Übungen zu "Lie-Gruppen und Lie-Algebren für Physiker"

Mo 10:15 - 11:45, kleiner Seminarraum 5. Stock Boltzmanngasse 5

1. Übungsblatt

(besprochen ab 15.10.2012)

1. Einfach zusammenhängende Gruppen

Begründen Sie, daß SU(2) einfach zusammenhängend ist (d.h. jede geschlossene Kurve ist kontrahierbar), aber SO(3) nicht.

2. Endliche und infinitesimale Rotationsoperatoren

Hermitische Operatoren J_x, J_y, J_z , welche die Relationen $[J_i, J_j] = i\epsilon_{ijk}J_k$ erfüllen, heißen Drehimpulsgeneratoren. Die zugehörigen unitären Operatoren

$$R(\vec{\varphi}) = e^{i\vec{\varphi}\cdot\vec{J}}$$

für $\vec{\varphi} \in \mathbb{R}^3$ sind Rotationsoperatoren um den Winkel φ und die Achse $\vec{\varphi}/|\varphi|$.

a) Rotation eines Vektors ("Spin 1")

Die Rotationsoperatoren von Vektoren in \mathbb{R}^3 sind bekanntlich

$$R^{(1)}(\varphi \vec{e_x}) := \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & \sin(\varphi) \\ 0 & -\sin(\varphi) & \cos(\varphi) \end{pmatrix}, R^{(1)}(\varphi \vec{e_y}) := \begin{pmatrix} \cos(\varphi) & 0 & -\sin(\varphi) \\ 0 & 1 & 0 \\ \sin(\varphi) & 0 & \cos(\varphi) \end{pmatrix}, \text{ und }$$

$$R^{(1)}(\varphi \vec{e_z}) := \begin{pmatrix} \cos(\varphi) & \sin(\varphi) & 0 \\ -\sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

a) Finden Sie die zugehörigen Drehimpulsoperatoren (Matrizen), die wir im folgenden mit $J_i^{(1)}$ bezeichnen werden, und verifizieren Sie deren Kommutator-relationen. Hinweis: es genügt, kleine (infinitesimale) Werte von φ zu betrachten, d.h. $R^{(1)}(\vec{\varphi})$ in eine Taylorreihe bis zur ersten Ordnung zu entwickeln.

Überprüfen Sie $J^{(1)}^2 = j(j+1)$ mit j=1 (deshalb der superscript (1)). Finden Sie die Eigenvektoren $|1,m\rangle \in \mathbb{C}^3$ und Eigenwerte m von $J_z^{(1)}$. Überprüfen Sie auch $J_{\pm}^{(1)}|1,m\rangle \cong |1,m\pm 1\rangle$, wobei $J_{\pm}^{(1)} = J_x^{(1)} \pm iJ_y^{(1)}$ die "Auf-und Absteigeoperatoren" sind.

b) Zeigen Sie, daß

$$R^{(1)}(\vec{\varphi}) \cdot \vec{v} = \vec{v} - \vec{\varphi} \times \vec{v} + o(\varphi)^2 \tag{1}$$

für $\vec{v} \in \mathbb{R}^3$ gilt (So sieht man, daß die $R^{(1)}(\vec{\varphi})$ tatsächlich Rotationsoperatoren um die Achse φ sind).

b) Rotation eines Spinors ("Spin 1/2")

Die Drehimpulsoperatoren für einen Spinor $u=\begin{pmatrix}u_1\\u_2\end{pmatrix}\in\mathbb{C}^2$ sind gegeben durch $J^{(1/2)}{}_i=\frac{1}{2}\sigma_i$, wobei

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} o & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

die Pauli–Matrizen sind; die zugehörigen Rotationsoperatoren bezeichnen wir mit $R^{(1/2)}(\vec{\varphi})$. Zeigen Sie, daß $(\vec{J}^{(1/2)})^2 = j(j+1)$ mit j=1/2.

Finden Sie explizit die entsprechenden Rotationsoperatoren $R^{(1/2)}(\varphi \vec{e_x})$, $R^{(1/2)}(\varphi \vec{e_y})$ und $R^{(1/2)}(\varphi \vec{e_z})$. Betrachten Sie insbesondere Rotationen um 2π und 4π !