Bayrischzell Workshop 2009;

Noncommutativity and physics: Quantum Geometries and Gravity Bayrischzell, May 15-18, 2009

Monopoles and instantons on quantum projective spaces

Giovanni Landi

Trieste

Part 1:

A spectral triple on the quantum projective space $\mathbb{C}\mathsf{P}^2_q$ holomorphic calculus and spectral geometry

F. D'Andrea, L. Dabrowski, G. L. The Noncommutative geometry of the quantum projective plane Rev. Math. Phys. 20 (2008) 979–1006

Recently generalized to $\mathbb{C}\mathsf{P}_q^N$

F. D'Andrea, L. Dabrowski Dirac operators on quantum projective spaces arXive:0901.4735 [math.QA]

Part 2:

Monopoles connections on $\mathbb{C}\mathsf{P}^2_q$

F. D'Andrea, G. L.

Anti-selfdual Connections on the Quantum Projective Plane: Monopoles

arXiv:0903.3551v1 [math.QA]

F. D'Andrea, G. L.

Bounded and unbounded Fredholm modules for quantum projective spaces

arXiv:0903.3553v1 [math.QA]

A spectral triple for the quantum projective space $\mathbb{C}\mathsf{P}^2_q$

$$\mathcal{A}(\mathbb{C}\mathsf{P}_q^2),\,\mathcal{H},\,D$$

a q-deformation of the classical principal fibrations:

$$U(2) \hookrightarrow SU(3) \to \mathbb{C}P^2$$
 $U(1) \hookrightarrow S^5 \to \mathbb{C}P^2$

and q-deformation of associated bundles

With 0 < q < 1, the function algebra

$$\mathcal{O} := \mathcal{A}(SU_q(3))$$

has generators u^i_j and relations

$$R_{kl}^{ij}(q)u_m^k u_n^l = u_m^k u_n^l R_{kl}^{ij}(q) , \qquad \sum_{p \in S_3} (-q)^{||p||} u_{p(1)}^1 u_{p(2)}^2 u_{p(3)}^3 = 1$$
$$(u_j^i)^* = (-q)^{j-i} (u_{l_1}^{k_1} u_{l_2}^{k_2} - q u_{l_2}^{k_1} u_{l_1}^{k_2})$$

 $R_{kl}^{ij}(q)$ is the R-matrix of the $SU_q(n)$ series

Coproduct, counit and antipode:

$$\Delta(u_j^i) = \sum_k u_k^i \otimes u_j^k \,,$$

$$\epsilon(u_j^i) = \delta_j^i \,,$$

$$S(u_j^i) = (u_i^j)^*$$

The symmetry algebra

Symmetries are via the *-Hopf algebra $\mathcal{U} := U_q(su(3))$

generated by K_i, K_i^{-1}, E_i, F_i , i = 1, 2 with $K_i = K_i^*, F_i = E_i^*$, and relations ($a_{ij} = \text{Cartan matrix}$)

$$[K_i, K_j] = 0 , K_i E_j K_i^{-1} = q^{a_{ij}/2} E_j , [E_i, F_j] = \delta_{ij} \frac{K_i^2 - K_i^{-2}}{q - q^{-1}}$$

$$E_i E_j^2 - (q + q^{-1}) E_i E_j E_i + E_j E_i^2 = 0 \forall i \neq j .$$

Coproduct, counit and antipode are given by (with i = 1, 2)

$$\Delta(K_i) = K_i \otimes K_i , \qquad \Delta(E_i) = E_i \otimes K_i + K_i^{-1} \otimes E_i ,$$

$$\epsilon(K_i) = 1 , \qquad \epsilon(E_i) = 0 ,$$

$$S(K_i) = K_i^{-1} , \qquad S(E_i) = -qE_i$$

Via a non-degenerate dual pairing $\langle \, , \, \rangle : \mathcal{U} \times \mathcal{O} \to \mathbb{C}$

define commuting left and right \mathcal{U} -actions on \mathcal{O} :

$$h \triangleright a = a_{(1)} \langle h, a_{(2)} \rangle$$
, $a \triangleleft h = \langle h, a_{(1)} \rangle a_{(2)}$,

forall $h \in U_q(su(3)), a \in \mathcal{A}(SU_q(3))$

notation
$$\Delta(a) = a_{(1)} \otimes a_{(2)}$$

The deformation of the quadratic Casimir of U(su(3)); a central element in \mathcal{U} given by

$$C_{q} := (q-q^{-1})^{-2} \Big((H+H^{-1}) \Big\{ (qK_{1}K_{2})^{2} + (qK_{1}K_{2})^{-2} \Big\} + H^{2} + H^{-2} - 6 \Big)$$

$$+ (qHK_{2}^{2} + q^{-1}H^{-1}K_{2}^{-2})F_{1}E_{1} + (qH^{-1}K_{1}^{2} + q^{-1}HK_{1}^{-2})F_{2}E_{2}$$

$$+ qH[F_{2}, F_{1}]_{q}[E_{1}, E_{2}]_{q} + qH^{-1}[F_{1}, F_{2}]_{q}[E_{2}, E_{1}]_{q}$$

with
$$H := (K_1 K_2^{-1})^{2/3}$$
 $[a, b]_q := ab - q^{-1}ba$

The restriction of C_q to the irrep (n_1, n_2) is

$$C_q\Big|_{(n_1,n_2)} = \left[\frac{1}{3}(n_1 - n_2)\right]^2 + \left[\frac{1}{3}(2n_1 + n_2) + 1\right]^2 + \left[\frac{1}{3}(n_1 + 2n_2) + 1\right]^2$$

Some relevant subalgebras:

$U_q(su(2))$

the Hopf *-subalgebra of $U_q(su(3))$ generated by $\{K_1, K_1^{-1}, E_1, F_1\}$

$U_q(u(2))$

the Hopf *-subalgebra generated by $U_q(su(2))$ and $K_1K_2^2$, $(K_1K_2^2)^{-1}$

 $K_1K_2^2$ commutes with all elements of $U_q(su(2))$

a class $\{\sigma_{\ell,N}\}$ of irreducible representation of $U_q(u(2))$ coming from a spin ℓ representation of $U_q(su(2))$, $\ell \in \frac{1}{2}\mathbb{N}$, and a representation of charge N on $K_1K_2^2$,

$$\sigma_{\ell,N}(K_1K_2^2) = q^N, \qquad N \in \frac{1}{2}\mathbb{Z}$$

a constraint on the labels: $\ell + N \in \mathbb{Z}$

The quantum complex projective plane $\mathbb{C}\mathsf{P}^2_q$

The *-algebra $\mathcal{A}(SU_q(3))$ is an $U_q(su(3))$ -bimodule for the canonical actions \triangleright and \triangleleft

Call $\mathcal{A}:=\mathcal{A}(\mathbb{C}\mathsf{P}_q^2)$ the fixed point subalgebra for the right action of the *-Hopf subalgebra $U_q(u(2))\subset U_q(su(3))$:

$$\mathcal{A}(\mathbb{C}\mathsf{P}_q^2) = \mathcal{A}(SU_q(3))^{U_q(u(2))}$$
$$= \left\{ a \in \mathcal{A}(SU_q(3)) \mid a \triangleleft h = \epsilon(h)a, \ \forall \ h \in U_q(u(2)) \right\}$$

 \mathcal{A} is a left $U_q(su(3))$ -module algebra;

 ${\mathcal A}$ generated by elements $p_{ij}:=(u_i^3)^*u_j^3,$ of a projection $p^2=p=p^*$

this projection is a line bundle over $\mathbb{C}\mathsf{P}^2_q$ more later on

there are commutation rules (here sgn(0) := 0)

$$\begin{aligned} p_{ii}p_{jk} &= q^{\text{sgn}(i-j) + \text{sgn}(k-i)}p_{jk}p_{ii} & i, j, k \text{ distinct }, \\ p_{ii}p_{ij} &= q^{\text{sgn}(j-i) + 1}p_{ij}p_{ii} - (1-q^2)\sum_{k < i}q^{6-2k}p_{kk}p_{ij} & i \neq j \;, \\ p_{ij}p_{ik} &= q^{\text{sgn}(k-j)}p_{ik}p_{ij} & i \notin \{j,k\} \;, \\ p_{ij}p_{jk} &= q^{\text{sgn}(i-j) + \text{sgn}(k-j) + 1}p_{jk}p_{ij} - (1-q^2)\sum_{l < j}p_{il}p_{lk} & i, j, k \text{ distinct }, \\ p_{ij}p_{ji} &= (1-q^2)\left(\sum_{l < i}p_{jl}p_{lj} - \sum_{l < j}p_{il}p_{li}\right) & i \neq j \;, \end{aligned}$$

and 'projective plane' conditions

$$\sum_{k} p_{jk} p_{kl} = p_{jl}$$
, $\operatorname{Tr}_{q}(p) := q^{4} p_{11} + q^{2} p_{22} + p_{33} = 1$

also: *-structure $(p_{ij})^* = p_{ji}$

There is a quantum sphere S_q^5

Call $\mathcal{B}:=\mathcal{A}(S_q^5)$ the fixed point subalgebra for the right action of the *-Hopf subalgebra $U_q(su(2))\subset U_q(su(3))$:

$$\mathcal{A}(S_q^5) = \mathcal{A}(SU_q(3))^{U_q(u(2))}$$
$$= \left\{ a \in \mathcal{A}(SU_q(3)) \mid a \triangleleft h = \epsilon(h)a, \ \forall \ h \in U_q(su(2)) \right\}$$

 \mathcal{B} is a left \mathcal{U} -module algebra, and is generated by $z_i := u_i^3$

Also:
$$\mathcal{A}(\mathbb{C}\mathsf{P}_q^2) \simeq \left\{ a \in \mathcal{A}(S_q^5) \mid a \triangleleft K_1 K_2^2 = a \right\}$$

and its generators are written as $p_{ij} := z_i^* z_j$

Relations for the sphere generators:

$$z_{i}z_{j} = qz_{j}z_{i} \quad \forall i < j , \qquad z_{i}^{*}z_{j} = qz_{j}z_{i}^{*} \quad \forall i \neq j ,$$

$$[z_{1}^{*}, z_{1}] = 0 , \qquad [z_{2}^{*}, z_{2}] = (1 - q^{2})z_{1}z_{1}^{*} ,$$

$$[z_{3}^{*}, z_{3}] = (1 - q^{2})(z_{1}z_{1}^{*} + z_{2}z_{2}^{*}) ,$$

$$z_{1}z_{1}^{*} + z_{2}z_{2}^{*} + z_{3}z_{3}^{*} = 1 .$$

The classical spin^c-structure

 $\mathbb{C}\mathsf{P}^2$ does not admit a spin structure; only spin c structures

it is a Kähler manifold \Rightarrow

the bundle of antiholomorphic forms $\Omega^{0,\bullet}$ with a natural \mathbb{Z}_2 -grading is a canonical spin^c-bundle and a spin^c-Dirac operator is given by the Dolbeault-Dirac operator

$$D = \partial + \bar{\partial}$$

tensoring with line bundles one gets other $spin^c$ -bundles

Associated bundles: line bundles in particular

 $\sigma: U_q(u(2)) \to \operatorname{End}(\mathbb{C}^n)$ an n-dimensional *-representation

 $\mathcal{A}(\mathbb{C}\mathsf{P}^2_q)$ -bimodule of equivariant elements associated to σ :

$$\mathfrak{M}(\sigma) := \left\{ v \in \mathcal{A}(SU_q(3))^n \,\middle| \\ \sigma(S(h_{(1)})) \cdot (v \triangleleft h_{(2)}) = \epsilon(h)v, \ \forall \ h \in U_q(u(2)) \right\}$$

These are finitely generated projective right- $\mathcal{A}(\mathbb{C}\mathsf{P}^2_q)$ modules

$$\sigma=\sigma_{\ell,N}$$
, with $\ell\in\frac{1}{2}\mathbb{N}$, $N\in\frac{1}{2}\mathbb{Z}$, and condition $\ell+N\in\mathbb{Z}$

denote
$$\Sigma_{\ell,N}:=\mathfrak{M}(\sigma_{\ell,N});$$
 in particular $\Sigma_{0,0}=\mathcal{A}$

Antiholomorphic forms again

$$\Omega^{0,0} := \mathcal{A} = \Sigma_{0,0} \;, \qquad \Omega^{0,1} := \Sigma_{\frac{1}{2},\frac{3}{2}} \;, \qquad \Omega^{0,2} := \Sigma_{0,3} \;,$$

The full differential calculus

$$\Omega^{\bullet,\bullet} = \oplus \Omega^{i,j}$$

 $\Omega^{i,j} \simeq \Sigma_{\ell,N}$, with suitable values of (ℓ,N)

The double complex: $\partial:\Omega^{p,q}\to\Omega^{p+1,q}$ and $\bar\partial:\Omega^{p,q}\to\Omega^{p,q+1}$

 $\text{denote } \partial_{i,j} := \partial|_{\Omega^{i,j}} \text{ and } \bar{\partial}_{i,j} := \bar{\partial}|_{\Omega^{i,j}} \qquad \text{ and } \qquad \mathcal{R}_h a := a \triangleleft h$

$$\partial_{0,0} := \begin{pmatrix} \mathcal{R}_{E_2} \\ \mathcal{R}_Y \end{pmatrix},$$

$$\partial_{1,0} := -\begin{pmatrix} \mathcal{R}_{X^*} & \mathcal{R}_{E_2} \end{pmatrix},$$

$$\begin{pmatrix} -\mathcal{R}_Y & \mathcal{R}_{E_2} \end{pmatrix}$$

$$\partial_{0,1} := - \begin{pmatrix} -\mathcal{R}_Y & \mathcal{R}_{E_2} \\ \mathcal{R}_{E_2} & 0 \\ \mathcal{R}_Y & \mathcal{R}_{E_2} \\ 0 & \mathcal{R}_Y \end{pmatrix},$$

$$\partial_{1,1} := \left(\begin{array}{ccc} -\mathcal{R}_{E_2} & \mathcal{R}_{X^*} & \mathcal{R}_{E_2} & 0 \\ \mathcal{R}_{X^*} & 0 & \mathcal{R}_{X^*} & \mathcal{R}_{E_2} \end{array} \right) \;, \;\; \partial_{0,2} \; := \left(\begin{array}{c} \mathcal{R}_{E_2} \\ \mathcal{R}_Y \end{array} \right) ,$$

$$\bar{\partial}_{1,1} := \begin{pmatrix} \mathcal{R}_{Y^*} & \mathcal{R}_{F_2} & \mathcal{R}_{Y^*} & 0 \\ -\mathcal{R}_{F_2} & 0 & \mathcal{R}_{F_2} & \mathcal{R}_{Y^*} \end{pmatrix}, \quad \bar{\partial}_{2,0} := \begin{pmatrix} \mathcal{R}_X \\ \mathcal{R}_{F_2} \end{pmatrix},$$

$$\partial_{1,2} := -(\mathcal{R}_{X^*} \mathcal{R}_{E_2}),$$

$$\bar{\partial}_{0,0} := {\mathcal{R}_X \choose \mathcal{R}_{F_2}},$$

$$\bar{\partial}_{0,1} := (\mathcal{R}_{F_2} \mathcal{R}_{Y^*}),$$

$$ar{\partial}_{1,0} := \left(egin{array}{ccc} \mathcal{R}_{F_2} & -\mathcal{R}_X \\ \mathcal{R}_X & 0 \\ \mathcal{R}_{F_2} & \mathcal{R}_X \\ 0 & \mathcal{R}_{F_2} \end{array}
ight),$$

$$\partial_{0,2} := {\mathcal{R}_{E_2} \choose \mathcal{R}_Y},$$

$$\bar{\partial}_{2,0} := {\mathcal{R}_X \choose \mathcal{R}_{F_2}},$$

$$ar{\partial}_{2,1}$$
 := $\left(egin{array}{cc} \mathcal{R}_{F_2} & \mathcal{R}_{Y^*} \end{array}
ight)$

One finds: $\partial^2 = \bar{\partial}^2 = \partial \bar{\partial} + \bar{\partial} \partial = 0; \quad d = \partial + \bar{\partial}; \quad d^2 = 0$

An inner product on $\Omega^{ullet,ullet}$: $\langle \omega,\eta \rangle := \sum_{p,q} arphi \Big(\omega_{p,q}^\dagger \; \eta_{p,q} \Big)$

with φ the Haar functional of $\mathcal{A}(SU_q(3))$

 $\Omega^{2,2}$ is a rank one free module with basis a central element vol

use it to define an integral

$$\int \omega := \langle \text{vol}, \omega \rangle = \varphi(\omega_{2,2}), \qquad \omega \in \Omega^{\bullet, \bullet}$$

since ∂ and $\bar{\partial}$ are constructed with the right action of elements in $\ker \epsilon$ and the Haar functional is invariant $(\varphi(a \triangleleft x) = \epsilon(x)\varphi(a))$, the integral is closed

$$\int \bar{\partial}\omega = \int \partial\omega = 0$$

A spectral triple over $\mathbb{C}\mathsf{P}^2_q$ from antiholomorphic forms

$$\Omega^{(0,0)} \stackrel{\bar{\partial}}{\to} \Omega^{(0,1)} \stackrel{\bar{\partial}}{\to} \Omega^{(0,2)} \to 0$$
.

$$\mathcal{H}_+$$
 the completion of $\Omega^{(0,0)}\oplus\Omega^{(0,2)}$, $\qquad \mathcal{H}_-$ of $\Omega^{(0,1)}$,

$$\mathcal{H} := \mathcal{H}_+ \oplus \mathcal{H}_-$$

Dolbeault-Dirac operator:

$$D\omega := (\bar{\partial}^{\dagger}v, \, \bar{\partial}a + \bar{\partial}^{\dagger}b, \, \bar{\partial}v) \,, \qquad \qquad \omega = (a, v, b) \in \Omega^{(0, \bullet)}$$

 $\bar{\partial}^{\dagger}$ the Hermitian conjugate of $\bar{\partial}$

$$[D, f] \in \mathcal{B}(\mathcal{H})$$
 for all $f \in \mathcal{A}$

A self-adjoint extension of D defined once it is diagonalized Compactness of $(D+i)^{-1}$ from asymptotic behaviour of Sp(D)

 $\ker D = \mathbb{C}$ are the constant 0-forms; non-zero eigenvalues of D are $(n \ge 1)$

$$\pm \sqrt{\frac{2}{[2]}[n][n+2]}$$
 with multiplicity $(n+1)^3$,

$$\pm\sqrt{[n+1][n+2]}$$
 with multiplicity $\frac{1}{2}n(2n+3)(n+3)$

The spectrum of D is a q-deformation of the spectrum of the Dolbeault-Dirac operator of \mathbb{CP}^2 $\mathrm{Sp}(D)$ grows exponentially: a 0^+ -dimensional spectral triple

The spectrum of the Dirac operator from

$$D^2 \omega = [2]^{-1} \omega \triangleleft (\mathcal{C}_q - 2)$$
 \mathcal{C}_q is the quadratic Casimir

The Hodge star operator

the linear operator $*_H: \Omega^{i,j} \to \Omega^{2-j,2-i}$

$$\int \omega^* \wedge_q \omega' = \left\langle *_H \omega, \omega' \right\rangle$$

Since $\Omega^{2,2} \simeq \mathcal{A}$ and the Haar state is faithful, equivalently

$$\omega^* \wedge_q \omega' = \left< *_H \omega, \omega' \right>$$
 vol

The calculus defined so that $*_H^2\omega = (-1)^{\mathrm{dg}(\omega)}\omega$ $\mathrm{d}^\dagger = *_H\mathrm{d}*_H \ .$

 $\mathfrak{e}(\omega)$ the left 'exterior product' : $\mathfrak{e}(\omega)\omega' := \omega \wedge_q \omega'$

 $\mathfrak{i}(\omega) = \mathfrak{e}(\omega)^{\dagger}$ the 'contraction' by ω

$$*_H\omega = \mathfrak{i}(\omega^*)$$
vol

Line bundles

 $\Sigma_{0,N}$ are line bundles of 'degree' N

As right A-modules:

$$\Sigma_{0,N} \simeq P_N \mathcal{A}^{r_N}, \qquad P_N = \Psi_N \Psi_N^{\dagger}$$

 Ψ_N is the column vector with components $\psi_{j,k,l}^N$:

$$\begin{split} (\psi^N_{j,k,l})^* &:= \sqrt{[j,k,l]!} \, z_1^j z_2^k z_3^l \,, & \text{if } N \geq 0 \text{ ; } j+k+l = N \,, \\ (\psi^N_{j,k,l})^* &:= q^{-N+j-l} \sqrt{[j,k,l]!} \, (z_1^j z_2^k z_3^l)^* \,, & \text{if } N < 0 \text{ ; } j+k+l = -N \end{split}$$

$$\Psi_N^{\dagger} \Psi_N = 1 \qquad \Rightarrow \qquad (P_N)^2 = P_N$$

The size is $r_N := \frac{1}{2}(N+1)(N+2)$; think of Ψ_N as a column vector of size r_N , and of Ψ_N^{\dagger} as a row vector of the same size.

[j, k, l]! are the q-trinomial coefficients:

$$[j, k, l]! = q^{-(jk+kl+lj)} \frac{[j+k+l]!}{[j]![k]![l]!}$$

q-factorial is

$$[n]! := [n][n-1]...[2][1], \quad n > 0;$$
 $[0]! := 1$

The Grassmannn connection:

$$\nabla: \Sigma_{0,N} \otimes_{\mathcal{A}} \Omega \to \Sigma_{0,N} \otimes_{\mathcal{A}} \Omega \qquad \nabla:= P_N \circ d$$

has curvature which is constant:

$$\nabla_N^2 = q^{N-1}[N]\nabla_1^2 \in \Omega^{(1,1)}$$

and anti-self-dual:

$$*\nabla_N^2 = -\nabla_N^2$$

the bundles are of rank 1

'first Chern number ' N

'first Chern number' $\frac{1}{2}N(N+1)$

Gauged Laplacian operator

$$\Box_N = \nabla_N^\dagger \nabla_N$$

Related to the Casimir \mathcal{C}_q

$$\square_N = q^{-\frac{3}{2}} \frac{q^{\frac{3}{2}} + q^{-\frac{3}{2}}}{q^{\frac{N}{3}} + q^{-\frac{N}{3}}} \left(\mathcal{C}_q - \left[\frac{1}{3}N\right]_q^2 - \left[\frac{1}{3}N + 1\right]_q^2 - \left[\frac{2}{3}N + 1\right]_q^2 \right) + [2]_q[N]_q,$$

The spectrum $\{\lambda_{n,N}\}_{n\in\mathbb{N}}$ of \square_N

$$\lambda_{n,N}=(1+q^{-3})[n]_q[n+N+2]_q+[2]_q[N]_q \qquad \text{if } N\geq 0\;,$$

$$\lambda_{n,N}=(1+q^{-3})[n+2]_q[n-N]_q+[2]_q[N]_q \qquad \text{if } N\leq 0\;.$$
 with $n\in\mathbb{N}.$

not invariant under the exchange $N \leftrightarrow -N$, not even when sending $q \leftrightarrow q^{-1}$

K-theory and K-homology

the C^* -algebra

$$0 \to \mathcal{K} \to C(\mathbb{C}\mathsf{P}^2_q) \to C(\mathbb{C}\mathsf{P}^1_q) \to 0$$

$$C(\mathbb{C}\mathsf{P}^1_q) \simeq C(S^2_q) = \mathcal{K} \oplus \mathbb{C}1$$

$$K_0(C(\mathbb{C}\mathsf{P}^2_q)) = \mathbb{Z}^3, \qquad K_1(C(\mathbb{C}\mathsf{P}^2_q)) = 0$$

$$K^0(C(\mathbb{C}P_q^2)) = \mathbb{Z}^3, \qquad K^1(C(\mathbb{C}P_q^2)) = 0$$

There are interesting twisted cocycles; in particular a twisted volume form

 $K_0(\mathcal{A})$: the a. group of finitely generated projective \mathcal{A} -module $K^0(\mathcal{A})$: the a. group of even Fredholm modules their pairing is via Chern characters; these are cyclic (co)-cycle, a cyclic 2n-cocycle: $\tau_n: \mathcal{A}^{2n+1} \to \mathbb{C}$ which is cyclic: $\tau_n(a_0, a_1, \ldots, a_{2n}) = \tau_n(a_{2n}, a_0, \ldots, a_{n-1})$,

and Hochschild boundary closed: $b \tau_n = 0$

$$b \tau_n(a_0, \dots, a_{2n+1}) := \sum_{j=0}^{2n} (-1)^j \tau_n(a_0, \dots, a_j a_{j+1}, \dots, a_{2n+1})$$
$$-\tau_n(a_{2n+1}a_0, a_1, \dots, a_{2n})$$

Even cyclic cocycles $\operatorname{ch}_n^{(\pi,\mathcal{H},F)}$, $2n \geq k$, canonically associated to a k+1-summable Fredholm module:

a triple (π, \mathcal{H}, F) :

 $\mathcal{H}=\mathcal{H}_+\oplus\mathcal{H}_-$ a \mathbb{Z}_2 -graded Hilbert space with grading γ

a graded representation $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H}_+) \oplus \mathcal{B}(\mathcal{H}_-)$

an odd operator F such that

$$[F, a_0][F, a_1] \dots [F, a_k]$$
 is traceclass

then

$$\operatorname{ch}_{n}^{(\pi,\mathcal{H},F)}(a_{0},\ldots,a_{2n+1}) := \frac{1}{2}(-1)^{n}\operatorname{Tr}_{\mathcal{H}}(\gamma F[F,a_{0}][F,a_{1}]\ldots[F,a_{2n}])$$

The coupling with idempotents:

$$\langle \, , \, \rangle : K^0(\mathcal{A}) \times K_0(\mathcal{A}) \to \mathbb{Z} \,,$$

$$\langle [(\pi, \mathcal{H}, F)], [e] \rangle = \frac{1}{2} (-1)^n \operatorname{Tr}_{\mathcal{H} \otimes \mathbb{C}^m} (\gamma F[F, e]^{2n+1})$$

it is an integer; the index of a Fredholm operator

Classical Invariants

Back to line bundles over $\mathbb{C}\mathsf{P}^2_q$

The rank

The algebra $\mathcal{A} = \mathcal{A}(\mathbb{C}\mathsf{P}_q^2)$ with generators p_{ij} has a character (1-dimensional representation):

$$\tau_0: \mathcal{A} \to \mathbb{C}, \qquad \tau_0(p_{ij}) := \delta_{i3}\delta_{j3}$$

then

$$\langle [\tau_0]|[P_N]\rangle := \tau_0(\mathsf{ch}_0(P_N)) = \tau_0(\mathsf{Tr}_{\mathbb{C}^{r_N}}P_N)$$

$$= 1$$

The monopole charge via a Fredholm module on $\mathcal{A}(\mathbb{C}\mathsf{P}^2_q)$

 $\ell^2(\mathbb{N})$, with orthonormal basis $|n\rangle$; the Hilbert space is $\mathcal{H}_1 := \ell^2(\mathbb{N}) \otimes \mathbb{C}^2$, and

$$F := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \qquad \gamma := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} ,$$

representation $\pi := \pi_+ \oplus \pi_-$ and

$$\pi_{\pm}(p_{11}) = \pi_{\pm}(p_{12}) = \pi_{\pm}(p_{13}) ,$$

$$\pi_{-}(p_{22}) = \pi_{-}(p_{23}) = 0$$

$$\pi_{+}(p_{22})|n\rangle = q^{2n}|n\rangle , \quad \pi_{+}(p_{23})|n\rangle = q^{n+1}\sqrt{1 - q^{2(n+1)}}|n+1\rangle ,$$

$$\pi_{+}(p_{ij}) - \pi_{-}(p_{ij})$$
 is trace class for all i, j

the Fredholm module is 1-summable; a cyclic 0-cocycle:

$$\tau_1: \mathcal{A}(\mathbb{C}\mathsf{P}_q^2) \to \mathbb{C}, \qquad \tau_1(a):=\frac{1}{2}\mathsf{Tr}_{\mathcal{H}}(\gamma F[F,a])$$

then

$$\langle [\tau_1]|[P_N]\rangle := \tau_1(\operatorname{ch}_0(P_N)) = \frac{1}{2}\operatorname{Tr}_{\mathcal{H}\otimes\mathbb{C}^{r_N}}(\gamma F[F,P_N])$$

$$= \dots$$

$$= N$$

The number depends only on the restriction of the bundle to the subspace $\mathbb{C}\mathsf{P}_q^1\simeq S_q^2$, (a reason to call it the *monopole charge*)

The instanton charge via a Fredholm module on $\mathcal{A}(\mathbb{C}\mathsf{P}^2_q)$

the Hilbert space \mathcal{H}_2 (is two copies of) the linear span of orthonormal vectors $|\ell,m\rangle$, with $\ell\in\frac{1}{2}\mathbb{N}$ and $\ell+m\in\mathbb{N}$

the grading γ and the operator F are like before.

for the representation $\pi_2 = \pi_+ \oplus \pi_-$

$$\pi_{+}(p_{11}) = \pi_{+}(p_{12}) = \pi_{+}(p_{13}) = 0 ,$$

$$\pi_{+}(p_{22})|\ell,m\rangle = \begin{cases} q^{2(\ell+m)}|\ell,m\rangle & \text{if } m \leq \ell ,\\ 0 & \text{if } m > \ell , \end{cases}$$

$$\pi_{+}(p_{23})|\ell,m\rangle = \begin{cases} q^{\ell+m+1}\sqrt{1-q^{2(\ell+m+1)}}|\ell,m+1\rangle & \text{if } m \leq \ell-1 ,\\ 0 & \text{if } m \geq \ell . \end{cases}$$

$$\pi_{-}(p_{11}) = \pi_{-}(p_{12}) = \pi_{-}(p_{13}) = 0 ,$$

$$\pi_{-}(p_{22})|\ell,m\rangle = q^{2(\ell+m)}|\ell,m\rangle ,$$

$$\pi_{-}(p_{23})|\ell,m\rangle = q^{\ell+m+1}\sqrt{1-q^{2(\ell+m+1)}}|\ell,m+1\rangle .$$

$$\pi_{+}(p_{ij}) - \pi_{-}(p_{ij})$$
 is trace class for all i, j

the Fredholm module is 1-summable; a cyclic 0-cocycle:

$$\tau_2: \mathcal{A}(\mathbb{C}\mathsf{P}_q^2) \to \mathbb{C}, \qquad \tau_2(a):=\frac{1}{2}\mathsf{Tr}_{\mathcal{H}}(\gamma F[F,a])$$

then

$$\langle [\tau_2]|[P_N]\rangle := \tau_2(\mathsf{ch}_0(P_N)) = \mathsf{Tr}_{\mathcal{H}_2\otimes\mathbb{C}^m}(\gamma F[F,P_N])$$

$$= \dots$$

$$= \frac{1}{2}N(N+1)$$

For any $N \in \mathbb{Z}$, the (right) module $\Sigma_{0,N}$ has

'rank' 1

The three generators $\{e_1, e_2, e_3\}$ of $K_0(\mathcal{A}(\mathbb{C}P_q^2))$ are:

 $e_1=[1]$ is the class of the rank one free $\mathcal{A}(\mathbb{C}\mathsf{P}^2_q)$ -module $\Sigma_{0,0}$

 e_2 is the class of $\Sigma_{0,-1}$ (the dual of the tautological bundle)

and e_3 is the class of $\Sigma_{0,1}$ (the tautological bundle)

The three generators of $K^0(\mathcal{A}(\mathbb{C}P_q^2))$ are the classes of the Fredholm modules $(\pi_i, \mathcal{H}_i, F_i)$, i = 0, 1, 2, given before

^{&#}x27;monopole charge' N

^{&#}x27;instanton number' $\frac{1}{2}N(N+1)$

Quantum invariants

Classically, invariants of vector bundles are computed by integrating powers of the curvature of a connection on the bundle, the result being independent of the particular chosen connection.

In order to integrate the curvature of a connection on the quantum projective space $\mathbb{C}\mathsf{P}^2_q$ one needs 'twisted integrals'; the result, is no longer an integer but rather its q-analogue

Invariants for $\mathbb{C}\mathsf{P}^2_q$

The Haar state of $\mathcal{A}(SU_q(3))$

$$\varphi(ab) = \varphi((K \triangleright b \triangleleft K)a), \quad \text{for} \quad a, b \in \mathcal{A}(SU_q(3)),$$

that when $a,b \in \mathcal{A}(\mathbb{C}\mathsf{P}^2_q)$ means

$$\varphi(ab) = \varphi((K \triangleright b)a) = \varphi(\frac{\eta}{(b)a}).$$

$$\eta$$
-twisted cyclic $2n$ -cocycles:

$$au_n:\mathcal{A}^{2n+1} o\mathbb{C}$$

$$\tau_n(a_0, a_1, \dots, a_{2n}) = \tau_n(\eta(a_{2n}), a_0, \dots, a_{n-1}),$$

and Hochschild boundary closed: $b_{\eta} \tau_n = 0$

$$b_{\eta} \tau_n(a_0, \dots, a_{2n+1}) := \sum_{j=0}^{2n} (-1)^j \tau_n(a_0), \dots, a_j a_{j+1}, \dots, a_{2n+1})$$
$$-\tau(\eta(a_{2n+1})a_0, a_1, \dots, a_{2n})$$

The restriction of the Haar state to $\mathcal{A}(\mathbb{C}\mathsf{P}^2_q)$ is the representative of a class in the cohomology $[\tau_0] \in HC_\eta^0(\mathcal{A}(\mathbb{C}\mathsf{P}^2_q))$

An element $[\tau_4] \in HC_{\eta}^{-4}(\mathcal{A}(\mathbb{C}\mathsf{P}^2_q))$ is constructed as

$$\tau_4(a_0,\ldots,a_4) := \int a_0 da_1 \wedge_q \ldots \wedge_q da_4.$$

A 2-cocycle can be defined in a similar way. Elements of $\Omega^{1,1}(\mathbb{C}\mathsf{P}^2_q)$ are $\omega=(\alpha,\alpha_4)$, with $\alpha_4\in\mathcal{A}(\mathbb{C}\mathsf{P}^2_q)$. Let $\pi:\Omega^{1,1}(\mathbb{C}\mathsf{P}^2_q)\to\mathcal{A}(\mathbb{C}\mathsf{P}^2_q)$ be such that $\pi(\omega)=\alpha_4$; extend it to a projection $\pi:\Omega^2(\mathbb{C}\mathsf{P}^2_q)\to\mathcal{A}(\mathbb{C}\mathsf{P}^2_q)$ by $\pi(\omega)=0$ if $\omega\in\Omega^{0,2}$ or $\omega\in\Omega^{2,0}$.

The map
$$\tau_2(a_0, a_1, a_2) := \varphi \circ \pi(a_0 da_1 \wedge_q da_2)$$

is the representative of a class $[\tau_2] \in HC_{\eta}^2(\mathcal{A}(\mathbb{C}\mathsf{P}_q^2))$.

Both classes $[\tau_4]$ and $[\tau_2]$ are proven to be not trivial by pairing them with the monopole projections $P_N = \Psi_N \Psi_N^{\dagger}$

The pairing of $[au_4]$ with P_N :

$$\langle [\tau_4]|[P_N]\rangle = \int \operatorname{Tr}\left(P_N(dP_N)^4 \sigma^N (K_1^{-4} K_2^{-4})^t\right)$$
$$= q^{-2N} \int \nabla_N^2 \wedge_q \nabla_N^2$$
$$\sim [N]^2$$

For q=1, the integral of the square of the curvature is the instanton number of the bundle.

The pairing of $[\tau_2]$ with P_N :

$$\langle [\tau_2] | [P_N] \rangle = \varphi \circ \operatorname{Tr} \left(\pi (P_N dP_N \wedge_q dP_N) \sigma^N (K_1^{-4} K_2^{-4})^t \right)$$
$$= q^{-2N} \varphi \circ \pi (\nabla_N^2)$$
$$\sim [N]$$

At q=1 the integral of the curvature is the *monopole number* of the bundle.

The pairing of $[\tau_0]$ with P_N

$$\langle [\tau_0]|[P_N]\rangle = \varphi \circ \operatorname{Tr}(P_N)\sigma^N(K_1^{-4}K_2^{-4})^t$$

= q^{-2N}

At q = 1 this is the rank of the bundle.

If q is trascendental, this means that all $[P_N]$ are independent, i.e. the equivariant K_0 -group is infinite dimensional

Indeed, were the classes $[P_N]$ not independent, there would exist a sequence $\{k_N\}$ of integers – all zero but for finitely many – such that $\sum_N k_N q^{-2N} = 0$, and q^{-1} would be the root of a non-zero polynomial with integer coefficients.

thank you!!