinear form which is invariant under ad:

(X, adY (Z)) = (X, [Y, Z]) = Tr(adXad[Y,Z]) = Tr(adX [adY , adZ ])

= Tr([adX , adY ]adZ) = Tr(ad[X,Y ]adZ) = ([X, Y ], Z)

= −(adY (X), Z) (51)
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This means that adY acts as an anti-symmetric matrix on g, and therefore Ad(eY ) = eadY

acts as an orthogonal matrix. Note that (51) is the infinitesimal version of

(X,Ad(eY )(Z)) = (Ad(e−Y )(X), Y ),

i.e. Ad(eY ) is an orthogonal matrix w.r.t. the Killing form, i.e. the Killing from is
invariant under G.

One can show that for semi-simple Lie algebras g (these are by definition the direct
sum of simple Lie algebras; simple Lie algebras are those which contain no nontrivial
ideal and are not abelian), κ(., .) is the unique such invariant form on g, and it is non-
degenerate. We will see that κ(., .) is positive definite for compact Lie groups, so that g
is a Euclidean space Rn. Because it is unique, one can calculate it up to proportionality
in any representation:

TrV (π(X)π(Y )) = ακ(X, Y )

because this is also invariant (same proof as above).

Since g = Te(G), we can transport this Killing-metric to any Tg(G) via dLg, like the
left-invariant vector fields. In this way, G becomes a Riemannian Manifold (i.e. with
metric). Since the Killing metric is invariant under Ad, it follows that this metric is
invariant under both left- and right translations. This also shows that there is a measure
dµg on G which is invariant under Lg and Rg. This is the Haar measure on G, which
exists and is unique on any (reasonable) Lie group. For example, dµ = dnx on Rn.

6.4 The Baker-Campbell-Hausdorff Formula

For X and Y sufficiently small elements of g, the following formula holds:

exp(X) exp(Y ) = exp(X + Y + 1
2
[X, Y ] + 1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + · · · ). (52)

where .... stands for further terms which are always given by Lie brackets of ..., i.e. terms
in the Lie algebra. This is a “pedestrian’s” version of theorem 10, because we only need
to know the Commutators, i.e. the Lie algebra of g in order to calculate products of
the group. This formula therefore tells us how to pass from the Lie algebra to the Lie
group. In particular, if we have a Lie algebra homomorphism, we will also get a Lie
group homomorphism just like in theorem 10

There is a “closed” BCH formula: Consider the function

g(z) =
log z

1− 1
z

.
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which is well-defined and analytic in the disk {|z − 1| < 1}, and thus for z in this set,
g(z) can be expressed as

g(z) =
∞∑

m=0

am(z − 1)m.

This series has radius of convergence one. Then for any operator A on V with ∥A− I∥ <
1, we can define

g(A) =
∞∑

m=0

am(A− 1)m.

We are now ready to state the integral form of the Baker-Campbell-Hausdorff formula.

Theorem 19 (Baker-Campbell-Hausdorff) For all n× n complex matrices X and
Y with ∥X∥ and ∥Y ∥ sufficiently small,

log
(
eXeY

)
= X +

∫ 1

0

g(eadXetadY )(Y ) dt. (53)

Proof: omitted

6.5 Constructing and reducing representations

Weyls unitarity trick Assume that G is a compact Lie group, and

π : G→ GL(H)

is any finite-dimensional representation of G on some Hilbert space H, not necessarily
unitary. Let (u, v) denote the inner product on H.

One can then obtain a unitary representation from it as follows: Let dµg be the Haar
measure on G, i.e. the unique measure on G which is invariant under Lg and Rg. This
exists and is unique as explained above.

Then define a new inner product ⟨u, v⟩ by

⟨u, v⟩ :=
∫
G

dµg(π(g)u, π(g)v). (54)

This is well-defined because G is compact, and positiv definite and non-degenerate
because (, ) is. Most importantly, it is invariant under the action of G:

⟨π(g)u, π(g)v⟩ = ⟨u, v⟩. (55)
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This means that all π(g) are unitary operators w.r.t. this new inner product. In partic-
ular, it follows that all finite-dimensional representations of compact G are unitarizable
(i.e. there is a suitable inner product such that is becomes unitary), and therefore
they’re completely reducible by Lemma 18. This also means that the corresponding Lie
algebras Lie(G) are “semisimple”.

Applying this result to the adjoint representation (starting with any positive-definite
real inner product instead of a sesquilinear form), it follows by invariance that the
thus-obtained invariant inner product is the Killing form. Therefore

The Killing form is non-degenerate and Euclidean for compact G.

This is not true for non-compact groups: e.g. the 4-dimensional representation of
SO(3, 1) is not unitarizable. In fact the opposite is true: only infinite-dimensional
representations of SO(3, 1) are unitary! This is why one has to go to Field theory
in order to have a relativistic Quantum theory, where Lorentz transformations should
preserve probability and therefore be unitary.

We can now show

Antisymmetry of the structure constants

Let cijk be the structure constants in an ON basis (defined by the Killing from!),
[Xi, Xj] = cijkXk for any representation of g.

Then
cijk = Tr([Xi, Xj]Xk) = Tr(Xj[Xk, Xi]) = ckij

hence cijk is cyclic. Together with cijk = −cjik it follows that cijk is totally antisymmet-
ric.

Tensor products: If V and W are 2 representations of the Lie group G, then so is
V ⊗W by

π : G → GL(V ⊗W )

g 7→ πV (g)⊗ πW (g) (56)

Passing to the Lie algebra by differentiating, this becomes (set g = eit(xaJa))

π : g → gl(V ⊗W ) = gl(V )⊗ gl(W )

g 7→ πV (g)⊗ 11 + 11 ⊗ πW (g) (57)

It is easy to check directly that this is a representation of g.
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For example, this is the meaning of “adding angular momenta” in Quantum Mechanics,
via Ji = Li + Si.

For semi-simple Lie algebras, the tensor product of representations V ⊗W always de-
composes into the direct sum of irreps,

V ⊗W ∼= ⊕jnjVj

where Vj denote all possible irreps, and ni are the “multiplicities”.

Actually any products of representations transform like tensor products. e.g.,

[Ji, AB] = [Ji, A]B + A[Ji, B]

looks just like the action of [J, .] on A⊗B. For example, consider the Casimir for su(2),

J⃗2 := J1J1 + J2J2 + J3J3 ∈Mat(3)

where Ji ∈ so(3) transform like a vector under so(3). Clearly J⃗2 transforms like a scalar
under [J, .], i.e. trivially. According to the above, this means that

[J⃗2, Ji] = 0

Of course this can be checked explicitly.

In general, Casimirs are expressions in the generators which commute with all generators.

As another application we can quickly derive the

Wigner-Eckart theorem: Let J̃i be the spin j irrep of su(2), i.e.

J̃i ∈Mat(2j + 1,C) (58)

The Wigner-Eckart theorem states that every “vector operator” Ki ∈ Mat(2j + 1,C) ,
i.e.

[Ji, Kj] = iεijkKk

is proportional to Ji:
Ki = αJi

for some constant α.

Proof:

Consider the following action of su(2) on Mat(2j + 1,C):

π : su(2)×Mat(2j + 1,C) → Mat(2j + 1,C),
(Ji,M) 7→ i[J̃i,M ] (59)
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(cp. the adjoint!). (This corresponds to the rep of SU(2)

π : SU(2)×Mat(2j + 1,C) → Mat(2j + 1,C),
(U,M) 7→ π(U)Mπ(U)−1 (60)

)

Under this action,

Mat(2j + 1,C) ∼= C2j+1 ⊗ (C2j+1)∗ = (0) + (1) + ...+ (2j)

denoting the irreps by their spin.

(note that (C2j+1)∗ 7→ −(C2j+1)∗Ji is a rep., equivalent to (C2j+1) 7→ Ji(C2j+1)!)

Now assume that Xi ∈Mat(2j + 1,C) are “vector operators”, i.e.

[Ji, Kj] = iεijkKk

This means that Xi transforms like a spin 1 rep. under this action. But there is only
one (1) in the above decomposition, given by Ji. Hence

Ki = αJi

for some constant α. Hence any vector operator in an irreducible representation is
proportional to J̃i. qed

Spherical harmonics: Polynomials, Λ2, etc.

7 SU(3) and Quarks

Let us choose a basis of i su(3) = {M ; M † = M,Tr(M) = 0}: The standard choice is
given by the Gell-Mann matrices

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 ,

λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 ,

λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (61)
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These are the analogs of the Pauli matrices for su(2). They are normalized such that

(λa, λb) := Tr(λaλb) = 2δab.

The first 3 are just the Pauli matrices with an extra column, the other also have some
similarity. Hence we define

Tx =
1

2
λ1, Ty =

1

2
λ2, Tz =

1

2
λ3,

Vx =
1

2
λ4, Vy =

1

2
λ5,

Ux =
1

2
λ6, Uy =

1

2
λ7, (62)

and the corresponding complex combinations

T± = Tx ± iTy, V± = Vx ± iVy, U± = Ux ± iUy,

e.g.

U+ =

 0 0 0
0 0 1
0 0 0

 , V+ =

 0 0 1
0 0 0
0 0 0


etc. To make things more transparent, also introduce

V3 := [V+, V−], U3 := [U+, U−]

which are both linear combinations of λ3 and λ8. Then it is easy to check that Ui, Vi, Ti
form 3 different representations of su(2), called su(2)T , su(2)U , su(2)V .

Now note that
H3 := λ3, Y := λ8

are diagonal and orthogonal, and commute with each other:

(H3, H3) = (Y, Y ) = 2, (H3, Y ) = 0

(use (X, Y ) ∝ Tr(π(X)π(Y ))!). Also, there is no other element in su(3) which commutes
with them. Hence H3 and Y form a “maximal set of commuting observables”, and one
can diagonalize them in any representation (recall that any rep. is unitary here). We
will therefore label the eigenstates with the eigenvalues of these observables:

H3|m, y⟩ = m|m, y⟩, Y |m, y⟩ = y|m, y⟩ (63)

(denoted isospin and hypercharge). In particular, in the above “defining” 3-dimensional
representation we have 3 common eigenstates

|1, 1√
3
⟩ =

 1
0
0

 , | − 1,
1√
3
⟩ =

 0
1
0

 , |0,− 2√
3
⟩ =

 0
0
1

 , (64)
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Since H3 and Y orthogonal, we draw their eigenvalues as orthogonal axis in a 2-
dimensional “weight space” (=space of possible eigenvalues):

Then the 3 eigenstates form an equilateral triangle.

In particle physics, these are the quarks u, d, s, called “up”, “down” and “strange”!

We observe how the T±, V±, U± act on this representation: they are rising- and lowering
operators on the 3 sides of the triangle, which each form a spin 1

2
representation of su(2):

T+|m, y⟩ = |m+ 2, y⟩,
U+|m, y⟩ = |m− 1, y +

√
3⟩,

V+|m, y⟩ = |m+ 1, y +
√
3⟩, (65)

This holds in any representation, because of the commutation relations

[H3, T±] = ±2T±, [Y, T±] = 0

[H3, U±] = ∓U±, [Y, U±] = ±
√
3U±

[H3, V±] = ±V±, [Y, V±] = ±
√
3V± (66)

There exists another 3-dimensional representation of su(3) which is inequivalent to the
above (3) representation, which is obtained by complex conjugating (but not transpos-
ing) the Gell-mann matrices.

(3):
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These label the Antiquarks u, d, s.

Now consider another representation, the adjoint representation. Hence the vector space
is

V ≡ (8) ∼= C8 = ⟨λ1, ..., λ8⟩

and H is represented by adH , and Y by adY . Again they commute (since it is a repre-
sentation), hence they can be diagonalized, and we label the states in (8) again by their
eigenvalues (=weights),

(8) = {|mi, yi⟩, i = 1, 2, ..., 8}.

The weights are easily obtained from the commutation relations: Note that the rising-
and lowering operators are eigenvectors of adH and adY , hence

T± ∝ | ± 2, 0⟩, U± ∝ | ∓ 1,±
√
3⟩, V± ∝ | ± 1,±

√
3⟩ (67)

These are 6 eigenvectors of H3, Y ; the 2 missing ones are H3 and Y themselves, which
have eigenvalues 0:

H3 ∝ |0, 0⟩1, Y ∝ |0, 0⟩2 (68)

Hence there is a degeneracy: not all states in the adjoint rep can be labeled uniquely
by the “weights” (m, y). Drawing the weight diagram, we get
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These label the mesons, which are bound states of one quark and one anti-quark.

They form a regular hexagon. All angles are π
3
. The action of the rising-and lowering

operators is clear since they form irreps of su(2) along the lines, and can be read off
from the picture. This is very useful!

Notice that the differences of weights of states connected by the rising-and lowering ops
are always the same: from (65), they are

αT+ = (2, 0), αT− = (−2, 0),

αU+ = (−1,
√
3), αU− = (1,−

√
3),

αV+ = (1,
√
3), αV− = (−1,−

√
3) (69)

This will hold for any representation, therefore we give them a name: these 6 α’S are the
roots of su(3). Notice that they correspond precisely to the various rising- and lowering
operators.

It turns out that all irreps of su(3) have this kind of pattern: there is a “weight lattice”,
and all weights are linked by the above roots. Other representations include a six–
dimensional irrep (6), a decouplet (10), and so on.

This is also the way to proceed in general:

• choose a maximal set of commuting elements {Hi} in g (“Cartan subalgebra”)

• consider the adjoint representation, and find the eigenvectors of adHi
: these are

the rising- and lowering operators, and correspond to the roots.
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Moreover using the Killing form, we get a Euclidean metric on the weight space, which
leads to lattices as above.

7.1 More about Quarks

The reason why this is successful for particle physics is that baryons and mesons are
composite objects of Quarks, which are represented by u

d
s


which transform as (3) under SU(3). The antiquarks u

d
s


transform as (3) under SU(3). This generalizes isospin, see before. In fact, mesons are
bound states (qq) of a Quark and an Antiquark, hence they are in (3)⊗ (3). We will see
that

(3)⊗ (3) = (8) + (1)

and the (8) is just the meson representation above. The other multiplets arise similarly.
In fact, some of the particles were successfully predicted because they were missing in
these diagrams.

The point is that the Hamiltonian for strong interactions is invariant under the SU(3)
group acting on these quarks, but there are some terms H ′ in the full Hamiltonian of
the standard model (due to weak interactions) which break this symmetry:

Hfull = Hsu(3)−invar +H ′ .

This breaking leads to different masses for the various baryons in a given multiplet.

There is also an octet (8) ⊂ (3) ⊗ (3) ⊗ (3) of baryons describing bound states of 3
quarks which includes the neutron and proton, and a decouplet (10) of baryons which
arises also as a bound states or 3 quarks.

8 The structure of simple Lie algebras

The central technique to understand and work with Lie algebras is to identify the rising-
and lowering operators. They rise and lower eigenvalues of the Cartan subalgebra.
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From now on we work with Lie algebras over C, which is crucial and much easier than
R. Given any “real” Lie algebra, one simply considers the “complexified Lie algebra”
by just “allowing linear combinations over C. For example, the complexification of
su(2) = ⟨X1, X2, X3⟩R is su(2)C = ⟨X1, X2, X3⟩C ∋ X+ = X1 + iX2. The original
generators remain linearly independent over C.

We consider only semisimple and simple Lie algebras. Semisimple Lie algebras are direct
sums of simple Lie algebras. Simple Lie algebras are those which are not abelian and
contain no (nontrivial) ideals, i.e. subspace h ⊂ g with

[h, g] ⊂ h.

We have seen that all Lie algebras arising from compact Lie groups are semi-simple
(except for U(1) which is excluded by definition), and this is all we will need here.

8.1 Cartan subalgebras, Roots and the Cartan-Weyl basis

Consider the adjoint representation. Any x ∈ g defines a linear map

adx : g → g, adx(y) = [x, y].

Because we consider only (semi)simple Lie algebras, one can show that there exist x ∈ g
such that adx is diagonalizable (this is not trivial!).

For compact Lie groups, all representations (in particular ad) can be made unitary
(by Weyls unitary trick), hence the generators are hermitian, and can therefore be
diagonalized. This reflects the fact that all g coming from compact Lie groups (with no
U(1) factor) are semisimple.

A Cartan subalgebra g0 ⊂ g is a maximal abelian subalgebra of g whose elements x ∈ g0
are all such that adx : g → g is diagonalizable. They exist by the above remark.

A (semisimple) Lie algebra g can posses many different Cartan subalgebras. However, it
turns out that they are related through some automorphisms, hence they are essentially
equivalent. One can show that they all have the same dimension r, which is called the
“rank” of g.

Since g0 is a vector space (over C, clearly), we can choose some basis {Hi}i=1,...,r, and
[Hi, Hj] = 0. Using the Jacobi identity, it follows that adHi

commute with each other,
and one can diagonalize them simultaneously (“commuting observables”). Therefore g
is spanned by elements yα ∈ g which are simultaneous eigenvectors of all adHi

, i.e.

adHi
(yα) = αiyα (70)
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where α = (α1, ..., αr) are the respective eigenvalues. In fact, such a given yα is an
eigenvector of any H =

∑
ciHi ∈ g0 in the Cartan subalgebra, with eigenvalue

adH(yα) = α(H)yα (71)

where
α(H) :=

∑
ciαi.

That is, α is a linear function from g0 to C, i.e.

α ∈ g∗0

(dual space). Such a non-zero α ∈ g∗0 corresponding to some common eigenvector yα ∈ g
is called a root of g. Note that a root α does not depend on the normalization of the
eigenvector yα, they are unique.

Because eigenvectors y corresponding to different eigenvalues resp. roots α are linearly
independent, it follows that

g = ⊕αgα = g0 ⊕ (⊕α ̸=0gα) (72)

where gα = {y ∈ g; adH(y) = α(H)y}. This is called the root space decomposition
of g (relative to g0). Clearly there are only finitely many roots! Usually one does not
consider 0 to be a root, and separates the Cartan subalgebra g0 (Notice that g0 really
IS the Cartan subalgebra!). The set of roots is denoted by

Φ = {α ̸= 0} ⊂ g∗0

One can show that

the “root spaces” gα are one-dimensional, i.e. there is only one rising-resp. lowering
operator (up to scalar mult.) for each root α. Moreover, the only multiples of α which
are also roots are −α.

(This will become more clear in section 8.1.2). This means that there is a basis of g
which apart from the basis {Hi} of g0 consists of elements Xα, one for each root α ∈ Φ,
which satisfy

[Hi, Hj] = 0
[Hi, Xα] = αiXα i = 1, 2, ..., r.

(73)

where αi = α(Hi). The r-dimensional vector (αi) resp. the element α ∈ g∗0 are the
roots of g. Such a basis is called a Cartan-Weyl basis of g. The generators Xα are
called ladder-operators, because they rise resp. lower the eigenvalues of the Hi in a
representation, just like for su(2).
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For example, consider su(2) in the basis J0, J±. Here the Cartan subalgebra is given by
C J0, and since [J0, J±] = ±2J±, the roots spaces are

g+ = CJ+, g− = CJ−, g0 = CH

Similarly for su(3), the Cartan subalgebra is generated by H3, Y (resp. λ3, λ8), and the
rising- and lowering operators are T±, U±, V±.

One can also show that

Lemma: one can choose the basis Hi of the Cartan subalgebra such that all αi = α(Hi)
are real (in fact, integers!) for each i.

(this is easy to see: if we choose all Hi to be hermitian, then all eigenvalues of adHi
are

real, because then adHi
is hermitian w.r.t. the inner product

⟨X, Y ⟩ := Tr(X†Y ) (74)

and can hence be diagonalized with real eigenvalues αH .)

This is very crucial: it allows to define the “real Cartan subalgebra”

g0,R := ⟨Hi⟩R (75)

as the space of real linear combinations of the Hi. For compact Lie algebras, this is
what one starts with before the complexification, since the Hi are then (anti)hermitian.

The roots are therefore linear function from g0 to R, i.e.

α ∈ g∗0,R ,

This will be understood from now on, and we omit the R.

Now consider the Killing from. We use the basis {Xαi
, Hi} of g. Then for any H ∈ g0,

the matrix representing adH is diagonal,

adH = diag (α1(H), ..., αn(H), 0, ..., 0) .

(since adH(Hi) = 0). Therefore the Killing form is

κ(H1, H2) =
∑
α∈Φ

α(H1)α(H2)

Because the α(H1) are real as stated above, it follows that

Lemma: The Killing form on the “real” Cartan subalgebra g0,R is real and positive
definite.
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(again, this is clear for compact groups...)

Note that this is not trivial: for example,

κ(iH1, iH1) = −κ(H1, H1)

The point is that the roots are uniquely defined, and the “real” Cartan subalgebra is
defined as the “real” dual of ⟨α⟩R. Therefore

g0,R is a Euclidean space

We’ll omit the R in g0,R.

Because it is nondegenerate, the Killing form defines an isomorphism

α 7→ Hα

between g∗0 and g0, which is the space of roots, by

α(X) = κ(Hα, X) (76)

And, one also obtains an inner product on g∗0 by

⟨α, β⟩ := κ(Hα, Hβ) (77)

which is again Euclidean. Therefore

the space g∗0 spanned by the roots is an Euclidean space with inner product ⟨α, β⟩

Furthermore, one can show that the roots span all of g∗0.

8.1.1 Example: su(3).

To illustrate this, consider su(3). The Cartan subalgebra is generated by

g0 = ⟨{H3, Y }⟩R (78)

which are orthogonal: using

(H3, Y ) = TrC3(H3Y ) = 0,

(H3, H3) = TrC3(λ3λ3) = 2 = (Y, Y ) (79)

The eigenvectors of adH3 , adT3 are

[H3, T±] = ±2T± = αT±(H3)T±, [Y, T±] = 0 = αT±(Y )Y

[H3, U±] = ∓U± = αU±(H3)U±, [Y, U±] = ±
√
3U± = αU±(Y )U±

[H3, V±] = ±V± = αV±(H3)V±, [Y, V±] = ±
√
3V± = αV±(Y )V±

(80)
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which defines the roots αT± , αU± , αV± . One then obtains

HT± = ±H3,

HU± = ±

(
−1

2
H3 +

√
3

2
Y

)
,

HV± = ±

(
1

2
H3 +

√
3

2
Y

)
(81)

which satisfy αT±(H3) = (HT± , H3) etc. (check) Therefore we can calculate the inner
products:

⟨αT+ , αT+⟩ = (H3, H3) = 2 = ⟨αU+ , αU+⟩ = ⟨αV+ , αV+⟩,

⟨αT+ , αU+⟩ = (H3,−
1

2
H3 +

√
3

2
Y ) = −1 = −⟨αT+ , αV+⟩,

⟨αU+ , αV+⟩ = (−1

2
H3 +

√
3

2
Y,

1

2
H3 +

√
3

2
Y ) = −1

2
+

3

2
= 1 (82)

etc. Since cos(60) = 1/2, it follows that all the angles are 60o. Hence the 6 roots form
a regular hexagon:

(also include Y and H3).
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8.1.2 Commutation relations for a Cartan-Weyl basis

We proceed with the general analysis. For H ∈ g0, consider

[H, [Xα, Xβ]] = −[Xα, [Xβ, H]]− [Xβ, [H,Xα]]

= β(H)[Xα, Xβ] + α(H)[Xα, Xβ]

= (β(H) + α(H))[Xα, Xβ] (83)

This means that either [Xα, Xβ] = 0, or it is a root vector corresponding to the root
α + β. It is not hard to show (exercise) that if α + β is a root, then in fact

0 ̸= [Xα, Xβ] = eαβ Xα+β

If β = −α, it follows that [H, [Xα, X−α]] = 0 hence

[Xα, X−α] ∈ g0

is in the Cartan subalgebra. Moreover it is nonzero, since

(H, [Xα, X−α]) = ([H,Xα], X−α) = α(H)(Xα, X−α) = (H, (Xα, X−α)Hα) (84)

since α(H) = (H,Hα) (76), for all H ∈ g0. Therefore
3

[Xα, X−α] = (Xα, X−α)Hα

Collecting these results, we constructed a “Cartan-Weyl” basis {Hi, Xα} consisting of
Cartan generators and root vectors (one for each root α), with commutation relations

[Hi, Hj] = 0

[Hi, Xα] = α(Hi)Xα

[Xα, Xβ] = eαβ Xα+β, α + β ∈ Φ

[Xα, X−α] = (Xα, X−α) Hα,

[Xα, Xβ] = 0, α+ β /∈ Φ, α+ β ̸= 0 (85)

8.2 Useful concepts for representations: Roots and Weights

Now consider a representation V of g. We choose a basis of V which are common
eigenvectors of the Cartan subalgebra Hi:

Hi|λi; j⟩ = λi|λi; j⟩
3From these considerations it follows easily that the root spaces gα are one-dimensional, since oth-

erwise one could extend the Cartan subalgebra.
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where the extra index j denotes possible other indices (for degeneracies). Of course it
follows (

∑
ciHi)|λi; j⟩ = (

∑
i ciλi)|λi; j⟩, hence the common eigenstates really define a

linear functional λ on g, just like the roots: if we define λ(H) :=
∑

i ciλi, then

H|λ⟩ = λ(H)|λ⟩

(omitting j). These λ ∈ g∗0 are called weights of the representation V . Note that both
roots α and weights λ are in g∗0. This makes sense: recalling that adH(Xα) = α(H)Xα,
we see that

the roots are just the weights of the adjoint representation

The space
Vλ := {|λ⟩ ∈ V ;H|λ⟩ = λ(H)|λ⟩}

of eigenvectors in V with given weight λ is called the weight space of V with weight λ.
An element vλ ∈ Vλ is called a weight vector with weight λ.

The crucial point is now the following:

HXα|λ⟩ = (XαH + α(H)Xα)|λ⟩
= (λ(H) + α(H))Xα|λ⟩ (86)

This means that Xα|λ⟩ ∼= |λ + α⟩ has weight λ + α. Similarly X−α lowers the weights
by α, hence

the root vectors Xα relate weight vectors with weights differing by α. They are therefore
called raising and lowering operators.

Example: For the 3-dim. representation of su(3) defined by the Gell-Mann matrices,
there are 3 different weights, see before. We have already calculated the eigenvalues in
(64).

vλ1 = |1, 1√
3
⟩ =

 1
0
0

 , vλ2 = | − 1,
1√
3
⟩ =

 0
1
0

 , vλ3 = |0,− 2√
3
⟩ =

 0
0
1

 ,

(87)
One can easily check using (69) that their weights are

λ1 =
2

3
αT+ +

1

3
αU+ ,

λ2 = −1

3
αT+ +

1

3
αU+ ,

λ3 = −1

3
αT+ − 2

3
αU+ ,

They form an equilateral triangle.
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8.2.1 su(2) strings and the Weyl group

The first important thing to note is that for any root α, the generators Xα, X−α, Ha

define a su(2) subalgebra:

[Hα, Xα] = α(Hα)Xα = ⟨α, α⟩Xα

[Hα, X−α] = −⟨α, α⟩X−α

[Xα, X−α] = (Xα, X−α) Hα,

since α(Hα) = (Hα, Hα) = ⟨α, α⟩. Hence for any pair α,−α of roots there is a cor-
responding su(2)α. We have seen this explicitly for su(3). These different su(2) are
entangled in a nontrivial way.

Choose some root α, and normalize X±α such that (Xα, X−α) = 1. Then

[Xα, X−α] = Hα (88)

This su(2) algebra generated by Xα, X−α, Ha acts on V , which therefore decomposes
into a direct sum of irreps. Pick one such irrep. Its weights consist of “weight strings”
µ, µ− α, ..., µ− qα for some integer q. We want to determine q from µ. Repeating our
analysis of the su(2) representations , we define

vj := Xj
−αv0 (89)

where v0 is the (highest) weight vector in that string with weight µ. Then q is determined
by

X−αvq = 0

since there is no lower weight.

Using
µ(Hα) = (Hµ, Hα) = ⟨µ, α⟩

we get

Xαvk =: rkvk−1 = XαX−αvk−1

= (X−αXα +Hα)vk−1

= rk−1vk−1 + (µ(Hα)− (k − 1)α(Hα))vk−1

= (rk−1vk−1 + ⟨µ, α⟩ − (k − 1)⟨α, α⟩)vk−1

The solution or this recursion relation with r0 = 0 is

rk = k⟨µ, α⟩ − 1

2
k(k − 1)⟨α, α⟩

Since rq+1 = 0, we get

q =
2⟨µ, α⟩
⟨α, α⟩

(90)
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In practice, we often have a weight λ which may or may not be the highest weight in
this weight string λ+ pα, ..., λ, ..., λ−mα. Since the above formula says

q = m+ p =
2⟨λ+ pα, α⟩

⟨α, α⟩

it follows

m− p = 2⟨λ,α⟩
⟨α,α⟩ ∈ {−q,−q + 2, ..., q − 2, q} (91)

This is a very useful formula: it tells us where λ may lie in a su(2) string.

For example, consider the 3-dim. rep. of su(3). Consider the αT+ string (horizontal)
through vλ1 = |1, 1√

3
⟩. We get

m− p =
2⟨(2

3
αT+ + 1

3
αU+), αT+⟩

⟨αT+ , αT+⟩
= 1.

Indeed, p = 0 and m = 1.

Therefore there is a reflection symmetry in such a string, reflecting along α through the
hyperplane Hα = {x; ⟨x, α⟩ = 0}:

(Picture)

This reflection acts on weights as follows:

Sα : λ 7→ λ− 2⟨λ,α⟩
⟨α,α⟩ α = λ− (m− p)α (92)

because ⟨λ,α⟩
⟨α,α⟩ is the projection of λ on α. This reflection is called a Weyl reflection. This

construction applies to any root α in any representation.

Now consider the action of such a su(2)α on any irrep V of g. It follows that V de-
composes into the direct sum of irreps of this su(2)α. By the above argument, all these
irreps (or strings) of su(2)α have the Weyl reflection symmetry described by the same
formula (92). This means that all these su(2)α strings are symmetric i.e. preserved
under Sα.

(Example: ad of su(3).)

The various Weyl reflections (in weight space) can be combined, and generate a group
called the Weyl group of g. The Weyl group maps weights into weights, for any repre-
sentation.

(Exercise: determine the Weyl group for su(3), and su(2)).

62



The Weyl group is very useful to understand the structure of the irreps, and to calculate
their characters. This will be exploited further below.

8.3 More on the structure of the adjoint representation

Consider again the su(2)α subgroups, and the α-strings they generate in the adjoint
representation. Using (91) twice for roots α ̸= β, we get

cos2(θ) :=
⟨α, β⟩⟨α, β⟩
⟨α, α⟩⟨β, β⟩

=
1

4
mn (93)

for roots α ̸= β, where m and n are integers given by appropriate values m′−p′. The lhs
is cos2(θ) where θ is the angle between the vectors α and β. Using the Cauchy-Schwarz
inequality, it follows that 1

4
mn ≤ 1. Moreover it follows that |m| ≤ 3 and |n| ≤ 3, since

α ̸= β and using the fact that if α is a root, then kα can be a root only for k = ±1. It
follows that

In the adjoint representation, a string can have no more than 4 weights in it.

which has far-reaching consequences. Furthermore,

cos(θ) can only take the values 0, 1
4
, 1
2
, 3
4
, and |m|, |n| ≤ 3.

This means that the possible angles between roots are multiples of 30o, 45o. This will
severely restrict the possible Lie algebras: it will imply that every (simple) Lie algebra
is one of the classical matrix algebras su(n), so(n), sp(n) or one of 5 “exceptional” Lie
algebras first enumerated by Killing.

8.4 Simple roots and the Cartan matrix

The next step is to define an ordering among the roots. This is somewhat arbitrary, but
nevertheless very useful.

Let {α1, ..., αr} ⊂ Φ be an ordered set of linearly independent roots (note that r is the
rank, hence this is only a subset of all roots) such that every element λ ∈ g∗0 can be
written uniquely as λ =

∑
ciαi. We then call λ positive (denoted by λ > 0) if the first

non-vanishing ci is positive, i.e. c1 > 0, or c1 = 0, c2 > 0, etc. If the first non-zero ci is
negative, we call λ negative. This is a refined version of choosing some hyperplane in
g∗0,R which divides the space in positive and negative vectors.
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The set of positive λ is closed under addition, and we can write λ > µ if λ− µ > 0. In
particular, we can now say which roots are positive and which are negative.

A simple root is a positive root which cannot be written as the sum of two positive roots.

For example, consider su(3). The roots are αT+ , αU+ , αV+ and their negatives. We note
that αV+ = αT+ + αU+ . If we choose (αT+ , αU+) as basis, then these are simple roots
while αV+ is not. But we can also choose (αT+ , αV+) as basis. Then αU+ = −αT+ + αV+ ,
and the positive roots are αT+ ,−αU+ , αV+ and the simple roots are −αU+ and αV+ , with
−αU+ > αV+ .

Denote the set of simple roots with Φs ⊂ Φ. One very important property of the simple
roots is that the difference of two simple roots is not a root at all:

α, β ∈ Φs ⇒ α− β ̸∈ Φ

Assume to the contrary that α − β ∈ Φ. Then either α − β is positive or β − α is
positive. Thus either α = (α− β) + β or β = (β − α) + α can be written as the sum of
two positive roots, in contradiction with the definition.

Furthermore,
⟨α, β⟩ ≤ 0 if α, β ∈ Φs (94)

This follows from (91) applied to the adjoint representation, because β =: λ is a root,
but β − α is not (recall that the roots are the weights in the adjoint). Thus m = 0 in
(91), so m− p ≤ 0.

This implies that the simple roots are linearly independent. If they were linearly depen-
dent, we could write ∑

αi∈Φs

aiαi =
∑
αi∈Φs

biαi (95)

where ai ≥ 0 and bi ≥ 0 and aibi = 0. (There cannot be a relation
∑

αi∈Φs
ciαi = 0 with

all ci ≥ 0, since the simple roots αi are all positive). Now multiplying both sides with∑
αi∈Φs

aiαi we get

⟨
∑
i

aiαi,
∑
i

aiαi⟩ = ⟨
∑
i

biαi,
∑
i

aiαi⟩

The lhs is positive because it is a square, but the rhs is negative by (94). Hence both
sides must be zero, establishing the linear independence of the simple roots. Hence we
can take as a basis of roots (as before) the simple roots. (one can also show that they
are complete).

The crucial property is now the following:

every positive root can be written as a positive (integer!) sum of simple roots
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This is certainly true for the positive roots which happen to be simple. Now consider
the smallest positive root for which this is not true. Since it is not simple, it can be
written as sum of two positive roots. But these are smaller than their sum, hence each
can by hypothesis be written as positive sum of simple roots. QED.

Furthermore, note that every root is either positive or negative, and every negative root
can be written as -(positive sum of simple roots).

From the simple roots we can form the Cartan matrix, which summarizes all properties
of the simple Lie algebra to which it corresponds. Let r be the rank of g, i.e. r =
dim(g0) = dim(g∗0). Then the Cartan matrix is the r × r matrix

Aij = 2
⟨αi, αj⟩
⟨αj, αj⟩

(96)

where αi are the simple roots.

The diagonal elements are all equal to 2. The matrix is not necessarily symmetric, but
if Aij ̸= 0 then Aji ̸= 0. In fact, we have shown before that the only possible values for
the off-diagonal elements are 0,±1,±2,±3 (because the length of any su(2)-string is at
most 4). Actually they can only be 0,−1,−2,−3 using (94).

There is more: we have
⟨αi, αj⟩2 ≤ ⟨αi, αi⟩⟨αj, αj⟩

where the inequality is strict unless αi and αj are proportional. This cannot happen for
i ̸= j since the simple roots are linearly independent. Hence

AijAji < 4. (97)

i.e.. if Aij = −2 or −3, then Aji = −1.

Consider su(3) as an example. We take the basis

(α1, α2) = (αT+ , αU+)

Since then αV+ = α1 + α2, the simple roots are also α1, α2. We already computed the
relevant scalar products:

⟨α1, α1⟩ = 2,

⟨α1, α2⟩ = −1,

⟨α2, α2⟩ = 2,

(98)

Therefore

A =

(
2 −1
−1 2

)
(99)
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The Cartan matrix, together with (91), allows to determine all the roots of a given
simple Lie algebra. It is enough to determine the positive roots β =

∑
kiαi which have

ki ≥ 0. One calls n := (
∑
ki) the level of the root β. Hence the simple roots have level

one. Assume that we found all roots at the nth level. Then for each root β with level n,
we must determine whether β + αi is a root or not.

Since all the roots at level n are known, it is known how far back the root strings
β, β − αi, ..., β − mαi extends (recall that there is only one Xα for each root α, and
that all roots are either a positive or a negative sum of the simple roots). From this,
we compute how far the string extends: β, β + αi, ..., β + pαi. From (92) we define the
Dynkin indices of β as

ni(β) := 2
⟨β, αi⟩
⟨αi, αi⟩

=
∑
j

2kj
⟨αj, αi⟩
⟨αi, αi⟩

=
∑
j

kjAji = m− p (100)

which take values in {−q, ..., q} in the αi string through β. In particular, β + αi is a
root if p = m−

∑
j kjAji > 0. Also, the αi-string through αj has length −Aji + 1.

Hence we should keep track of the Dynkin indices (ni) of the roots β. Then (92) states
that in an αi string, the i − th Dynkin index ni takes values in some symmetric set
{−q,−q + 2, ...,+q}. This is easy to keep track of, by simply adding the j’th row of
the Cartan Matrix whenever the j’th simple root is added to a root. (In particular, the
i− th Dynkin index in the αi string through αj takes the values {Aji, Aji+2, ...,−Aji}).

Consider su(3). We start by writing down the rows of the Cartan matrix, which represent
the simple roots α1, α2:

Start with α1, which has Dynkin indices A1i. We ask whether the addition of α2 produces
a root at level 2. (recall that 2α1 is not a root). Since the second entry in the box
representing α1 is negative, the corresponding value of p in (100) is positive. The same
conclution is reached if beginning with α2. Is there a root at level 3? Looking back in
the α1 direction, we have m = 1. Since the first entry in the box for α1 + α2 is 1, we
have p = 0, so this is the end. Similarly for α2. Hence there are no more positive roots.

To summarize, we can determine the m− p in (100) in this graphical representation, by
noting that each string must have the symmwtric form {−q, ...,+q}.
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Other example: exceptional algebra G2. The corresponding Cartan matrix is

Hence G2 has 6 positive roots. The set of roots looks as follows:

Figure 2: roots of G2.

The Cartan matrix also contains all the information about the commutation relations:

8.5 The Chevalley-Serre form of the Lie algebra

Lets use the following normalization:

X+
i := ciXαi

,

X−
i := ciX−αi

,

Hi :=
2

⟨αi, αi⟩
Hαi

(101)

where

ci =

√
2

(Xαi
, X−αi

)⟨αi, αi⟩
(102)
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Then the commutation relations (85) of the Cartan-Weyl basis imply e.g. [Hαi
, X+

j ] =
αj(Hαi

)X+
j = ⟨αj, αi⟩X+

j , hence

[Hi, X
+
j ] =

2

⟨αi, αi⟩
[Hαi

, X+
j ] =

2⟨αj, αi⟩
⟨αi, αi⟩

X+
j ,

etc, hence

[Hi, Hj] = 0

[Hi, X
±
j ] = ±AjiX

±
j

[X+
i , X

−
j ] = δi,j Hi,

(103)

The last relation follows because αi−αj is not a root. Finally, since the αi-string through
αj has length 1−Aji (see below (100)) and X+

j ∈ g (considered as ad-rep) corresponds
to the root αj, it follows that

(adX±
i
)1−AjiX±

j = 0 (104)

These commutation relations are called the Chevalley-Serre commutation relations. One
can now follow the above algorithm to find the roots α and construct the corresponding
Xα at the same time. For example,

Xα1+α2 = [X+
α1
, X+

α2
],

etc. One can show that all root vectors Xα can be obtained in this way via commuta-
tors of the X±

i . This means that it is enough to work with the simple roots and the
corresponding X±

i , which is a big simplification.

Therefore the Cartan matrix contains all the information necessary to reconstruct the
full Lie algebra. Its content can be summarized in a very elegant and useful way using
the so-called Dynkin diagram:

8.6 Dynkin Diagrams

The Dynkin diagram of a (semi-simple) Lie algebra is constructed as follows: For every
simple root αi, make a dot. We will see that the length of the simple roots ⟨αi, αi⟩ can
take at most 2 different values. Hence one makes a dark dot for the short roots, and
an “empty” dot for the long ones. Now one connects the ith and the jth dot with a
number of straight lines equal to AijAji, which can be either 1,2 or 3 (indicating the
angle between the simple roots). It turns out that for simple algebras one obtains a
connected graph, while for direct sums one obtains disconnected graphs (since the roots
are orthogonal).
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The Dynkin diagram for su(2) is just a point (the Cartan matrix being (2)).

The Cartan matrix and the Dynkin diagram for su(3) is

Aij =

(
2 −1
−1 2

)

The Cartan matrix and the Dynkin diagram for the exceptional Lie algebra G2 is

The dark dot inG2 corresponds to the second root α2, which follows from the asymmetric
Cartan matrix.

To illustrate the relation between the Cartan matrix and Dynkin diagrams, consider the
Dynkin Diagram for B3.

It follows that A31 = A13 = 0. Since one line connects the first and the second point, we
must have A21 = A12 = −1. The second and third points are related by 2 lines, hence
A23A32 = 2. Since the third root is smaller that the second, it must be A23 = −2 and
A32 = −1. Thus

Aij =

 2 −1 0
−1 2 −2
0 −1 2

 (105)

We will determine all possible Dynkin diagrams below, hence all possible simple Lie
algebras.
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9 The classical Lie algebras

Let us apply these considerations to the classical Lie algebras su(n), so(n) and sp(n).
Start with

su(n):

Recall that su(n) = Lie(SU(n)) = {A ∈ Mat(n,C); A† = −A = 0, T r(A) = 0}. Recall
that we always work with the complexified Lie algebra su(n)C, which is denoted now by

An−1 = su(n)C

where n − 1 is the rank as we’ll see. (Incidentally, An−1 coincides with sl(n)C. Hence
these are the same if complexified, i.e. the structure of their Lie algebras is the same.
Then su(n) and sl(n,R) are different real sectors of An−1.)

A basis of An−1 = su(n)C is given by all

eab = (eab)ij = δiaδjb, a ̸= b

(due to complexification!) and of n− 1 elements

H =
∑

cieii,
∑

ci = 0.

Alltogether these are n2−1 independent generators (over C), as it should be (this is the
same as for the real Lie group su(n)). We easily check the commutation relations

[eab, ecd] = eadδbc − ecbδad (106)

and in particular
[H, eab] = (ca − cb)eab (107)

Thus eab is a root vector corresponding to the root α(H =
∑
cieii) = (ca − cb).

Let us choose a basis for the root space:

α1(
∑

cieii) = c1 − c2,

α2(
∑

cieii) = c2 − c3,

...

αn−1(
∑

cieii) = cn−1 − cn,

and declare these positive roots with ordering α1 > ... > αn−1. It is easy to see that
these are just the simple roots.
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Next we need the Killing-form applied to the Cartan subalgebra. It is

(
∑

cieii,
∑

c′jejj) = Tr(ad∑ cieiiad
∑

c′jejj
)

=
∑
a,b

(ca − cb)(c
′
a − c′b)

= 2n
∑
a

cac
′
a (108)

In particular, (eii, ejj) = 2nδi,j. This gives the duality between αi and Hαi
:

(Hαi
,
∑

cjejj) = αi(
∑

cjejj) = ci − ci+1 (109)

Therefore

Hαi
=

1

2n
(eii − ei+1 i+1) (110)

and

⟨αi, αj⟩ =
1

2n
(2δij − δi,j+1 − δi+1,j) (111)

Therefore the Cartan Matrix is

An :


2 −1 0
−1 2 −1
0 −1 2

2 −1 0
−1 2 −1
0 −1 2

 (112)

and the Dynkin Diagram is

sp(2n):

The symplectic group Sp(2n) is defined as

Sp(2n) = {A ∈Mat(2n); ATJA = J} (113)

where

J =

(
0 11

−11 0

)
(114)

The corresponding Lie algebra is obtained from exp(X) ≈ 1+X+ o(X2), which implies

Cn := sp(2n) = {X ∈Mat(2n) XT = JXJ}. (115)
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(complexified). Again one chooses a suitable basis of sp(2n), a Cartan subalgebra,
calculates the Killing form etc. It turns out that the rank is n, hence there are n simple
roots α1, ..., αn One finds the Cartan matrix

Cn :


2 −1 0
−1 2 −1
0 −1 2

2 −1 0
−1 2 −1
0 −2 2

 (116)

note that the difference is only in the last line. The corresponding Dynkin diagram is

For the orthogonal groups, one must distinguish between even and odd dimensions:

Dn := so(2n):

This has rank n, with Cartan matrix

Dn :



2 −1 0
−1 2 −1
0 −1 2

2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2


(117)

and Dynkin diagram

Bn := so(2n+ 1):
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This has also rank n, with Cartan matrix

Bn :


2 −1 0
−1 2 −1
0 −1 2

2 −1 0
−1 2 −2
0 −1 2

 (118)

and Dynkin diagram

Note the similarity between Bn and Cn, which differ only by interchanging the last
off-diagonal elements. This amounts to reversing the shading of the dots.

Note also that the Dynkin diagram for D2 = so(4) consists of 2 disconencted points,
and the Cartan matrix is 211 2×2. This corresponds (and in fact shows!) to the fact that
so(4) ∼= su(2) × su(2). Similarly, the Dynkin diagram for so(6) is the same as the one
for su(4), which again implies that so(6) ∼= su(4). This indicates their usefulness!

10 The exceptional Lie algebras

Surprisingly, there are only five other simple Lie algebras besides the series An, Bn, Cn

and Dn. This amounts to a complete classification of the simple Lie algebras. These
additional ones are the following:
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This can be proved by considering sets of vectors γi ∈ g∗0 (candidates for simple roots)
and defining the associated matrix

Mij = 2
⟨γi, γj⟩
⟨γj, γj⟩

(119)

and an associated diagram (analogous to the Dynkin diagram) where the ith and the
jth points are joined by MijMji lines. The set {γi} is called allowable (zulässig) if all
the following conditions hold:

• the γi are linearly independent, i.e. det(M) ̸= 0

• Mij ≤ 0 if i ̸= j

• MijMji ∈ {0, 1, 2, 3}

(recall that this is satisfied for simple roots). One can now show that the only allowable
diagrams have the above form, by systematically analyzing these conditions in terms of
the diagrams. The details can be found e.g. in the book [Cahn].
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11 Representation theory II

11.1 Fundamental weights, Dynkin labels and highest weight
representations

Recall that in a representation V of g, the generators become operators acting on V ,
and in particular one can choose a basis |λi; j⟩ of V which are common eigenvectors of
the Cartan subalgebra g0: Hi|λi; j⟩ = λi|λi; j⟩ or in general

H|λ⟩ = λ(H)|λ⟩

(omitting j). Moreover, the root vectors Xα relate weight vectors with weights differing
by α,

Xα|λ⟩ ∼= |λ+ α⟩.

This can be used to find all the weights of a given (finite-dimensional) irreducible rep-
resentation (irrep) V .

First, we can again consider V as representation of any of the su(2)α subalgebras. Then
by (91), the weights again come in strings λ+ pα, ..., λ, ..., λ−mα with

m− p =
2⟨λ, α⟩
⟨α, α⟩

. (120)

in particular there are no “holes”. For each weight λ of V , one defines the Dynkin labels
(coefficients)

λi :=
2⟨λ, αi⟩
⟨αi, αi⟩

∈ Z, i = 1, 2, ..., r (121)

where αi are the simple roots. These are convenient “coordinates” of the weights λ ∈ g∗0.
For finite-dimensional representations , they are always integers.

Furthermore, recall that we introduced an ordering relation among the elements of g∗0,
i.e. among the weights. Therefore among the weight of V , there is a maximal one: call
it µ. Since µ is the maximal (or “highest”) weight, µ+αi is not a weight of V . Therefore
by (120), its Dynkin labels are non-negative integers:

µi :=
2⟨µ, αi⟩
⟨αi, αi⟩

∈ Z≥0 (122)

are positive integers. Conversely, one can show that for each weight µ with positive
Dynkin labels µi ≥ 0 there is a corresponding (unique!) irrep V = Vµ with highest
weight µ, and furthermore that the corresponding weight space with weight µ in V is
one-dimensional, i.e. there is only one vector |µ⟩ ∈ V . To summarize,
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Any (finite-dim) irrep V = Vµ is characterized by its highest weight µ, which has non-
negative Dynkin labels µi ≥ 0. It is called highest-weight module with highest weight
µ.

This can be made more transparent by introducing the fundamental weights Λ(i) ∈
g∗0, i = 1, 2, ..., r by the requirement

2⟨Λ(i), αj⟩
⟨αj, αj⟩

:= δi,j (123)

They are just another basis of weight space g∗0. Then we can expand any weight in terms
of this new basis,

λ =
∑
i

λiΛ(i) (124)

Multiplying this with
2⟨.,αj⟩
⟨αj ,αj⟩ , we see that the λi are just the Dynkin labels of λ:

2⟨λ, αi⟩
⟨αi, αi⟩

=
2⟨λjΛ(j), αi⟩

⟨αi, αi⟩
= λi. (125)

Since all Dynkin labels of weights in V are integers, it follows that

all weights of a (finite-dimensional) irrep V are integral linear combinations of the fun-
damental weights.

In other words, all weights live in the weight lattice

Lw := {ziΛ(i) zi ∈ Z} (126)

In particular, this applies to the highest weight of V .

example: su(2)

Let α be the (only) positive root of su(2). Then Λ(1) =
1
2
α, and the spin j ∈ 1

2
Z irrep is

the highest weight rep with h.w. (2j)Λ(1). Indeed, its weights are then (2j)Λ(1), 2jΛ(1)−
α, ..., (−2j)Λ(1).

example: su(3)

(draw picture).

The set of allowed highest weights (=positive integer Dynkin labels) hence forms a cone
of a lattice in weight space (draw picture).

For each given Vµ, we can now calculate all the weights similar as we calculated the roots
(=weights of the adjoint rep). Given a weight λ of V , we need to determine whether
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λ − αj is also a weight. Starting with the highest weight and keeping track of their
Dynkin labels (λi)i=1,...,r, we know the value of p in (120). Hence if

mj = pj + λj > 0, (127)

then λ − αj is a weight in V . We obtain the Dynkin labels of λ − αj by subtracting
(Aji)i from λi, because

2⟨λ− αj, αi⟩
⟨αi, αi⟩

=
2⟨λ, αi⟩
⟨αi, αi⟩

− 2⟨αj, αi⟩
⟨αi, αi⟩

.

Hence the Dynkin labels λj of a weight λ are just the mj − pj of the corresponding αj

string, and go from (ni, ni − 2, ...,−ni + 2,−ni).

11.1.1 Examples

(1, 0) of A2 = su(3)

Let us determine the weights of the irrep with highest weight µ = Λ(1) = (1, 0):

(make also drawing of weights...)

This is the 3-dimensional representation corresponding to the Quanks u, d, s.

What about the irrep with highest weight µ = Λ(2) = (0, 1)? These are the Anti-Quarks:

(make also drawing of weights...)

Actually we didn’t really show that these reps are 3-dim, we only showed that the only
possible weights are as above. In general it happens that there are more than one weight
vector for a given weight. This “multiplicity” must be determined by other means, e.g.
using Weyls character formula (later).

Next, consider the irrep with highest weight µ = (1, 1):
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This is clearly the adjoint representation, which is 8-dimensional. The weight with
Dynkin labels (0, 0) occurs twice, and corresponds to the 2 Cartan generators Y and T3
which have weight 0.

All the irreps of su(3) can be determined in this way, e.g. the decouplet of baryons
etc etc. In particular, this gives all possible “families” of particles consisting of these 3
Quarks.

an irrep of G2

Next, consider the rep of G2 with highest weight (0, 1): recall the Cartan matrix is(
2 −3
−1 2

)
and the weights are (...). This is a 7-dimensional representation, which looks like the
adjoint of SU(3) except that the weight 0 has only multiplicity 1. Before the η meson was
discovered, it was thought that G2 might be a useful symmetry of the strong interaction,
with this 7-dimensional representation describing the π+, π0, π−, K+, K0 and K̄0, K−

mesons. But it didn’t work out.

SO(10)

As a more complicated example, consider the rep of SO(10) (=D5) with highest weight
(1, 0, 0, 0, 0):
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constructing more representations : tensor products

11.2 Tensor products II

Recall that if V1 and V2 are 2 representations of the Lie algebra g, then so is V1 ⊗ V2 by

π : g → gl(V1 ⊗ V2) = gl(V1)⊗ gl(V2)

g 7→ πV1(g)⊗ 11 + 11 ⊗ πV2(g) (128)

For example, adding angular momenta in Quantum Mechanics: Ji = Li + Si, etc. Also,
the Hilbert space of systems of several particles (e.g. baryons, mesons consisting of
Quarks) is the tensor product of the individual Hilbert spaces.

Since all (finite-dim. ...) reps are completely reducible, we have

Vµ1 ⊗ Vµ2 =
⊕
µ3

Nµ3
µ1µ2

Vµ3 (129)

where Nµ3
µ1µ2

∈ N are the multiplicities (Littlewood-Richards coefficients), and Vµ1 etc
are the highest weight irreps. For su(2), they’re 0 or 1. One of the goals is to determine
this decomposition explicitly.
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Now consider the weights of the elements: if v1 ∈ V1 and v2 ∈ V2 are weight vectors
with weights λ1 resp. λ2, then v1 ⊗ v2 ∈ V1 ⊗ V2 has weight λ1 + λ2. Hence all weights
in V1 ⊗ V2 have the form λ1 + λ2 for weights λ1,2 in V1,2, and

V1 ⊗ V2 =
∑

vλ∈V1,v′λ∈V2

vλ ⊗ v′λ.

Therefore if the highest weights of V1 resp V2 are µ1 resp. µ2, then the highest weight
in V1 ⊗ V2 is µ1 + µ2, and

Vµ1 ⊗ Vµ2 = Vµ1+µ2 ⊕ (
⊕

µ3<µ1+µ2

N
′µ3
µ1µ2

Vµ3) (130)

In principle, one can now proceed by finding the space Vµ1+µ2 starting with its high-
est weight vector, then finding the highest weight vector and its irrep in the orthogonal
complement V ⊥

µ1+µ2
⊂ Vµ1⊗Vµ2 , etc. However this is practical only for su(2) or small rep-

resentations of other groups, and there are more powerful methods. The most powerful
method is by using the characters together with (150). This is basically a formalization
of the above method, and combined with Weyls character formula (later) this gives a
systematic allgoithm known as Racah - Speiser algoithm, cf. [?]. However for small reps,
one can proceed in a pedestrian way by matching the weights and their multiplicities,
as above.

11.2.1 Clebsch-Gordon Coefficients

We consider only su(2) here for simplicity, but everything generalizes to other Lie alge-
bras.

Consider again the tensor product Vj1 ⊗ Vj2 of 2 irreps with spin j1 resp. j2. One basis
is given by the vectors

|j1j2;m1m2⟩ = |j1;m1⟩|j2;m2⟩.

which are eigenvectors of πj1(H)⊗ 11 and 11 ⊗ πj2(H).

Because Vj1 ⊗ Vj2 =
⊕

j3
N j3

j1j2
Vj3 , there is another basis given by the eigenvectors of

πj1(H) ⊗ 11 + 11 ⊗ πj2(H) in some component Vj3 ⊂ Vj1 ⊗ Vj2 , which we denote by
|j1, j2; j3,m3⟩. Therefore we have

|j1, j2; j3,m3⟩ =
∑
m1m2

|j1, j2;m1,m2⟩⟨j1, j2;m1m2|j3,m3⟩ (131)

The coefficients

⟨j1, j2;m1,m2|j3,m3⟩ ≡ ⟨j1, j2;m1,m2|j1, j2; j3,m3⟩ (132)
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are called Clebsch-Gordan Coefficients. They determine the unitary transformation be-
tween the 2 ONB’s of Vj1⊗Vj2 =

⊕
j3
N j3

j1j2
Vj3 , hence their phases are just a convention.

They can be calculated by finding the space Vj1+j2 starting with the highest weight sec-
tor of Vj1+j2 , then finding the highest weight submodule in the orthogonal complement
V ⊥
j1+j2

⊂ Vj1 ⊗ Vj2 , etc. See QMI. One finds the multiplicities

N j3
j1j2

= 1 |j1 − j2| ≤ j3 ≤ j1 + j2,

N j3
j1j2

= 0 otherwise.

Sometimes one uses the notation

Cj1,j2,j3
m1,m2,m3

= ⟨j1, j2;m1,m2|j,m⟩ (133)

or the so-called Wigner 3j-symbols

⟨j1, j2;m1,m2|j,m⟩ = (−1)j1−j2+m

2j + 1

(
j1 j2 j3
m1 m2 −m

)
(134)

which are invariant under cyclic permutations of the 3 columns.

Example: su(3)

To understand the multiplet structure of mesons etc, we must consider e.g. (3)⊗ (3).

The 3-dimensional representation of the Quarks is (3) = (1, 0) = VΛ(1)
, and the represen-

tation of the Antiquarks is the other 3-dimensional representation(3) = (0, 1) = VΛ(2)
.

Therefore the bound states of a Quark and an Antiquark are described by the tensor
product of the constituent Hilbert spaces, (3)⊗ (3) (in obvious notation...). I.e.

|meson;λ⟩ =
∑

Cλ1,λ2,λ|Quark;λ1⟩ ⊗ |Antiquark;λ2⟩ ∈ VΛ(1)
⊗ VΛ(2)

.

This describes the mesons. Similarly, baryons are obtained from triple tensor products
(3)⊗ (3)⊗ (3). To understand the multiplet structure of mesons etc, we therefore must
find the decomposition of that tensor product into irreps.

According to the above results, (3)⊗ (3) contains VΛ(1)+Λ(2)
= (1, 1) = (8), which is the

8-dim. adjoint rep. It follows that

(3)⊗ (3) = (8)⊕ (1).

This is the reason why there are octets of mesons, which are bound states of 1 Quark
and 1 Antiquark! (the (1) indeed exists, and is the η′ meson).

This is easy to understand graphically:

(draw weight graphs)

Often this method allows to find the complete decomposition, by counting dimensions
as well. These can be computed by Weyls dimension formula.
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11.2.2 (Anti)symmetric tensor products

Now consider the tensor product of two identical representations , V ⊗ V . This can be
decomposed into two parts,

V ⊗ V = (V ⊗S V )⊕ (V ⊗AS V ) (135)

the symmetric tensor product with basis vi ⊗ vj + vj ⊗ vi, and the antisymmetric part
with basis vi ⊗ vj − vj ⊗ vi (cp. identical particles in Quantum Mechanics!!). Notice
that these subspaces are invariant (preserved) under the action of g, therefore they are
either irreducible or themselves reducible (both is possible).

If µ is the highest weight of V , then clearly vµ ⊗ vµ ∈ V ⊗S V is in the symmetric part,
therefore the highest weight of V ⊗S V is 2µ. The anti-symmetric part does not contain
this weight, rather its highest weight is the sum of the highest and the next-to-highest
weights of V .

For example, consider (3) ⊗ (3) of su(3). The symmetric tensor product contains the
weight (2, 0), which is the highest weight of the (6) of su(3). The next-to-highest
weight in (1, 0) is (−1, 1), therefore the antisymmetric part contains the highest weight
representation with h.w. (0, 1), which is (3). The dimensions add up to 9, hence this is
it:

(3)⊗ (3) = (6)⊕ (3)

In general there are more than 2 components! (There are no such particles, because
they cannot be color singlets).

This procedure can be generalized to V ⊗n, e.g. considering the n-fold totally symmetric
or totally antisymmetric tensor product (identical particles!). The totally symmetric
part always contains the h.w. rep. with highest weight nµ. For example, we surely have
VnΛ(1)

⊂ V ⊗Sn
Λ(1)

, and we will see that in fact for su(n) one has

VnΛ(1)
= V ⊗Sn

Λ(1)
(136)

In fact there are also components with “mixed” symmetry; this can be studied system-
atically and leads to the method of Young Diagrams, which give the complete decompo-
sition of V ⊗n for su(n). However this is not complete for other groups, and the method
doesn’t work for general V ⊗ W . We will describe a generaly method which always
works.

Remark: One can show that for su(n), one can produce ANY rep as part of V ⊗n
Λ(1)

.

Therefore VΛ(1)
is called the fundamental representation.
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11.3 An application of SU(3): the three-dimensional harmonic
oscillator

cp. [Georgi, chapter 14]

The Hamiltonian for the three-dimensional harmonic oscillator is

H =
P⃗ 2

2m
+

1

2
mω2x⃗2 = ℏω(a+k ak +

3

2
) (137)

where

ak =

√
mω

2ℏ
xk +

i√
2mℏω

pk, a+k =

√
mω

2ℏ
xk −

i√
2mℏω

pk, k = 1, 2, 3. (138)

The a+k resp. ak are rising-resp. lowering operators, satisfying

[ak, a
+
l ] = δkl,

[a+k ak, a
+
l ] = a+l δkl,

[a+k ak, al] = −al δkl

Let |0⟩ be the ground state, which satisfies

ak|0⟩ = 0 (139)

Then the eigenstates of the Hamiltonian, i.e. the energy eigenstates, are

Hn := a+k1 ...a
+
kn
|0⟩ (140)

with energy ℏω(n+ 3
2
). However, except for the ground state these are degenerate energy

levels, because any choice of n generators out of the {a+1 , a+2 , a+3 } gives the same energy.
This degeneracy is - as usual! - due to a symmetry, which is su(3) here:

Consider the operators
Qa := a+k (Ta)al (141)

where Ta =
1
2
λa are the Gell-Mann matrices of su(3). Because they are a basis of su(3),

they satisfy
[Ta, Tb] = ifabcTc (142)

where fabc are the structure constants of su(3) (could be calculated explicitly, but we
don’t need this). One can easily check that the Qa satisfy the same commutation
relations:

[Qa, Qb] = ifabcQc, (143)

hence they define a representation of su(3) on the Hilbert space of the 3d harmon. osc.
Moreover,

[Qa, H] = 0, (144)
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thus we can fix an energy eigenvalue En = ℏω(n+ 3
2
), and the Qa act on this subspace of

the Hilbert space. This means that the energy eigenstates are representations of su(3),
and will decompose into the direct sum of irreps. In fact, they become a single irrep
(“multiplet”), see below.

For example, the ground state is a singlet since

Qa|0⟩ = 0 (145)

The precise action of su(3) on Hn can be found noting that

[Qa, a
+
k ] = a+l (Ta)lk (146)

hence a+k transforms like a (3). Therefore a+k1 ...a
+
kn
|0⟩ transforms like (3)⊗ ...⊗ (3), and

in fact Hn ⊂ (3)⊗Sn since the a+k commute. But since (3)⊗Sn = VnΛ(1)
= (n, 0), it follows

that
Hn = VnΛ(1)

= (n, 0).

Therefore the degenerate energy levels are precisely the (n, 0) irrep of su(3)!!

Of course the harmonic oscillator also has a SO(3) symmetry. But this is weaker, since
SO(3) ⊂ SU(3), and the irrep VnΛ(1)

decomposes into several irreps of so(3).

This generalizes immediately to n dimensions, i.e. a system with n creation- and anihi-
lation operators naturally has a su(n) symmetry.

11.4 The character of a representation and Weyls character
formula

We encountered so far (at least) 2 main open problems in the context of representations:

1. find the weights including the multiplicities of an irrep

2. find the decomposition of the tensor product of 2 irreps into irreps: for example,
to find the bound states of quarks.

There is a powerful theorem which provides the answer (or the basis for it...) for both
these problems: Weyls character formula. It also gives a very nice formula for the
dimension of highest weight irreps.

The crucial concept is the character of a representation. Consider a representation V of
a (simple, ...) Lie algebra g. Let multV (λ) be the multiplicity of the weight space λ in
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V , i.e. the number of lin. independent elements in V with weight λ. Then

χV :=
∑
λ

multV (λ) e
λ (147)

This is to be understood as a generating function. The eλ are “formal”, and linearly
independent for each λ. One can understand eλ as function on the weight space, by

µ 7→ eλ(µ) := e⟨λ,µ⟩ (148)

Knowing χV is equivalent to knowing all states and all multiplicities of the representation
V , hence in particular its dimension, etc. χV is a VERY useful way to encode this
information. In terms of a basis |i⟩ with weights λi, of the representation V , we can
write

χV (µ) =
∑
λ

multV (λ) e
⟨λ,µ⟩ =

∑
i

⟨i|i⟩e⟨λi,µ⟩ =
∑
i

⟨i|eHµ|i⟩ = TrV (e
Hµ) (149)

One obvious and useful property is the following:

χV⊗W = χ(V )χ(W ) (150)

using the usual properties of the exponential eλ+µ = eλeµ. Thus the weights of V ⊗W
have the form λ+ λ′, and can be obtained graphically by superimposing the weights of
V on the ones of W , or vice versa.

(draw image)

This is the basis of a method to decompose tensor products using the “method of
characters”, see later.

For example, consider the spin j representation of su(2). If α is the (only) positive root
of su(2), then the weights of the spin j ∈ 1

2
Z irrep are jα, (j − 1)α, ...,−jα, and its

character is

χVj
=

j∑
m=−j

emα =
e(j+

1
2
)α − e−(j+ 1

2
)α

e
1
2
α − e−

1
2
α

(151)

The last form is Weyls character formula for su(2), which generalizes to other Lie alge-
bras as we will see. The point is that by expanding as sum of exponentials, one gets all
the multiplicities.

Another important property is that the character is invariant under the Weyl group.
Recall that the Weyl group is generated by the reflections

Sα : λ 7→ λ− 2⟨λ, α⟩
⟨α, α⟩

α (152)
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which reflects the states (weights) of the su(2)α strings, and therefore it also preserved
the multiplicities: multV (Sα(λ)) = multV (λ), therefore

multV (ω(λ)) = multV (λ)

for any ω ∈ W . Extending this action of the Weyl group to ω(eλ) := eω(λ), it follows
that

χV (ω(µ)) = χV (µ) (153)

for any ω ∈ W . Hence the character is invariant under W . Combining this with several

other tools (see later), this property leads to the Weyl character formula for χλ := χVλ

where Vλ is the highest weight irrep with h.w. λ:

χλ(µ) =
∑

ω∈W sign(ω)e⟨ω(λ+ρ),µ⟩∑
ω∈W sign(ω)e⟨ω(ρ),µ⟩

(154)

Here sign(ω) = det(ω) = ±1 is the signum of ω ∈ W (i.e. even/odd number of
reflections), and

ρ :=
1

2

∑
α∈Φ>0

α =
∑
i

Λ(i) (155)

is the Weyl vector. (154) is one of the great formulas in Mathematics. Its definition
implies that the rhs can always be divided out.

For example, consider the spin j irrep of g = su(2), which has highest weight (2j)Λ(1) =
jα. The Weyl group contains only one reflection, and (154) reduces to (151) since
ρ = 1

2
α where α is the (only) positive root of su(2).

For su(n), this can be written in an even more compact form: recall the identification
Hλ ↔ λ, and the explicit realization of the Cartan generators as diagonal matrices

Hλ = diag(hλ1 , .., h
λ
n)

∼= diag(λi)

with
∑
λi = 0 (these are not Dynkin indices!), e.g. Hα1 ∝ diag(1,−1, 0, ..., 0) etc. Then

the Killing form was essentially (λ, µ) = Tr(HλHµ) =
∑
λiµi. Furthermore, one can

show that the Weyl group for SU(n) is just Sn, the permutation group of n elements.
It acts on λ resp. Hλ as diag(h1, .., hn) → diag(h′1, .., h

′
n) by permuting the elements.

Furthermore, the highest weight are in the fundamental Weyl chamber which is now
characterized by h1 ≥ ... ≥ hn.

Then replacing (λi)i=1,...,n ↔ λ, we get∑
ω∈W

sign(ω)e⟨ω(λ+ρ),µ⟩ =
∑
ω∈Sn

(−1)ωe
∑

i ω(λ+ρ)iµi =
∑
ω∈Sn

(−1)ωe(λ+ρ)ω(1)µ1 ...e(λ+ρ)ω(n)µn

= det((e(λ+ρ)iµj)ij) (156)
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Furthermore, one can show that ρi = (m,m − 1, ...,−m), so that we can rewrite (154)
as

χλ(µ) =
det(e

(λi+n−i)µj )

det(e
(n−i)µj )

(157)

Note further that
det(e(n−i)µj) =

∏
i<j

(eµi − eµj) = ∆(eµi) (158)

is the Vandermonde-determinant.

Example: character of (8) of su(3).

The Dynkin indices of (8) are λ = (1, 1) = ρ, hence λi = (1, 0,−1) = ρi. Therefore
λi + n− i = (3, 1,−1), and we have

χ(8)(µ) =
det(e(3,1,−1)i(µ1,µ2,µ3)j)

∆(eµi)
= e−(µ1+µ2+µ3)

det(e(4,2,0)i(µ1,µ2,µ3)j)

∆(eµi)

= e−(µ1+µ2+µ3)
∆(e2µi)

∆(eµi)
=
∏
i<j

(e2µi − e2µj)

(eµi − eµj)

=
∏
i<j

(eµi + eµj) = (eµ1 + eµ2)(eµ1 + eµ3)(eµ2 + eµ3)

= e2µ1+µ2 + e2µ2+µ3 + eµ1+2µ2 + e2µ1+µ3 + eµ1+2µ3 + eµ2+2µ3 + 2eµ1+µ2+µ3

= eµ1−µ3 + e−µ1+µ2 + eµ2−µ3 + eµ1−µ2 + e−µ2+µ3 + e−µ1+µ3 + 2e0

=
∑
α

e(α,µ) + 2e0 (159)

since µ1 + µ2 + µ3 = 0. We see that it is 8-dimensional, with the exponents

Application: tensor product for su(2) As a first application, we derive the decom-
position of the tensor product

Vj ⊗ Vk = N l
jkVl

where Vj is the spin j irrep of su(2).

Recall that the weights of Vj are

Vk = ⟨vλ⟩, λ ∈ {−kα, ..., (k − 1)α, kα}
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where α is the root of su(2). Therefore

χVj⊗Vk
= χVj

(
k∑

m=−k

emα

)
=

(
e(j+

1
2
)α − e−(j+ 1

2
)α

e
1
2
α − e−

1
2
α

)(
k∑

m=−k

emα

)

=

(
1

e
1
2
α − e−

1
2
α

)( k∑
m=−k

e(j+
1
2
)αemα − e−(j+ 1

2
)αemα

)

=

(
1

e
1
2
α − e−

1
2
α

)( k∑
m=−k

e(j+
1
2
)α+mα − e−(j+ 1

2
)α−mα

)
.

reversing the summation index in the second term. Now assume that k ≤ j. Then the
arguments of the exponentials are {(j + k + 1

2
), ..., (j − k + 1

2
)} for the first term, and

{−(j+ k+ 1
2
), ...,−(j− k+ 1

2
)} for the first term. Therefore the rhs can be rewritten as

χVj⊗Vk
=

j+k∑
l=j−k

e(l+
1
2
)α − e−(l+ 1

2
)α

e
1
2
α − e−

1
2
α

=

j+k∑
l=j−k

χVl
(160)

This implies that
Vj ⊗ Vk = ⊕j+k

l=j−kVl.

(the reason is that the characters of different irreps are always linearly independent.
This is easy to understand, since the “leading exponential” for different highest weigths
is different. (In a sense, the characters even form a ONB ...)).

This shows the power of the characters. The same idea works for the other simple Lie
algebras, but we need some better understanding of the geometry involved.

Note also that if we assumed k > j, then there would be some cancellations before we
can identify the irreducible characters. This will happen also below.

11.4.1 Some properties of the Weyl group, Weyl chambers.

We need some more technical background. First, any element ω ∈ W preserves the
Killing form:

⟨Sαµ, Sαν⟩ = ⟨µ− 2⟨µ, α⟩
⟨α, α⟩

α, ν − 2⟨ν, α⟩
⟨α, α⟩

α⟩ = ⟨µ, ν⟩ (161)

(this is quite clear, since any reflection preserves the inner product on an Euclidean
space).

There is a nice graphical way to understand the Weyl group. Consider again the hyper-
planes Hα = {x; ⟨x, α⟩ = 0} introduced before. They divide weight space into cones,
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the so-called Weyl chambers. Clearly any ω ∈ W maps any Weyl chamber to another
one. There is one which is a special Weyl chamber, the fundamental Weyl chamber
which is

P+ = {λ =
∑

ciΛ(i), ci ≥ 0} (162)

Note that the walls of P+ are the hyperplanesHαi
, since ci = 0 ⇔ (λ, αi) = 0. Notice also

that the highest weights of irreps are precisely the weights in the lattice Lw = {ziΛ(i)}
which are in P+!

(Picture for su(3).)

Now consider for any given weight µ in some Weyl chamber, and the orbit ofW acting on
µ, i.e. the set of all weights ω(µ). It is easy to see that there is one among them which lies
in this fundamental Weyl chamber (consider the weight µ∗ the orbit which is maximal.
If some Dynkin coefficient 2⟨µ∗, αi⟩/⟨αi, αi⟩ < 0, then Siµ

∗ = µ∗ − 2αi⟨µ∗, αi⟩/⟨αi, αi⟩
is an even higher weight, in contradiction to maximality of µ∗). It follows that all Weyl
chambers are congruent, since they are mapped by some ω ∈ W to P+. One can show
that W acts freely and transitively on the Weyl chambers.

Moreover, since the Weyl group maps weights into weights, it also maps the roots into
roots. For any fixed simple root αi, consider Si := Sαi

; the following holds:

1. Si(αi) = −αi (obviously)

2. Si(β) is a positive root if β ̸= αi is a positive root

That is, Si interchanges all the positive roots except for αi itself. (To see 2., write

β =
∑

kiαi

Then

S1(β) =
∑

kiαi − 2α1

∑
ki
⟨αi, α1⟩
⟨α1, α1⟩

=
∑
i>1

kiαi + α1(something) (163)

ans similar for the other Si. Therefore if β ̸= α1, then β has SOME positive coefficients
if expanded into the simple roots, which implies that all coefficients are positive so that
Sα1(β) is a positive root.)

It follows that
Sαi

ρ = ρ− αi.

Therefore

⟨ρ− αi, αi⟩ = ⟨ρ,−αi⟩,
2⟨ρ, αi⟩ = ⟨αi, αi⟩
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which implies that

ρ =
∑
i

Λ(i) (164)

Consider now the function

Q(µ) :=
∏
α>0

(e
1
2
⟨α,µ⟩ − e−

1
2
⟨α,µ⟩) (165)

We want to see how this transforms under the Weyl group. Consider

Q(Siµ) =
∏
α>0

(e
1
2
⟨α,Siµ⟩ − e−

1
2
⟨α,Siµ⟩) =

∏
α>0

(e
1
2
⟨Siα,µ⟩ − e−

1
2
⟨Siα,µ⟩) (166)

Now Si interchanges all the positive roots except itself, whose sign it changes. It follows
that

Q(Siµ) = −Q(µ) (167)

Since W is generated by the Si and sign(Si) = −1, it follows immediately that

Q(ω(µ)) = sign(ω)Q(µ) (168)

for any ω ∈ W . Hence Q(µ) is a totally antisymmetric function under the Weyl group.
There is another totally antisymmetric function under the Weyl group, given by

Q̃(µ) :=
∑
ω∈W

sign(ω)e⟨ω(ρ),µ⟩ (169)

and we claim that they coincide:

Q(µ) =
∏
α>0

(e
1
2
⟨α,µ⟩ − e−

1
2
⟨α,µ⟩) =

∑
ω∈W

sign(ω)e⟨ω(ρ),µ⟩ (170)

Since the rhs is the denominator of (154)), this is the so-called denominator identity,
which we need to derive Weyls dimension formula.

To see (170), we expand the lhs into a sum of the form

Q(µ) =
∑
β

cβe
⟨ρ−β,µ⟩

where β is a sum of distinct positive roots. Since both Q and Q̃ are antisymmetric and
since W freely permutes the Weyl chambers, it is enough to show that the terms in (170)
where ρ − β resp. ω(ρ) lie in P+ coincide (can show: terms on the boundary cancel).
Using (164) ρ =

∑
i Λ(i), the only possible term is β = 0. Comparing the coefficients,

(170) follows.
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11.5 Weyls dimension formula

Consider the highest weight irrep V = Vλ with h.w. λ. The dimension of V is given by
TrV (1) = TrV (e

0) = χV (0). However, this gives 0
0
, and we must use a suitable limit.

We choose µ = tρ and let t→ 0. This gives using (154)

χλ(tρ) =

∑
ω∈W sign(ω)e⟨ω(λ+ρ),tρ⟩∑
ω∈W sign(ω)e⟨ω(ρ),tρ⟩

=
Q(t(λ+ ρ))

Q(tρ)

= e−⟨ρ,tλ⟩
∏
α>0

e⟨α,t(λ+ρ)⟩ − 1

e⟨α,tρ⟩ − 1
(171)

Now we can take the limit t→ 0 and find

dim(Vλ) =
∏

α>0
⟨α,λ+ρ⟩
⟨α,ρ⟩ (172)

This is a very useful formula. To evaluate it, we write each positive root in terms of the
simple roots:

α =
∑
i

kiααi

Suppose

λ =
∑

niΛ(i)

for ni ≥ 0. Then

dim(Vλ) =
∏
α>0

∑
kiα(ni + 1)⟨αi, αi⟩∑

kiα⟨αi, αi⟩
(173)

using ⟨αi,Λ(j)⟩ = 1
2
δij⟨αi, αi⟩. For An, Dn, En all the simple roots have the same size, so

that

dim(Vλ) =
∏
α>0

∑
kiα(ni + 1)∑

kiα
, g ∈ {An, Dn, En}. (174)

Consider some examples. For su(2), there is only one positive root α, and the spin j
rep has highest weight n = 2j. Hence we get dim(Vspinj) = (2j + 1), which is correct.

Consider now su(3) = A2. The positive roots are α1, α2, α1+α2. Then the dimension of
the highest weight representation with highest weight λ = n1Λ(1)+n2Λ(2) has dimension

dim(Vλ) =

(
n1 + 1

1

)(
n2 + 1

1

)(
n1 + n2 + 2

2

)
(175)

For example,

dim(V(1,0)) = 3 = dim(V(0,1)),

dim(V(1,1)) = 8,

dim(V(2,0)) = 6 = dim(V(0,2)),

dim(V(2,1)) = 15 = dim(V(1,2)),

dim(V(3,0)) = 10 = dim(V(0,3)),
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etc.

Similarly, one easily finds the following formula for the dimension of any V(m1,...,mn) of
An = su(n+ 1):

dimV(m1,...,mn) =
m1 + 1

1

m2 + 1

1
...
mn + 1

1
m1 +m2 + 2

2

m2 +m3 + 2

2
...
mn−1 +mn + 2

2
...
m1 +m2 + ...+mn + n

n

Comment: here one sees the relation with Young Diagrams. The irrep with Dynkin
indices (m1, ...,mn) corresponds to a Young tableau with mk columns of k boxes (since
(1, 0...) is the fundamental, and (0, 1, 0, ...) is the 2-fold antisymmetric product of the
fundamental, etc).

In particular, for su(3) we have dim(V(n,0)) =
1
2
(n+1)(n+2), which is the dimension of

the Fock space HN := a+k1 ...a
+
kn
|0⟩ with 3 different (species of) creation- and anihilation

operators we encountered with the 3-dim. harmonic oscillator. The latter is of course
Hn :∼= V ⊗Sn

Λ(1)
, and is therefore an irrep of su(3). Hence the energy levels of the 3-dim.

harmonic oscillators are precisely (n, 0) irreps of su(3).

Similarly one can show that the m-particle (bosonic) Fock space with n + 1 different
(species of) creation- and anihilation operators (which is ∼= V ⊗Sm

Λ(1)
for su(n+1)) has the

same dimension as V(m,0,..,0) of su(n+ 1), namely

dimV(m,0,..,0) =
(m+ 1)...(m+ n)

12...n
=

(
m+ n
n

)
= dimV ⊗Sm

Λ(1)
(176)

This implies that VnΛ(1)
= V ⊗Sn

Λ(1)
as claimed earlier.

Lets consider a more complicated application, for G2. We have seen that dim(G2) = 14,
hence it has 6 positive roots. If the simple roots are denoted by α1, α2 with the latter
being smaller, The positive roots are α − 1, α2, α1 + a2, α1 + 2a2, α1 + 3a2, 2α1 + 3a2.
Then one finds (...)

dim(V(0,1)) = 7, dim(V(1,0)) = 14

(cp. earlier). The latter is in fact the adjoint representation.
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11.6 *Decomposing tensor products: the Racah-Speiser algo-
rithm

Now we generalize the method of decomposing tensor products using Weyls character
formula (as used above for su(2)) to arbitrary simple g.

The starting point is again (150),

χVλ⊗Vµ = χ(Vλ) · χ(Vµ) =
∑

Nν
λµχ(Vν) (177)

We use again Weyls character formula for χ(Vλ) and χ(Vν). Noting that the denominator
of Weyls formula is independent of the representation, we get∑

ω∈W

sign(ω)eω(λ+ρ) · χ(Vµ) =
∑
ω∈W

sign(ω)
∑

Nν
λµe

ω(ν+ρ)

Plugging in

χ(Vµ) =
∑
κ

multµ(κ) e
κ

(recall that multµ(κ) is the multiplicity of the weight κ in Vµ), we get∑
ω∈W

sign(ω)
∑
κ

multµ(κ) e
ω(λ+ρ)eκ =

∑
ω∈W

sign(ω)
∑

N ν
λµe

ω(ν+ρ)

Now recall that multµ(κ) = multµ(ω(κ)), hence we can replace
∑

κ by
∑

ω(κ), and get∑
ω∈W

sign(ω)
∑
κ∈Vµ

multµ(κ) e
ω(λ+κ+ρ) =

∑
ω∈W

sign(ω)
∑

N ν
λµe

ω(ν+ρ). (178)

Now both sides are formal linear combinations of exponentials eη of some weights η.
These eη are linearly independent for different weights η, and we can compare their
coefficients on both sides. Furthermore, recall that for any given η, there is precisely
one ω ∈ W such that ω(η) is in the fundamental Weyl chamber P+ (the orbit ω(η) hits
all the different Weyl chambers precisely once). Therefore it is sufficient to compare the
terms eη on both sides with η ∈ P+ in the fundamental Weyl chamber.

Now consider the set of weights

η := λ+ κ+ ρ κ ∈ Vµ.

Let us assume first that all of these weights η are in the interior of the fundamental
Weyl chamber (not on the boundary), this often happens for small µ. Then only the
terms with ω = id ∈ W on the lhs give exponentials with weights in the fundamental
Weyl chamber, and we can compare their coefficients:

multµ(κ)e
ω(λ+κ+ρ) = N ν

λµe
ω(ν+ρ)
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hence multµ(ν − λ) = Nν
λµ, or equivalently

Nλ+ν
λµ = multµ(ν) if λ+ κ+ ρ ∈ P o

+ ∀κ ∈ Vµ. (179)

Hence we know Nλ+ν
λµ once we know multµ(ν) (e.g. from Weyls character formula).

This is very easy to understand graphically: for su(2), this is just... the previous result,

(Picture)

Consider another example: for su(3), consider (8)⊗(3). The weights of (3) are (1, 0), (−1, 1)
and (0,−1). Since

ρ = (1, 1)

and the highest weight of (8) is (1, 1), we see that the above condition is satisfied.
Therefore

V(1,1) ⊗ V(1,0) = V(2,1) ⊕ V(0,2) ⊕ V(1,0). (180)

or
(8)⊗ (3) = (15)⊕ (6)⊕ (3)

which seems to match.

In general, it is not true that all the λ+ κ+ ρ for κ ∈ Vµ are in the fundamental Weyl
chamber. Pick one such κ ∈ Vµ. Then there exists precisely one ω ∈ W such that
ω(λ+ κ+ ρ) ∈ P o

+. Then this gives a contribution

sign(ω)eω(λ+κ+ρ)multµ(κ) (181)

from the lhs, which if summed up must match some Nν
λµe

ν+ρ on the rhs. Therefore the
weights are related by

ω(λ+ κ+ ρ) = ν + ρ

or
κ = ω−1(ν + ρ)− ρ− λ.

Therefore
N ν

λµ =
∑′

ω∈W sign(ω)multµ(ω
−1(ν + ρ)− ρ− λ) (182)

where
∑′ denotes the sum over those ω ∈ W such that ω−1(ν + ρ)− ρ− λ is a weight

of Vµ (or set multµ = 0 otherwise). This is the general formula.

In practice, to calculate Vλ ⊗ Vµ it is easiest to go back to (178). One considers all
κ ∈ Vµ, and forms all corresponding

η := λ+ κ+ ρ κ ∈ Vµ.
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Assume that η is not on the boundary of any Weyl chamber. Then there is a unique
ω ∈ W such that ω(η) ∈ P o

+ is inside the fundamental Weyl chamber. In this case we
have a contribution of

sign(ω)multµ(κ)

to the Littlewood-Richards coefficient N ν
λµ with ν = ω(η) − ρ. All these contributions

have to be summed for all κ ∈ Vµ. This computes all the N ν
λµ at once (If λ+ κ+ ρ is on

the boundary of some Weyl chamber, this κ must be ignored since there is no ω ∈ W
which maps it in the interior of the fundamental one).

This is best done by drawing the weights of Vµ on top of λ+ ρ, which gives the relevant
κ and their ω with possible sign.

Example 1: (8)⊗ (8)

Claim:
V(1,1) ⊗ V(1,1) = V(2,2) ⊕ V(3,0) ⊕ V(0,3) ⊕ 2V(1,1) ⊕ V(0,0) (183)

Example 2: (8)⊗ (6)

Claim:
V(1,1) ⊗ V(2,0) = V(3,1) ⊕ V(1,2) ⊕ V(0,1) ⊕ V(2,0) (184)
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