Übungen zu "Lie-Gruppen und Lie-Algebren für Physiker"

Mo 10:15 - 11:45, kleiner Seminarraum 5. Stock Boltzmanngasse 5

2. Übungsblatt

(besprochen ab 22.10.2012)

3. Poincaré Algebra

Ein Element (Λ, a) der Poincaré-Gruppe wirkt auf den Minkowski-Raum wie

$$x^{\mu} \mapsto x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu} + a^{\mu}.$$

"Infinitesimale" Poincaré-Transformationen haben also die Form

$$\Lambda^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu} + \omega^{\mu}_{\ \nu}, \qquad a^{\mu} = \epsilon^{\mu}.$$

Zeigen Sie, dass $\omega_{\nu\mu}$ antisymmetisch ist.

Sei $U(\Lambda, a)$ eine unitäre Darstellung der Poincaré Gruppe (d.h. $U(\Lambda_1, a_1)U(\Lambda_2, a_2) = U(\Lambda_1\Lambda_2, \Lambda_1a_2 + a_1)$ und $U(\Lambda, a)$ ist unitär). Wir schreiben dann

$$U(1+\omega,\epsilon) = 1 + \frac{1}{2}i\omega_{\sigma\rho}J^{\sigma\rho} - i\epsilon_{\rho}P^{\rho} + ..., \tag{1}$$

wobei $J^{\sigma\rho}$ und P^{ρ} hermitische Operatoren sind mit $J^{\sigma\rho} = -J^{\rho\sigma}$.

a) Zeigen Sie die folgenden Transformationseigenschaften von $J^{\sigma\rho}$ und P^{ρ} :

$$U(\Lambda, a)J^{\rho\sigma}U^{-1}(\Lambda, a) = \Lambda_{\mu}{}^{\rho}\Lambda_{\nu}{}^{\sigma}(J^{\mu\nu} - a^{\mu}P^{\nu} + a^{\nu}P^{\mu}), \tag{2}$$

$$U(\Lambda, a)P^{\rho}U^{-1}(\Lambda, a) = \Lambda_{\mu}{}^{\rho}P^{\mu}. \tag{3}$$

(Hinweis: betrachten Sie $U(\Lambda, a)U(1 + \omega, \epsilon)U^{-1}(\Lambda, a)$.)

- b) Nehmen Sie nun an, (Λ, a) sei infinitesimal. Was sind die resultierenden Vertauschungsrelationen für $J^{\sigma\rho}$ und P^{ρ} ? (Sie haben die Lie Algebra der Poincaré- Gruppe hergeleitet).
- c) Betrachten Sie die 3-Vektoren

$$\vec{P} = \{P^1, P^2, P^3\}, \qquad \vec{J} = \{J^{23}, J^{31}, J^{12}\}$$

und

$$\vec{K} = \{J^{01}, J^{02}, J^{03}\}$$

sowie

$$H = P^0$$

Wie lauten die erhaltenen Vertauschungsrelationen in dieser 3-dimensionalen Schreibweise? (z.B. $[J_i, J_j] = i\epsilon_{ijk}J_k$ etc.)

(Zur Vereinfachung können Sie sich auch auf die Lorentz-Gruppe beschränken, also $a^{\mu}=\epsilon^{\mu}=0$ setzen).

(Siehe: Weinberg, The Quantum Theory of Fields I).

4. Darstellungen der Lorentz Algebra

Die Generatoren $J_{\mu\nu}$ der Poincaré Algebra bilden eine Unteralgebra (Lorentz Algebra). Setze

$$J_i = \frac{1}{2} \epsilon_{ijk} J_{jk}$$

$$K_i = J_{i0}$$

sowie

$$A_i = \frac{1}{2}(J_i + iK_i)$$

$$B_i = \frac{1}{2}(J_i - iK_i).$$

- a) Wie vertauschen die A_i 's und B_i 's?
- b) Geben Sie 2 verschiedene Darstellungen der Lorentz-Algebra auf \mathbb{C}^2 an (Hinweis: Pauli Matrizen).

5. Adjungierte Darstellung einer Lie-Algebra

Jede Lie Algebra ${\mathfrak g}$ besitzt die folgende natürlich Darstellung: Definiere

$$ad: \mathfrak{g} \to gl(\mathfrak{g})$$

durch die Formel

$$\operatorname{ad}_X(Y) = [X, Y].$$

Zeige, dass dies eine Darstellung von $\mathfrak g$ ist. (die sogenannte **adjungierte Darstellung**).

Finden Sie die Darstellungs-Matrizen von ad_{X_i} (in einer Basis X_i von \mathfrak{g}) in Termen der Strukturkonstanten von \mathfrak{g} .