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Abstract. Let π be an irreducible admissible unitary ψ-generic representation of the non-archimedean
general linear group GL2n(F ), which admits an (η, ψ)-Shalika model Sηψ(π). In this paper, we
show the non-vanishing of all non-zero Shalika newvectors S◦ ∈ Sηψ(π) at the identity matrix
g = id ∈ GL2n(F ), if η is unramified. This complements the analogous result for Whittaker
newvectors, which can be read off the formulae established independently by Miyauchi in [Miy14]
and the second named author in [Mat13].
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Introduction

In the representation theory of local and global groups, model spaces of representations are an in-
dispensable tool. Indeed, such model spaces provide a (usually unique, but in any case) convenient
way to describe an a priori abstract representation (π, V ) of a reductive group G as being realized
on a concrete vector space of (usually smooth) functions on G – this being analogous to the fact
that a finite-dimensional vector space is isomorphic to a finite number of copies of its ground-field
and hence allows a canonical description up to isomorphism.

One of the most studied models of representations, which appear in the Langlands program, is
certainly the Whittaker model. Representations, which admit a Whittaker model, are also called
generic, subsuming the (highly non-trivial) statements, that local generic representations are fully
induced from their Langlands datum (i.e., equal to their “standard module”), whereas the global
generic L2-automorphic representations of GLn are precisely the irreducible cuspidal automorphic
representations.

In particular the latter approach to cusp forms of GLn comprises a very fruitful combination of
local and global techniques: Given an irreducible cuspidal automorphic representation Π of GLn,
the fact that it has local and global Whittaker models allows one to define local L-factors at its
ramified places and to show – or, at the very least, to educatedly guess – many desirable properties
of Π: The Ramanujan Conjecture being among the most prominent such claims.
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In slightly more recent years another type of model space has attracted attention and gained impor-
tance in the Langlands program: If one is given a local or global irreducible admissible representation
of GL2n, then one may try to attach a so-called Shalika model to it. The very ideas underlying its
construction resemble the analogous ideas in the theory of Whittaker models, but turn out to be
more restrictive and exclusive, than the latter. Indeed, it is not true any more that every irreducible
cuspidal automorphic representation Π of GL2n has a Shalika model, but its existence is known –
due to work of Jacquet–Shalika – to be equivalent to the partial exterior square L-function of Π
having a pole at s = 1. In other words, which reflect more the principles of Langlands functoriality,
an irreducible cuspidal automorphic representation Π of GL2n has a Shalika model, if and only if it
is the standard lift from an irreducible generic cuspidal automorphic representation π of the split
special orthogonal group SO2n+1.

However, being a more restrictive concept, the theory of Shalika models in return gains the ad-
vantage of allowing more specialized assertions about those cusp forms, to which it applies. See
[Ash-Gin94] and [Gro-Rag14] for examples of such results. In particular in the latter reference,
a quite solid knowledge of the local theory of Shalika models was necessary, in order to yield the
desired global consequences. However, it turned out that one particular such aspect of the required
local theory was not available in the literature and the authors of [Gro-Rag14] (one of them being
the first-named author of the present paper) relied on its validity without reference.

It is the goal of this short paper to close this gap and establish the above local result on Sha-
lika models in the greatest possible generality. More precisely, let F be any local non-archimedean
field and let π be an irreducible admissible unitary ψ-generic representation of GL2n(F ), which ad-
mits an (η, ψ)-Shalika model Sηψ(π). We are going to show the non-vanishing of all non-zero Shalika
newvectors S◦ ∈ Sηψ(π) at the identity matrix g = id ∈ GL2n(F ), if η is unramified. This mirrors
the analogous result for Whittaker newvectors, which was established independently by Miyauchi
in [Miy14] and the second named author in [Mat13] and which has been used in many sources.

Acknowledgements: It is our first and foremost pleasure to thank Marko for accompanying our mathe-
matical lives ever since. The number of scientifically fruitful, mathematically inspiring, and on a human
level sheerly great moments with him seem to exceed ℵ0.
HG is also grateful to Binyong Sun for pointing out the need for a result on the local non-vanishing of Shalika
newvectors at the identity, i.e., the necessity of writing up a proof of our main result.

1. Basic assumptions and definitions

1.1. Fields and characters. Throughout this paper, F will denote a local, non-archimedean field
with ring of integers O, maximal ideal p, valuation v and normalized absolute value | . | = | . |v.
We fix a non-trivial, unramified additive continuous character ψ : F → C and let η be a continuous
character η : F ∗ → C∗. The trivial character is denoted by the symbol 1. By Mk we shall denote
the algebra of k × k-matrices with entires in F and by Nk the subset of upper triangular elements
in Mk. If X is any subset of Mk, we will denote 1X the characteristic function of X.

1.2. Local groups. For any k ≥ 1, we abbreviate Gk := GLk(F ), the F -points of the split general
linear group over F . The group Gk has some well-known subgroups:

Pk :=

{
p =

(
gk−1 0

0 1

)(
idk−1 x

0 1

) ∣∣∣∣∣ gk−1 ∈ Gk−1x ∈ F k−1

}
,

the so-called mirabolic subgroup, and Uk, the subgroup of upper triangular unipotent matrices. If
k = 2n is even, then there are also the following subgroups:
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L2n :=

{
` =

(
gn 0
0 hn

) ∣∣∣∣∣ gn, hn ∈ Gn
}
,

the Levi subgroup of the “Siegel parabolic”, and

S2n :=

{
s =

(
gn 0
0 gn

)(
idn X
0 idn

) ∣∣∣∣∣ gn ∈ GnX ∈ Mn

}
,

called the Shalika subgroup.

All measures in this note are normalized to give volume 1 to the respective maximal compact
subgroups, consisting of O-points.

1.3. Non-archimedean Shalika models. The characters η and ψ can be extended to a character
η ⊗ ψ of S2n, using the determinant det, resp. the trace Tr, of matrices

s =

(
gn 0
0 gn

)(
1 X
0 1

)
7→ (η ⊗ ψ)(s) := η(det(gn))ψ(Tr(X)).

We will also write η(s) := η(det(gn)) and ψ(s) := ψ(Tr(X)).

Definition 1.1. Let π be an irreducible admissible representation of G2n. We say that π has
a (η, ψ)-Shalika model Sηψ(π), if there is a G2n-submodule Sηψ(π) of the (unnormalized) smoothly
induced representation IndG2n

S2n [η ⊗ ψ], which is isomorphic to π.

Remark 1.2. (1) By irreducibility of π, the defining condition of Definition 1.1 is obviously equiv-
alent to asserting that there exists an embedding of G2n-representations

(1.3) π ↪→ IndG2n
S2n [η ⊗ ψ].

(2) It is important to notice that (η, ψ)-Shalika models, if they exist, are unique, i.e., whatever
embedding we had chosen in (1.3), their images in IndG2n

S2n [η⊗ψ] are all identical: This has been es-
tablished by Jacquet–Rallis [Jac-Ral96, p.67] for η = 1 and in general by Chen–Sun in [Che-Sun20],
Theorem A.

We will first concentrate on the case when η = 1. Doing so, we will abbreviate

Sψ(π) := S1ψ(π).

2. Whittaker models vs. Shalika models

2.1. Model comparison. Let π be an irreducible admissible representation of G2n, which admits
a (1, ψ)-Shalika model Sψ(π). We will – without big harm1 – additionally assume that π is unitary
and that is has a ψ-Whittaker model

Wψ(π) ⊆ IndG2n
U2n

[ψ],

1This is for the global reasons, that we have in mind: Local components of cuspidal automorphic representations
are unitary times a twist by a potentially non-unitary character. The assumption that our representation admits a
(1, ψ)-Shalika model hence implies that, if it is the local component of a cuspdial automorphic representation, then
it is itself unitary. As local components of cuspidal automorphic representations are all ψ-generic, also the second
assumption must hold for such local representations.
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where, as usual, ψ is extended to U2n by the rule
1 u1,2 ∗

1 u2,3

1
. . .
. . . u2n−1,2n

0 1

 7→ ψ(u1,2 + u2,3 + · · ·+ u2n−1,2n).

Irreducibility together with Schur’s lemma implies

dimC HomG2n(Wψ(π),Sψ(π)) = 1.

We will now exhibit an explicit, non-trivial intertwining operator

Θ :Wψ(π)→ Sψ(π).

We start off with

Proposition 2.1. We have

HomS2n∩P2n(π, ψ) = HomS2n(π, ψ).

Proof. By Frobenius reciprocity and uniqueness of local Shalika models, we obviously have

C ∼= HomS2n(π, ψ) ⊆ HomS2n∩P2n(π, ψ).

The result then follows from a combination of the following results: By [Mat14], Proposition 4.3,
the latter space HomS2n∩P2n(π, ψ) embeds into HomL2n∩P2n(π,1), whereas it follows from the proof
of Corollary 4.18 in [Mat15], that the – again latter – space, HomL2n∩P2n(π,1), has dimension at
most 1. This implies the assertion. �

It is an immediate consequence of Proposition 2.1, that if λ is a non-zero element of HomS2n∩P2n(Wψ(π), ψ),
then

(2.2) Θ : W 7→ (g 7→ λ(g ·W )),

is a non-zero element of HomG2n(Wψ(π),Sψ(π)). In what follows we will determine such a λ.

To this end, consider the Weyl group representative-matrix w2n, corresponding to the permuta-
tion of {1, . . . , 2n}: (

1 2 . . . n n+ 1 n+ 2 . . . 2n
1 3 . . . 2n− 1 2 4 . . . 2n

)
and put

(2.3) λ(W ) :=

∫
Un\Pn

∫
Nn\Mn

W

(
w2n

(
idn X

idn

)(
p 0
0 p

))
ψ−1(Tr(X)) dX dp.

If well-defined, i.e., absolutely convergent, this integral is in HomS2n∩P2n(Wψ(π), ψ). Moreover, λ
will be non-zero as the restriction map of Whittaker functions in Wψ(π) to P2n contains IndP2n

U2n
(ψ)

in its image, cf. [Ber-Zel76, 5.15, Proposition]. It hence remains to prove the following

Proposition 2.4. For any W ∈ Wψ(π) the integral defining λ(W ) is absolutely convergent.

Proof. Let us introduce some notation: Let An denote the standard maximal torus of Gn and recall
that the map a ∈ An 7→ µn(a) ∈ An,

µn(a) := diag(a1 · · · an, a2 · · · an, . . . , an−1an, an),

is a group isomorphism. We will also use the notation

µn(a1, . . . , an) := µn(a)
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for a ∈ An. Following the definition in [Jo19, Lemma 3.4], we put

(2.5) Jk(W,a) :=

∫
Nk\Mk

W

w2n


idk 0 X 0

idn−k 0 0
idk 0

idn−k

(a a

)ψ−1(Tr(X))dX.

In fact, as our first observation, by the Iwasawa decomposition, the convergence of λ(W ) for any
W is reduced to that of ∫

a∈An−1

Jn(W,a)δBn−1(a)−1da,

where δBn−1 denotes as usual the modulus character of the standard Borel Bn−1 of Gn−1. Now, by
the statement of [Jo19, Lemma 3.4], there existsW ′ ∈ Wψ(π) (namely the sum of theWi’s in [Jo19,
Lemma 3.4]), such that the following equality holds:

Jn(W,a) =
Jn−1(W

′, a)

|a1|1 . . . |an−1|n−1
.

By immediate descending induction on n, one deduces (see [Jo19, p. 505]) that there exists W ′′ ∈
Wψ(π) such that

Jn(W,a) =

n−1∏
k=0

|ak|−k(n−k)W ′′
(
w2n

(
µn−1(a)

µn−1(a)

))
.

Hence the convergence of λ(W ) for any W ∈ Wψ(π) is reduced to that of∫
An−1

n−1∏
k=0

|ak|−k(n−k)W
(
w2n

(
µn−1(a)

µn−1(a)

))
δBn−1(µn−1(a))−1da

for any W ∈ Wψ(π). Note that

(2.6) w2n diag(µn−1(a), 1, µn−1(a), 1)w−12n = µ2n(1, a1, 1, a2, . . . , 1, an−1, 1, 1).

Hence applying the asymptotic expansion of [Mat11, Theorem 2.1] or rather its corrected version
Theorem 2.1 in https://arxiv.org/abs/1004.1315v2 (see also [Jo19, Proposition 3.1]), it is sufficient
to check that integrals of the following form converge:∫

An−1

n−1∏
k=1

|ak|−k(n−k)
n−1∏
k=1

|ak|2k(n−k)
n−1∏
k=1

ωk(ak)v(ak)
mkΦ(ak)δBn−1(µn−1(a))−1da.

Here, ωk is the central character of an irreducible subquotient of the derivative π(2n−2k) of π (see
[Ber-Zel77, 4.3] for the definition of Bernstein-Zelevinsky derivatives), mk ∈ N and Φ is a Schwartz
function on F . However, this integral equals∫

An−1

∏n−1
k=1 |ak|k(n−k)

∏n−1
k=1 ωk(ak)v(ak)

mkΦ(ak)δBn−1(µn−1(a))−1da

=
∫
An−1

∏n−1
k=1 ωk(ak)v(ak)

mkΦ(ak)| det(µn−1(a))|da

=
∏n−1
k=1

∫
F× |ak|

kωk(ak)v(ak)
mkΦ(ak)dak.

whence, we are reduced to the one-dimensional case of integrating characters against Schwartz
functions. Now, recalling that π is unitary, one has |ak|kωk(ak) = |ak|rkuk(ak) for some rk > 0 and
a uk unitary character, due to [Ber84, Section 7.3]. The convergence of the last integral is classic
and we end this proof by recalling its proof. By definition of a Schwartz funciton, the convergence
is reduced to that of integrals of the form

∫
pl |x|

rv(x)mdx for l ∈ Z, r > 0 and m ≥ 0, where we



6 HARALD GROBNER AND NADIR MATRINGE

recall that dx is a Haar measure on F ∗. This integral is just up to a positive multiple the series∑
j≥lmjq

−jr, which converges as r > 0. �

3. Non-vanishing of λ(W ◦)

3.1. Preparatory results. Let π be an irreducible admissible unitary ψ-generic representation of
G2n = GL2n(F ), which admits a (1, ψ)-Shalika model Sψ(π). For a such representation, we recall
our definition of Θ, cf. (2.2) with λ as defined in (2.3).

Let us also recall that an element W ◦ ∈ Wψ(π) is a Whittaker newvector, if it is invariant under the
group K2n(m) as in [Jac-PS-Sha81, Theorem 5.1.(ii)], i.e., if it is invariant under the subgroup of
matrices of GL2n(O), whose last row is congruent to (0, 0, ..., 0, 1) modulo pm, where m is the con-
ductor of π. If π is unramified, i.e., if m = 0, then we make the convention that K2n(0) = GL2n(O).

We fix the following, uniquely defined choice of a Whittaker newvector: We let W ◦π be defined
by W ◦π (id) = 1. We refer to [Jac-PS-Sha81, Theorem 5.1.(ii)] (as accompanied by Jacquet’s expla-
nations in [Jac12]) for the uniqueness of Whittaker newvectors up to scalars and to the main result
of [Mat13] or, independently, [Miy14, Corollary 4.4] for the non-vanishing of non-zero newvectors
at g = id.

In what follows, we will closely follow [Ana-Mat17], where the analog computation is performed
for local Flicker periods, but the computation below is more involved.

To start, we recall a version of [Mat13, Theorem 3.1] for ramified generic representations:

Theorem 3.1. Suppose that π is a ψ-generic and ramified representation of G2n. Then, there is
an integer r, 0 ≤ r ≤ 2n− 1 and an unramified standard module πu of Gr, such that the Whittaker
newvector W ◦πu ∈ Wψ(πu), normalized by W ◦πu(id) = 1, satisfies

W ◦π (µ2n(a1, . . . , a2n−1, 1))

= W ◦πu(µr(a1, . . . , ar)) |det(µr(a1, . . . , ar))|(2n−r)/21O(ar)
2n−1∏
j=r+1

1O×(aj).

Now, set w2n+1 = diag(w2n, 1) ∈ G2n+1 and let

Pm(O) :=

{
p =

(
gm−1 0

0 1

)(
idm−1 x

0 1

) ∣∣∣∣∣ gm−1 ∈ GLm(O)
x ∈ Om−1

}
.

The integrals Jk, cf. (2.5), and their analogues

J′k(W,a) :=

∫
Nk\Mk

W

w2n+1


idk 0 X 0 0

idn−k 0 0 0
idk 0 0

idn−k 0
1


a a

1


ψ−1(Tr(X))dX

for a ∈ An will naturally appear in our computation. We record the following useful relations,
satisfied by them, as a lemma.
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Lemma 3.2. Let π be a ψ-generic representation of Gm and let W ∈ Wψ(π), which is fixed by
Pm(O). If m = 2n is even, then

Jn(W,µn(a)) =
n−1∏
k=1

|ak|−k(n−k)W
(
w2n

(
µn(a)

µn(a)

))

=
n∏
k=1

|ak|−k(n−k)W
(
w2n

(
µn(a)

µn(a)

))
.

If m = 2n+ 1 is odd, then

J′n(W,µn(a)) =

n−1∏
k=1

|ak|−k(n−k)W

w2n+1

µn(a)
µn(a)

1


=

n∏
k=1

|ak|−k(n−k)W

w2n+1

µn(a)
µn(a)

1


Proof. We provide the argument for Jn(W,µn(a)) (the proof of the second assertion being completely
analogous): Right Pn(O)-invariance of W implies that

Jk+1(W,µn(a)) =

k∏
i=1

|ai|−iJk(W,µn(a)).

as it follows from the end of the proof of [Jo19, Lemma 3.4] (p. 508 of ibid., where we put φ = 1Ok
there). Note that the proof in question only deals with µn(a) with an = 1, but it remains valid for
any µn(a). From this the claim follows. �

3.2. The main result. We are now ready to compute λ(W ◦π ) for ramified π. To this end, note
that

λ(W ◦π ) =

∫
Un\Pn

∫
Nn\Mn

W ◦π

(
w2n

(
idn X

idn

)(
p

p

))
ψ−1(Tr(X)) dX dp

=

∫
Un−1\Gn−1

∫
Nn\Mn

W ◦π

(
w2n

(
idn X

idn

)(
diag(g, 1)

diag(g, 1)

))
ψ−1(Tr(X)) dX dg.

Using the Iwasawa decomposition and because W ◦π is right P2n(O)-invariant, this simplifies to

λ(W ◦π ) =

∫
An−1

Jn(W ◦π , diag(a, 1))δ−1Bn−1
(a)da.

Applying first our Lemma 3.2, a simple coordinate change and finally (2.6), the latter integral
becomes

∫
An−1

W ◦π

(
w2n

(
diag(µn−1(a), 1)

diag(µn−1(a), 1)

)) n−1∏
k=1

|ak|−k(n−k)δ−1Bn−1
(µn−1(a))da

=

∫
An−1

W ◦π

(
w2n

(
diag(µn−1(a), 1)

diag(µn−1(a), 1)

)
w−12n

) n−1∏
k=1

|ak|−k(n−k)δ−1Bn−1
(µn−1(a))da

=

∫
An−1

W ◦π (µ2n(1, a1, . . . , 1, an−1, 1, 1)
n−1∏
k=1

|ak|−k(n−k)δ−1Bn−1
(µn−1(a))da.
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We will now use Theorem 3.1, distinguishing two cases: First, suppose that r = 2r′ is even. Then
we get

λ(W ◦π ) =

∫
Ar′

W ◦πu(µr(1, a1, . . . , 1, ar′))1O(ar′)|det(µr(1, a1, . . . , 1, ar′))|(n−r
′)

×
r′∏
k=1

|ak|−k(n−k)δ−1Bn−1
(diag(µr′(a), idn−1−r′))da

=

∫
Ar′

W ◦πu(µr(1, a1, . . . , 1, ar′))1O(ar′)|det(µr′(a1, . . . , ar′))|2(n−r
′)

×
r′∏
k=1

|ak|−k(n−k)δ−1Bn−1
(diag(µr′(a), idn−1−r′))da

=

∫
Ar′

r′∏
k=1

|ak|−k(n−k)W ◦πu(µr′(1, a1, . . . , 1, ar′))1O(ar′)δ
−1
Br′

(µr′(a))| det(µr′(a))|n−r′+1da

=

∫
Ar′

r′∏
k=1

|ak|−k(n−k)W ◦πu

(
w2r′

(
µr′(a)

µr′(a)

))
1O(ar′)δ

−1
Br′

(µr′(a))| det(µr′(a))|n−r′+1da

=

∫
Ar′

r′∏
k=1

|ak|k
2
W ◦πu

(
w2r′

(
µr′(a)

µr′(a)

))
1O(ar′)δ

−1
Br′

(µr′(a))| det(µr′(a))|−r′+1da

=

∫
Ar′

r′∏
k=1

|ak|−k(r
′−k)W ◦πu

(
w2r′

(
µr′(a)

µr′(a)

))
1O(ar′)δ

−1
Br′

(µr′(a))| det(µr′(a))|da

=

∫
Ar′−1

r′−1∏
k=1

|ak|−k(r
′−k)W ◦πu

(
w2r′

(
diag(µr′−1(a), 1)

diag(µr′−1(a), 1)

))
×δ−1Br′ (diag(µr′−1(a), 1))| det(µr′−1(a))|da

∫
F×

ωπu(ar′)1O(ar′)|ar′ |r
′
dar′

which, according to Lemma 3.2 again, becomes

=

∫
Ar′−1

Jr′(W
◦
πu ,diag(µr′−1(a), 1))δ−1Br′

(µr′−1(a))|det(µr′−1(a))|da
∫
F×

ωπu(ar′)1O(ar′)|ar′ |r
′
dar′ .

Now, set er′ := (0, . . . , 0, 1) (a 1 × r′ unit-vector) and denote by J(s,W,Φ) the Jacquet-Shalika
integral

J(s,W,Φ) :=

∫
Ur′\Gr′

∫
Nr′\Mr′

W

(
w2r′

(
idr′ X

idr′

)(
g

g

))
ψ−1(Tr(X))Φ(er′g)|det(g)|sdXdg.

Once more by the Iwasawa decomposition we get that λ(W ◦π ) = J(1,W ◦πu ,1Or′ ), whence, applying
the unramified computation of the exterior square L-function from [Jac-Sha90, Section 7.2], we
finally obtain

λ(W ◦π ) = L(1, πu,Λ
2) 6= 0.

This settles the case when r = 2r′ is even.

Now assume r = 2r′ + 1 is odd. As the variable b2r′+1 = b2r′+2 of b = µ2n(a) in the integral
must vary in O×, whereas W ◦πu is GLr(O)-invariant, we obtain:

λ(W ◦π ) =
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Ar′

W ◦πu(µr(1, a1, . . . , 1, ar′ , 1)| det(µr′(a))|2(n−r′)−1
r′∏
k=1

|ak|−k(n−k)δ−1Bn−1
(diag(µr′(a), idn−1−r′))da.

Following the steps of the computation in the case, when r was assumed even, we obtain

λ(W ◦π ) =

∫
Ar′

r′∏
k=1

|ak|k
2
W ◦πu

w2r′+1

µr′(a)
µr′(a)

1

 δ−1Br′
(µr′(a))|det(µr′(a))|−r′da

=

∫
Ar′

r′∏
k=1

|ak|−k(r
′−k)W ◦πu

w2r′+1

µr′(a)
µr′(a)

1

 δ−1Br′
(µr′(a))da

=

∫
Ar′

J′r′(W
◦
πu , µr′(a))δ−1Br′

(µr′(a))da

where the last equality follows from Lemma 3.2. Denoting by J(s,W ) the Jacquet-Shalika integral

J(s,W ) :=

∫
Ur′\Gr′

∫
Nr′\Mr′

W

w2r′+1

idr′ X
idr′

1

g g
1

ψ−1(Tr(X))|det(g)|s−1dg,

we obtain, thanks to the Iwasawa decomposition, λ(W ◦π ) = J(1,W ◦πu), and so, applying the unram-
ified computation of [Jac-Sha90, Section 9.4], finally,

λ(W ◦π ) = L(1, πu,Λ
2) 6= 0.

As a next step, it is important to observe that, when π is unramified, the above non-vanishing result
is also true.

Indeed, the corresponding computations, which lead to it, are much simpler, when π is unramified,
and the L-value slightly different: We refer to [Jo23, Theorem 1.2, (ii), second case] for a precise
statement and a proof. In fact, inspired by [Ana-Mat17] and a previous version of the present
paper, Jo computed in [Jo23] instances of such local periods evaluated at Whittaker newvectors in
the following popular cases: Rankin-Selberg, Asai, Jacquet-Shalika and Bump-Friedberg exterior
square, as well as Bump-Ginzburg symmetric square.

Now, summarizing all of our computations, together with the unramified case, we obtain the main
result of our paper:

Theorem 3.3 (Non-vanishing of Shalika newvectors). Let π be a irreducible admissible unitary
ψ-generic representation of G2n = GL2n(F ), which admits a (1, ψ)-Shalika model Sψ(π). Let Θ :
Wψ(π)→ Sψ(π) be the intertwining operator given by

Θ(W )(g) =

∫
Un\Pn

∫
Nn\Mn

W

(
w2n

(
idn X

idn

)(
p 0
0 p

)
g

)
ψ−1(Tr(X)) dX dp

and let S◦π := Θ(W ◦π ), whereW ◦π is the unique Whittaker newvector inWψ(π), satisfyingW ◦π (id) = 1.
Then

S◦π(id) 6= 0.

As a consequence, any (non-zero) Shalika newvector in Sψ(π), i.e., any (non-zero) element of Sψ(π),
which is invariant under K2n(m), does not vanish at g = id.

4. Twisting characters

We will now consider the case of more general twisting characters η in our Shalika model Sηψ(π).
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4.1. First, assume that η, as defined in §1.1, is unitary and unramified. If η has these two proper-
ties, then, as a character of S2n it extends to G2n. We shall denote this new character by the same
letter.

Let π be a ramified irreducible admissible unitary ψ-generic representation of G2n. If π has a
(η, ψ)-Shalika model Sηψ(π), then η−1π is a unitary representation, which has a (1, ψ)-Shalika model
Sψ(π) and one is in the situation considered above. The vector η−1 ·W ◦π is then the unique newvector
in Wψ(η−1π), which is 1 at the identity and so S◦η−1π := Θ(η−1 ·W ◦π ) comes under the purview of
Theorem 3.3: Observing that (η−1π)u = η−1πu, since η is unramified, we get

S◦η−1π(id) = L(1, η−1πu,Λ
2) = L(1, πu,Λ

2 ⊗ η) 6= 0.

The same argument applies to unramified generic representations, yielding the formula

S◦η−1π(id) =
L(1, π,Λ2 ⊗ η)

L(2n,1F ∗)
6= 0.

However, η · S◦η−1π is a non-zero newvector in Sηψ(π), so these newvectors do not vanish at g = id.

4.2. Now, let η = η̃| · |w, with w ∈ Z and η̃ a unitary unramified character. Let π be an irreducible
admissible ψ-generic representation of G2n, which has an (η, ψ)-Shalika model Sηψ(π). Then, every
newvector S in Sηψ(π) is of the form S = | det(·)|w/2 · S̃, with S̃ a newvector in S η̃ψ(π). See also
[Gro-Rag14], Lemma 5.1.1. As a consequence, every non-zero newvector in Sηψ(π) does not vanish
at g = id.

We summarize the latter observations in the following

Corollary 4.1. Let η = η̃| · |w, with w ∈ Z and η̃ a unitary unramified character. Let π be an
irreducible admissible ψ-generic representation of G2n, which has an (η, ψ)-Shalika model Sηψ(π).
Then, for every non-zero newvector S in Sηψ(π),

S(id) 6= 0.
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