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A spectral triple for the quantum projective space CP%

A(CP?), H, D

a g-deformation of the classical principal fibrations:
U(2) — SU(3) — CP? U(1l) — S° — CP?

and g-deformation of associated bundles



With 0 < q < 1, the function algebra
O = A(SU4(3))

has generators u; and relations

] kol _ k.l pij 1 2 3
Rkl(Q)umun — Umuanl(Q) ; Zp653(—q)Hp”up(1>up(2)up(3) =1

' —i, k1 k ki1 k
(U;)* = (—q)’ Z(ulllul; - qul21ul12)

Rz(q) is the R-matrix of the SU,(n) series



Coproduct, counit and antipode:

L . "
A(uj) = Zk ug, @ uy

e(u}) = 67,

S(ul) = (u])*



The symmetry algebra
Symmetries are via the =-Hopf algebra U := Uy(su(3))

generated by K;, K; ', E;, F;, i = 1,2 with K; = K}, F; = EZ,
and relations (a;; = Cartan matrix)

1 y K?—K; 2
[K;, K;] =0, K,E;K, - = qa”/QEj , [E;, Fj] = 6;; p—

B,E? - (¢+q DEE;E;+E;E? =0  Vi#j.



Coproduct, counit and antipode are given by (with i = 1,2)

A(K) = K;® K; AE)=E K, +K 'QE,
E(K’L) =1 3 E(EZ) =0 3

S(K;) = K; 1, S(E;) = —qE;



Via a non-degenerate dual pairing (, ) :U x O — C

define commuting left and right ¢/-actions on O:

h>a = a(l) <h, CL(2)> , a<dh = <h, a(1)> CL(2) ,
forall h € Uy(su(3)), a € A(SU4(3))

notation A(a) = a() @ ao)



The deformation of the quadratic Casimir of U(su(3));
a central element in U given by

Cq 1= (q—q_l)_2((H—I—H_1){(qK1K2)2—|—(quKQ)_2}+H2-|-H_2—6)
+(¢HEK3+q¢ "H K52 F1 By + (¢H 'Kf+q 'HEK{?) 2 Ep
+ qH|[F>, F1)qlE1, Balq + qH 1 [F1, F2lq[Ea, E1]q
with H := (KK, 1)?/3 [a,blq := ab — ¢~ Lba

The restriction of C; to the irrep (n1,no) is

Cal i, oy = [3(n1 =121+ [5(2n1 +n2) + 11+ [§(n1 +2n2) +1)°



Some relevant subalgebras:

Uqg(su(2))
the Hopf x-subalgebra of U;(su(3)) generated by { K7, Kl_l, E1, Fi}

Uqg(u(2))
the Hopf x-subalgebra generated by Uy(su(2)) and K1 K5, (K1K3)~!

K1K5 commutes with all elements of Ug(su(2))
a class {0y v} of irreducible representation of Uq(u(Q))
coming from a spin /£ representatlon of Ug(su(2)), ¢ € N and a

representation of charge N on K1K2,

1
o n(K1K5) =q",  NeZ

a constraint on the labels: ¢+ N € 7



The quantum complex projective plane (CPg

The x-algebra A(SU4(3)) is an Uy(su(3))-bimodule for the canon-
ical actions > and «

Call A := A(CPZ) the fixed point subalgebra for the right action
of the x-Hopf subalgebra Uy(u(2)) C Uys(su(3)) :

A(CP2) = A(SU,4(3))Va(u(2)
— {a e A(SU4(3)) ) a<h=c¢(h)a, Vhe Uq(u(Q))}

A is a left Uy(su(3))-module algebra;



A generated by elements p;; := (u?)*uf, of a projection

p°=p=p
this projection is a line bundle over CP more later on
there are commutation rules (here sgn(0) := 0)
piipjp = ¢ DFSINE=)y i, J, k distinct ,
)41 2 _ . .
piipi; = "D p i — (1 = 2 Y kei 6® P prpis i E 7,
k—j .
pijpit = ¢>9"F D ppy; i & {7, k},
pijpjp = ¢ FSINE=DFLy b — (1 — ¢?) s papu i, Js k distinct

_ > .
pijpji = (1 —¢q°) (Zl<¢pﬂpzj — < pz'zpzz') i FE 7,



and ‘projective plane’ conditions

__ 4 2
kajkpkl = Pji > Tre(p) :=q"p11 +q“p22 +p33 =1

also: x-structure (p;;)* = pj;



There is a quantum sphere Sg’

Call B := A(Sg) the fixed point subalgebra for the right action
of the x-Hopf subalgebra U;(su(2)) C Uy(su(3)) :

A(Sg} — A(SUq(3))Uq(U(2))
— {a e A(SU4(3)) ‘ a<h=c¢(h)a, Vhe Uq(su(2))}

B is a left U-module algebra, and is generated by z; .= uz3

Also: A(CP2) ~ {a € A(S?) \ aaK1K3 = a}

and its generators are written as p;; := 272,



Relations for the sphere generators:

zizj = qzjz; Vi<j, z;kzquzjzf Vi#&7g,
[Z>]Ii7z].] — O ’ [23722] — (1 T qQ)Z].ZT )
(23, 23] = (1 — ¢°) (2127 + 2223) ,

z12] + 2025+ 2323 = 1.



The classical spin¢-structure

CP?2 does not admit a spin structure; only spin€ structures

it is a Kahler manifold =

the bundle of antiholomorphic forms Q0® with a natural Li-

grading is a canonical spin®-bundle and a spin¢-Dirac operator is
given by the Dolbeault-Dirac operator

D=0+0

tensoring with line bundles one gets other spin“-bundles



Associated bundles: line bundles in particular
o Ug(u(2)) — End(C™) an n-dimensional x-representation

A(CP%)—bimodule of equivariant elements associated to o

M(o) = {v e A(SUq(3))”|
o (S(h)) - (v<he)) = e(h)v, ¥ h € Ug(u(2))]

These are finitely generated projective right—A(CPg) modules
o = oy N, With £ € 3N, N € 3Z, and condition £+ N € Z

denote > y := M(op n); in particular g =A



Antiholomorphic forms again

QO)O :: A — ZO’O : Qo,l :: Z%% : 9072 — 20’3 :
The full differential calculus Q% = pQiJ
Q0,0
— T~
QO,]. Q]_,O
0,2 ol.1 2,0
9172 QQ,].
\ /
92,2

QW ~ ¥, y, with suitable values of (4, N)
The double complex: 8 : QP4 — QPtTLa gnd § : QP9 — QPa+1

denote 8@-,]- .= (9|Qz',j and 57;’]' .= 5|Qi,j and Rha ‘= a<h






One finds: 0°2=0°=00+00=0, d=0+9, d°=0
An inner product on Q°%° : (w,m) 1= Zpggo(w;g,q np,q)

with ¢ the Haar functional of A(SU4(3))

Q22 is a rank one free module with basis a central element vol
use it to define an integral

7[w = (vol,w) = ¢(w22) , w e Q%

since 9 and 0 are constructed with the right action of elements
in ker e and the Haar functional is invariant (p(a<z) = e(x)p(a)),

the integral is closed
7[5w = 7[(%) =0



A spectral triple over (CP(? from antiholomorphic forms
0(0,0) 9, 5(0,1) 9, (02 _, o

H the completion of ©(0:0) ¢ ©(0.2) H_ of QO.1)

H:=Hy & H-

Dolbeault-Dirac operator:

Dw = (5%, Oa + gTb, ov) , w= (a,v,b) € 0 (0,e)

' the Hermitian conjugate of d

(D, f] € B(H) for all fc A



A self-adjoint extension of D defined once it is diagonalized
Compactness of (D—I—i)_l from asymptotic behaviour of Sp(D)

ker D = C are the constant O-forms;
non-zero eigenvalues of D are (n > 1)

n \/%[n] [n+2]  with multiplicity (n+1)3

+/[n+ 1)[n+2] with multiplicity 3n(2n 4 3)(n + 3)

The spectrum of D is a g-deformation of the spectrum of the
Dolbeault-Dirac operator of CP2
Sp(D) grows exponentially: a 0T-dimensional spectral triple

The spectrum of the Dirac operator from

D?w=[2] lwa(cy;—2) C, is the quadratic Casimir



The Hodge star operator
the linear operator sp : Q4 — Q27,21
][w*/\qw’ = <*H w,w’>
Since 922 ~ A and the Haar state is faithful, equivalently

w*/\qw/ = <*H w,w/> vol
The calculus defined so that *%{w = (—1)d9(w)w

e(w) the left ‘exterior product’ : e(w)w' 1= wAqw'’

i(w) = e(w)T the ‘contraction’ by w

*w = i(w*)vol



Line bundles

2 o,y are line bundles of ‘degree’ N

As right A-modules:
ZoyNZPN.ArN, PN:\UN\U}LV

W is the column vector with components zpj.vkl:

(YN )" =/l b, 01 2] 252% fN>0;j+k+1=N,
(wj,k,l) . q []7 ’ ] (212223) y | < v J _I_ +

wiwy =1 N (Py)2 = Py



The size is ry := (N + 1)(N + 2); think of Wy as a column
vector of size rp, and of \U}L\, as a row vector of the same size.

[7,k,1]! are the g-trinomial coefficients:

_Gik+ki4i) U+ k41!

Ukl = ITET

qg-factorial is

[n]! = [n][n—1]...[2][1], n > O: [0]! =1



The Grassmannn connection:

V:ZO,N(X)AQ_)ZO,N@AQ VI:PNOd

has curvature which is constant:

V% =¥ 1VITE e

and anti-self-dual:
«Va = —Var
the bundles are of rank 1

‘first Chern number ' N

‘first Chern number’ %N(N—|— 1)



Gauged Laplacian operator

Oy = Vi Vy

Related to the Casimir Cq
>
_34q

TN
3

Oy =g (cq—[%N]§—[%N+1]§—[%N+1]§)+[2]q[N]q ,

w|=| Nlw

q
g3 +q



The spectrum {\, y}nen Of Uy
AN = (14 ¢ 3)[nlgln + N + 2]g + [2]¢[N]q
Aon = (14 g7 3)[n + 2]gln — Ng + [214[N]q
with n € N.

not invariant under the exchange N «— —N,
not even when sending q < ¢!

if N >0,
if N<O.



K-theory and K-homology

the C*-algebra
00— K — C(Cpg) — C((CP(:JL) — 0

C(CP})~C(S7) =K®C1

Ko(C(CP2)) =173, K1(C(CP2)) =0

KO(C(CP?)) =73, Kl(C(CP) =0

There are interesting twisted cocycles;
in particular a twisted volume form



Ko(A): the a. group of finitely generated projective A-module
KO9(A): the a. group of even Fredholm modules

their pairing is via Chern characters; these are cyclic (co)-cycle,

a cyclic 2n-cocycle: ™ o A2t C which is cyclic:
Tn(CLO, al,..., a’2n) — Tn(a’an ag, ..., a’n—l) ,
and Hochschild boundary closed: brn, =0
2n '
brn(ag, ..., aop+1) = >, (—=1)Ym(ag,...,aja41, .., a2,41)
7=0

— m(aon4100,a1, .. .,02,)



Even cyclic cocycles ch%ﬁ’H’F), on >k,
canonically associated to a k + 1-summable Fredholm module:

a triple (w,H, F) :
H="Hy ®H_ a Zr-graded Hilbert space with grading ~
a graded representation 7 : A — B(Hy) © B(H-)

an odd operator F' such that

[F, ap][F,a1] ... [F, ag] is traceclass

then

ch ) (ag, .. appg1) 1= S(=1)"Tru(YFIF, agl[F, a1 .. . [F, azn])



The coupling with idempotents:

(,): K°(A) x Ko(A) — Z,

([(m, H, F)], [e]) = 2(—1)"Trygem(YFF, e]*"T1)

it is an integer ; the index of a Fredholm operator



Classical Invariants

Back to line bundles over (CPg

The rank

The algebra A = A(CP%) with generators p;; has
a character (1-dimensional representation):

0 A—C, T0(pij) = 9;36;3
then
([Tol|[PNn]) - = mo(cho(Pn)) = 10(Trern Py)

=1



‘The monopole charge via a Fredholm module on A((CPg)

¢2(N), with orthonormal basis |n);
the Hilbert space is Hy ;= ¢?(N) ® C2, and

(01 (1 0
F=(io) 7=(o %)

representation = :=n, ® 7— and

m+(p11) = m+(p12) = 7+(P13) ,
m_(p22) = m-(p23) =0

1 (pa2)n) = ¢*"n), 7wy (p23)|n) = qn+1\/1 — 2t D 41y




w4 (pij) — m—(pij) is trace class for all 4, j
the Fredholm module is 1-summable; a cyclic O-cocycle:

T1 . A(CP%) — C, 71(a) = %TI’H(’yF[F, al)

then

r1(cho(PN)) = 3 Tryecry (VFIF, Py])

((m]llPn])

=N

The number depends only on the restriction of the bundle to the
subspace CPl ~ Sg, (a reason to call it the monopole charge)



The instanton charge

via a Fredholm module on A(CP%)

the Hilbert space H» (is two copies of) the linear span of or-

thonormal vectors [¢, m), with £ € %N and £+ m €N

the grading ~v and the operator F' are like before.

for the representation mo = T4 DT

4 (p11) = 74 (p12) = 74 (p13) =0,

4 (p22)|f, m) = 4

4 (p23)|f, m) = <

,q2(£+m)|€,m> ifm</¢,

0 ifm>~¢,
qe+m+1\/1 — 2UHm+D) g 1)
O

\

ifm<¥e—1,
itm>1¢.



m_(p11) = 7—(p12) = 7—-(p13) =0,
7_(pa2) |, m) = 2T |0, m)

£+m+1\/1 B q2(£—|—m—|—1)|€’m_|_ 1) .

m—(p23)|f,m) = q
4 (pij) — m—(pij) is trace class for all 4, j

the Fredholm module is 1-summable; a cyclic O-cocycle:

1 A(CPZ) — C, m2(a) 1= 5 Try(yF[F,a])

then

([r2]l[PN]) : = m2(cho(PN)) = Try,gem(YFLF, Py])

= iN(N + 1)



For any N € Z, the (right) module >y  has
‘rank’ 1

‘monopole charge’ N
‘instanton number’ 3N (N + 1)

The three generators {e1, o, e3} of Ko(A(CPZ)) are:

e1 = [1] is the class of the rank one free A(CPg)—module 20,0
eo is the class of X _1 (the dual of the tautological bundle)
and ez is the class of X1 (the tautological bundle)

The three generators of KO(A((CPg)) are the classes of the Fred-
holm modules (m;, H;, F;), 1 = 0,1,2, given before



Quantum invariants

Classically, invariants of vector bundles are computed by inte-
grating powers of the curvature of a connection on the bundle,
the result being independent of the particular chosen connection.

In order to integrate the curvature of a connection on the quan-
tum projective space (CP% one needs ‘twisted integrals’; the re-
sult, is no longer an integer but rather its g-analogue



Invariants for CP?2
The Haar state of A(SU4(3))

o(ab) = ¢((K >b < K)a) , for a,be A(SU43)),

that when a,b € A(CPZ) means

p(ab) = o((K>b)a) = o(n(b)a) .



n-twisted cyclic 2n-cocycles: ™ A2t C

Tn(a’07 Ay, azn) — Tn(U(UQn)a ag, - - - ,Cl,n_]_) )
and Hochschild boundary closed: by = 0

2n .
by mn(ag, .-, aop41) = Y (=1)m(ag),...,aja41,.-.,a2,41)
j=0

— 17(n(agn41)ag,a1,...,a2y,)



The restriction of the Haar state to A((CP%) is the representative
of a class in the cohomology [mp] € HCnO(A(CPg))

An element [r4] € HC,*(A(CP3)) is constructed as

7‘4(&0, c.,aq) = 7[a0da1 Ng.- .. Ngdag .

A 2-cocycle can be defined in a similar way.

Elements of QL1(CP2) are w = (o, o), with as € A(CPZ).
Let 7 : QLI(CPZ) — A(CP2) be such that m(w) = aa;
extend it to a projection 7 : Q?(CP7) — A(CP%)

by m(w) = 0 if w € 292 or w € Q20.

The map m(ag,a1,a2) := p o w(agday /\qdag)

is the representative of a class [m] € HCUQ(A(CP(?)).



Both classes [r4] and [m] are proven to be not trivial by pairing
them with the monopole projections Py = \UN\U}fV

The pairing of [r4] with Py :
([rallPy]y = f Tr(Py(dPy) o™ (K74 K5 ™))

= q‘sz Vi AdVR
~ [N]?

For ¢ = 1, the integral of the square of the curvature is the
instanton number of the bundle.



The pairing of [rp] with Py

([2]I[PN]) = ¢ o Tr(w(PydPy AqdPy)o™ (KT K5 )
=q Npon(VR)
~ [N]
At ¢ = 1 the integral of the curvature is the monopole number
of the bundle.
The pairing of [rg] with Py

([0l [PN]) = @ o Tr(Pp)o™ (KT K34

—2N
— 4

At ¢ = 1 this is the rank of the bundle.



If ¢ is trascendental, this means that all [Py] are independent,
i.e. the equivariant Kg-group is infinite dimensional

Indeed, were the classes [Py] not independent, there would exist
a sequence {kp} of integers — all zero but for finitely many — such
that S v knvg 2 = 0, and ¢~ 1 would be the root of a non-zero
polynomial with integer coefficients.



thank you !l



