Kurze Replik auf einen Aufsatz von R. Winkler: Zentralmatura in der Sackgasse?

Christoph Ableitinger, Hans Humenberger, Michael Oberguggenberger
Univ. Wien, Univ. Wien, Univ. Innsbruck

Der Aufsatz von Reinhard Winkler in den IMN 237, Winkler (2018), wendet sich expressis verbis auch an die ÖMG (Österreichische Mathematische Gesellschaft). Die Autoren dieser Replik sind eng verbunden mit der ÖMG (Vorsitzender der Didaktikkommission der ÖMG, ehemaliger Vorsitzender der ÖMG), sie fühlen sich deshalb angesprochen und veranlasst zu dieser kurzen Replik. Während es unter den Mitgliedern der ÖMG ein breites Meinungsspektrum zur Zentralmatura gibt - von Zustimmung bis Ablehnung -, hat der (bisherige) Vorstand Untergruppen eingerichtet, die die Maturaaufgaben regelmäßig qualitätssichernd begleiten. Des Weiteren wurden unter breiter Beteiligung Rückmeldungen zum Grundkompetenzkatalog und den Lehrplänen erstellt.
Die Replik gliedert sich in drei Teile: Erstens, Verbesserungsvorschläge bei Formulierungen, die bereits in den erwähnten Rückmeldungen angebracht worden waren (und mit einigen Punkten in R. Winklers Aufsatz übereinstimmen), zweitens, einige Anmerkungen zu Kritikpunkten R. Winklers, bei denen wir ihm teilweise Recht geben, und drittens, eine ausführliche Replik auf R. Winklers Ruf nach einer Art von Rigorosität bzw. Abstraktion, welche unserer Ansicht nach im Mathematikunterricht in dieser Form aus guten Gründen weder durchführbar noch erstrebenswert ist.
Rückmeldungen zur Liste der Grundkompetenzen. Die ÖMG hat schon Anfang 2016 „Rückmeldungen zur Liste der Grundkompetenzen (AHS)" gegeben. Das war damals nicht unter der Prämisse, Vorschläge zu machen, wie der Kata\log der Grundkompetenzen inhaltlich überarbeitet (d.h. erweitert oder reduziert) werden könnte, sondern das Ziel war: Wie sollten - bei praktisch gleichen Inhalten - manche Formulierungen adaptiert werden, sodass sie präziser und weniger
missverständlich sind? Dieses Papier wurde bis jetzt leider nicht berücksichtigt. Aber selbst wenn es Berücksichtigung gefunden hätte, wäre das für den Befund von R. Winkler nebensächlich, denn ihm geht es um viel tiefer gehende - aus seiner Sicht nötige - Adaptierungen der Grundkompetenzen, nicht nur um Formulierungen. Wir geben hier nur zwei Beispiele im angesprochenen ÖMG-Papier, die auch im Aufsatz von R. Winkler vorkommen: (1) In WS 3.2 heißt es: „Binomialverteilung als Modell einer diskreten Verteilung kennen . . . ". Hier passt offenbar das Wort „Modell" nicht und sollte durch „Beispiel" ersetzt werden. (2) Bei AN 1.4 heißt es: „das systemdynamische Verhalten von Größen durch Differenzengleichungen beschreiben bzw. diese im Kontext deuten können." Das klingt in der Tat so, als ob es um Systeme von Differenzengleichungen (und evtl. sogar um deren Lösungen) ginge. Das kann aber nicht gemeint sein. Besser wäre hier: „Diskrete Veränderungen von Größen durch Differenzengleichungen beschreiben bzw. diese im Kontext deuten können." (Diese Formulierung hat übrigens auch Eingang in den neuen Lehrplan gefunden.) Hier ginge es nicht so sehr um Grenzwerte und Lösungen, sondern lediglich darum, entsprechende Rekursionen (z.B. bei Wachstumsprozessen) aufschreiben, involvierte Parameter interpretieren und mithilfe von Tabellenkalkulation grafische Verläufe darstellen zu können. Im Wesentlichen auf dieser Ebene waren die Vorschläge in besagtem Papier der ÖMG.
Grundsätzliches zur Kritik R. Winklers. R. Winklers Aufsatz ist ein Aufzeigen der aus seiner Sicht beträchtlichen fachlichen Schwachstellen des Katalogs der sogenannten Grundkompetenzen (GK), wie er für die AHS nun schon seit einigen Jahren existiert. (Auch für die BHS gibt es einen Katalog der Grundkompetenzen, der aber nicht Gegenstand seines Aufsatzes ist.) Das spiegelt seine persönliche Sichtweise wider, eine Sichtweise, die stark von der Universitätsmathematik ${ }^{1}$ beherrscht wird und dem dringenden Wunsch, möglichst viel präzi$s e$, in einem gewissen Sinn höhere Mathematik im Schulunterricht (speziell im Grundkompetenzen-Katalog ${ }^{2}$) zu verorten. Dieser Wunsch wird sich in dem Umfang, wie er es vorgeschlagen hat, nicht realisieren lassen: Denn der Mathematikunterricht hat nicht nur die Funktion, auf ein mögliches späteres Mathematikstudium vorzubereiten, auch andere Schüler/innen müssen dem Mathematikunterricht folgen können. Und da kann man das Abstraktionsniveau nicht so weit heben. (Die New Math-Bewegung in den 70er-Jahren ist u.a. daran gescheitert.) Generell muss gesagt werden, dass es einen gravierenden Unterschied zwischen einem GKK und einem Lehrbuch gibt: Während es bei einem GKK darum geht, solche GK zu formulieren, aus denen sich konkrete mögliche Prüfungsaufgaben für die Zentralmatura (also für alle Schüler/innen!) ergeben, können/sollen in einem Lehrbuch auch weitergehende Präzisierungen, Definitionen, Begründungen, Abstraktionen, etc.

[^0]vorhanden sein. Natürlich hat ein GKK auch Einfluss auf den tatsächlich stattfindenden Unterricht, aber daraus die Konsequenz zu ziehen, dass sich alle im Aufsatz von Winkler erwähnten mathematischen Inhalte auch im GKK widerspiegeln sollen, ist u.E. nicht angemessen.
Ein Schlüssel zum Zugang R. Winklers liegt u.E. in einem Satz auf S. 52, wo er bedauert, dass man sich abgewöhnt habe, Fragen zu stellen, die mit „Was ist ein(e) . . ." beginnen. Dieses Bedauern drückt die Position aus, dass jedem mathematische Begriff eine strenge, formale Definition zugrunde gelegt werden muss, bevor man damit operieren darf. Demgegenüber steht die in den Naturwissenschaften weit verbreitete Position, die stattdessen fragt „Was mache ich korrekterweise mit einer(m) . . " ", also mathematische Objekte von ihren operativen Eigenschaften her versteht. Viele Kritikpunkte R. Winklers lösen sich auf, wenn man letztere Position einnimmt. Dies wird besonders augenscheinlich bei der Frage, wie Wahrscheinlichkeit und Statistik im Unterricht vermittelt werden soll.
Bevor wir auf ausgewählte Punkte seiner Kritik, bei denen wir die Lage gänzlich anders sehen, auf einer eher grundsätzlichen Ebene eingehen, beginnen wir mit einigen Punkten, bei denen wir ihm (zumindest) teilweise Recht geben.

1. Es ist nur schwer nachzuvollziehen, warum nur bei Potenzfunktionen und bei der Quadratwurzelfunktion die vertikale Verschiebung des Funktionsgraphen eine Rolle spielen soll $\left(f(x)=a \cdot x^{z}+b\right)$, horizontale und vertikale Streckungen nur bei der Sinusfunktion $(f(x)=a \cdot \sin (b \cdot x))$. Denn diese Phänomene (,,Transformationen") spielen schon eine Rolle, wenn man die allgemeine Form einer quadratischen Funktion f mit $f(x)=a x^{2}+b x+c$ in der Scheitelpunktform $f(x)=a \cdot\left(x-x_{S}\right)^{2}+y_{S}$ schreibt. (Dabei ist $S=$ $\left(x_{S} \mid y_{S}\right)$ der Parabelscheitel.) Lernende sollten also ganz allgemein die Veränderung des Graphen einer Funktion f beschreiben können, wenn man von $f(x)$ zu $c \cdot f(x), f(x)+c, f(x+c)$ und $f(c \cdot x)$ übergeht.
2. Ein anderer verständlicher Wunsch von R. Winkler ist (S. 34), dass das Wort verstehen öfter vorkommen sollte, denn dieser Begriff ist zentral für mathematische Bildung. Dem können wir zustimmen. Das Problem daran ist allerdings, dass verstehen keine von allen geteilte und generell gültige Definition hat: Was genau bedeutet es, einen Begriff zu verstehen? Darauf gibt es sehr viele mögliche Antworten und „Niveaustufen" (exemplarisch für den Funktionsbegriff vgl. Vollrath 1994, S. 118ff). Dieses Problem hat man nicht, wenn man Formulierungen verwendet ,,irgendetwas kennen oder können". Da der Kompetenzkatalog naturgemäß kompetenzorientiert formuliert sein muss (ob das Prinzip der Kompetenzorientierung gut oder schlecht ist, ist eine ganz andere Frage!), werden diese Formulierungen bevorzugt. Trotzdem soll es gelingen, dem Verständnis mehr Raum zu geben, auch ohne genaue Definition dafür.
3. Auch wir sind der Meinung, dass Begriffe wie Umkehrfunktionen und Verkettung von Funktionen nicht aus dem Kompetenzkatalog ausgespart bleiben sollten. Dazu müssen aber nicht die Begriffe injektiv und surjektiv ins Zentrum des GKK kommen. Der Begriff der bijektiven Funktion reicht, und den gibt es auch in Schulbüchern, nur nicht im GKK. Man kann sicher auch darüber diskutieren, ob der Inhaltsbereich Funktionale Abhängigkeiten evtl. besser Reelle Funktionen und funktionale Abhängigkeiten heißen sollte. Darüber hinaus wird in Zukunft sicher eingehend zu diskutieren sein, ob der Logarithmus weiterhin aus dem GKK ausgespart werden soll.

Replik auf R. Winklers Hauptkritikpunkte. Nun zu jenen Punkten, bei denen wir glauben, dass R. Winkler deutlich überschätzt, was in einem allgemeinbildenden Schulunterricht im Fach Mathematik von allen Maturanten/innen möglich und sinnvoll zu verlangen ist (GKK, zentrale Prüfungen). Wir gehen dabei nicht auf Details ein, sondern versuchen uns dabei auf eher grundsätzliche Aspekte zu beschränken.

1. Beim Inhaltsbereich „Funktionale Abhängigkeiten" (S. 36) bedauert R. Winkler, dass man im GKK den allgemeineren Begriff der Relation nicht findet - eine Funktion ist dann ja eine spezielle Relation (z.B. mit linkstotal und rechtseindeutig zu charakterisieren). Das war in Lehrplänen in Zeiten der von Bourbaki geprägten Strukturmathematik auch tatsächlich der Fall. In guter Absicht hat man damals geglaubt: Man muss schon möglichst früh möglichst allgemein, abstrakt, strukturbetont, etc. Mathematik unterrichten, dann trägt der Unterricht reiche Früchte. Heute weiß man, dass das nicht funktioniert, denn das Lernen von Mathematik ist eben nicht gleichzusetzen mit der Mathematik schlechthin. Das waren auch die Zeiten, in denen im Schulunterrricht Begriffe wie Gruppe, Ring, Körper, etc. unterrichtet wurden. Nach der zugehörigen Einsicht, dass Lernende die Bedeutung dieser Abstraktionen kaum verstanden, sind diese Dinge wieder aus den Schulbüchern und Lehrplänen gestrichen worden.
2. Zum Abschluss seiner Betrachtungen zum Inhaltsbereich „Funktionale Abhängigkeiten" (S. 39) bringt R. Winkler bekannte Funktionalgleichungen ins Spiel. Diese spielen aber im Schulunterricht nicht nur zufällig praktisch keine Rolle ${ }^{3}$, sondern deswegen, weil das ein auf Schulniveau kaum zugängliches Gebiet der Mathematik ist. (Dabei sind gewissermaßen die Funktionen die interessierenden „Variablen".) Das Wachstumsverhalten von Funktionen spielt dort sehr wohl eine Rolle. Daher ist es nur folgerichtig, dass nicht die Funktionalgleichungen ins Zentrum gerückt werden, sondern - bei verschiedenen Funktionen f - die entsprechenden Fragen: Wie entsteht $f(x+1)$ aus $f(x)$? Das sind die zugehörigen wichtigen, aus der
[^1]Sichtweise des Wachstumsverhaltens typischen Fragestellungen, das ist mit charakteristisch gemeint. Um sicherzugehen, dass niemand die angegebenen Beziehungen zwischen $f(x+1)$ und $f(x)$ jeweils als charakterisierend ansieht, wäre vielleicht eine Bemerkung angebracht, dass solche Beziehungen mutatis mutandis nicht nur für $f(x+1)$, sondern allgemein für $f(x+c), c \in \mathrm{R}$ gelten.
3. Im Inhaltsbereich Analysis schlägt R. Winkler vor, dass GKen beim Grenzwertbegriff begriffliche Klarheit einfordern sollen (S. 40). Ihm ist ,,auf der Grundlage eines intuitiven Grenzwertbegriffes" zu wenig, er fragt, was das heißen soll ${ }^{4}$. Eine mögliche Antwort darauf bei Grenzwerten der Form $\lim _{x \rightarrow \infty} f(x)$: Das ist jener Wert, dem sich die Funktionswerte beliebig nähern, wenn x über alle Schranken wächst. Bei Grenzwerten der Form $\lim _{x \rightarrow a} f(x)=g$: Wenn x gegen den Wert a strebt, dann strebt $f(x)$ gegen den Wert g. Schon präziser, aber immer noch rein sprachlich ausgedrückt: Man kann erreichen, dass $f(x)$ dem Wert g beliebig nahe kommt, wenn nur x hinreichend nahe bei a liegt. Mit dieser Vorstellung kommt man praktisch durch die ganze Differentialrechnung. Natürlich ist der Grenzwertbegriff so wichtig, dass seine exakte Definition den Schülern/innen nicht vorenthalten werden soll, er kann als „krönender Abschluss" der Differentialrechnung in einem Präzisierungskapitel im Nachhinein thematisiert werden. Das formale Fassen des Grenzwertbegriffs war eine historische Leistung, die auch von Schülern/innen gewürdigt werden soll. Immerhin hat die Mathematik jahrhundertelang darum gerungen, aber er ist u.E. kein Arbeitsbegriff in der Schule, um den herum viele Aufgaben (insbesondere in zentralen Prüfungen) geschart werden sollten.
4. Mit dem Inhaltsbereich Wahrscheinlichkeit und Statistik (WS) liegt seiner Meinung nach besonders viel im Argen. R. Winkler beklagt, dass man ,in der Schulstochastik keinen Anlass zu sehen scheint, Nutzen aus den großen Freiheiten zu ziehen, die uns Kolmogorow eröffnet." Das ist in der Tat so, und u.E. auch gut so. Den Lernenden bringt es nur sehr wenig, wenn man ihnen sagt, dass P nichts anderes als ein normiertes $\mathrm{Ma} ß$ auf Ω ist (selbst wenn man diesen Satz aufschlüsselt in die drei bekannten Axiome).
Hier zeigt sich deutlich das Spannungsfeld zwischen den beiden oben erwähnten Richtungen (,,Was ist ein(e) . . " bzw. „Was mache ich korrekterweise mit einer(m) . . "). Muss gesagt werden, was eine Wahrscheinlichkeit oder eine Zufallsvariable ist - ein als existierend imaginiertes Objekt, das letztlich aus den Axiomen der Mengenlehre abgeleitet wird, oder arbeitet man mit der Zufallsgröße als nicht näher definiertem Grundbegriff,

[^2]der durch seine Verteilungsfunktion formal vollständig charakterisiert ist? Es sei hier erwähnt, dass die Kolmogorow-Axiome keineswegs die einzige Möglichkeit darstellen, die Wahrscheinlichkeitstheorie zu begründen, siehe etwa das Werk von Fine (1973), das im Titel Theories of Probability bewusst die Mehrzahl verwendet (und je nach Zählung mindestens sieben Zugänge abhandelt). Mit der Zufallsgröße und deren Verteilungsfunktion kommt man in der wahrscheinlichkeitstheoretischen Modellierung und Statistik sehr weit, jedenfalls weiter, als in der Schule und in den meisten fachwissenschaftlichen Anwendungen nötig (und wie seit Jahrhunderten vor und nach Kolmogorow erfolgreich bewiesen).

In den 70er-Jahren bzw. Anfang der 80er-Jahre standen die KolmogorowAxiome sogar in Schulbüchern (z.B. Laub u.a. 1980), aber dieses „Experiment" ist gescheitert, sie kamen wieder heraus, weil das für den Schulunterricht zu abstrakt erschienen ist. Lernende in der Schule sollen eher wissen, wie man Wahrscheinlichkeiten interpretieren kann (Stichwort Grundvorstellungen), und wie man damit rechnet. Natürlich ist es sinnvoll, den Lernenden zu sagen, dass in der Wahrscheinlichkeitsrechnung Ereignisse gewissen Teilmengen von Ω entsprechen und dass durch eine Wahrscheinlichkeit(sfunktion) diesen Teilmengen so etwas wie eine relative Größe bzw. ein relatives Maß (bezogen auf die Gesamtmenge Ω selbst) zugeordnet wird. Aber das dann in ausgebauter Form als Definition des Wahrscheinlichkeitsbegriffs anzusehen, ist höchstens besonders interessierten Schülern/innen zumutbar, nicht allen (GKen, Zentralmatura).
5. R. Winkler findet es seltsam („Sowohl mathematisch als auch didaktisch ${ }^{5}$ höchst unglücklich"), dass Additionsregel und Multiplikationsregel nur durch das Wort und verknüpft in einem Atemzug präsentiert werden (S. 46). Das eine (Additionsregel) sei „Bestandteil des Grundbegriffs" (Additivität als eines der von Kolmogorow geforderten Axiome), und das andere (Multiplikationsregel) eine Eigenschaft . . . (gemeint ist die Unabhängigkeit von Ereignissen). Dazu sind zwei Dinge zu sagen:

- Wenn man dem Wahrscheinlichkeitsbegriff die Kolmogorow-Axiome zugrundelegt, dann ist in der Tat die Additionsregel Teil der Definition. Aber das geschieht ja im Schulunterricht nicht. Aus der Perspektive der Kolmogorow-Axiome mag selbst der Name „-Regel" befremdlich wirken. Im Schulunterricht - dort ist der Wahrscheinlichkeitsbegriff eben nicht schon vorher durch irgendwelche Additivitätsaxiome festgelegt - ist das aber tatsächlich eine Regel, weil sie klärt, wie man Wahrscheinlichkeiten der Art $\mathrm{P}(A \cup B)$ berechnet (als Ereignisse: A oder B).

[^3]- Mittels der Multiplikationsregel kann man dann entsprechend Wahrscheinlichkeiten der Art $\mathrm{P}(A \cap B)$ berechnen (als Ereignisse: A und $B)$. Die Multiplikationsregel ist nicht die Definition der Unabhängigkeit! Diese Regel meint in ihrem Anfangsstadium nichts anderes, als dass in einem (zunächst zweistufigen) Baumdiagramm die Wahrscheinlichkeit eines Pfades als „Produkt der Einzelwahrscheinlichkeiten" berechnet werden kann. Gemeint sind Situationen der Art: Eine Urne enthält 4 rote und 6 weiße Kugeln, man zieht zweimal ohne Zurücklegen. Wie groß ist die Wahrscheinlichkeit, dass bei beiden Ziehungen eine rote Kugel gezogen wird? Sie beträgt $\frac{4}{10} \cdot \frac{3}{9}$. Diese Zusammenhänge können gut an Baumdiagrammen veranschaulicht und plausibel gemacht werden. Formal ausgedrückt, besagt diese Regel: $\mathrm{P}(A \cap B)=\mathrm{P}(A) \cdot \mathrm{P}(B \mid A)$. In der Universitätsmathematik ist das eine einfache Konsequenz aus der Definition bedingter Wahrscheinlichkeiten. In der Schule wird oft auf eine formale Definition bedingter Wahrscheinlichkeiten verzichtet, es wird sozusagen in die andere Richtung gearbeitet: Die Multiplikationsregel wird anhand paradigmatischer Beispiele (siehe oben) plausibel gemacht, und daraus erhält man dann eine Formel, mit der man bedingte Wahrscheinlichkeiten ausrechnen kann. Die Abfolge, zunächst die Additions- und Multiplikationsregel einzuführen und dann erst das Konzept einer (bedingten) Wahrscheinlichkeit, ist im Übrigen nicht nur in der Schule verbreitet, sondern auch der Weg, der im Rahmen der logischen Wahrscheinlichkeit beschritten wird, etwa von Jaynes (2003).

6. Im Zusammenhang mit WS 2.2 relative Häufigkeit als Schätzwert von Wahrscheinlichkeit verwenden und anwenden können schreibt R. Winkler (S. 45): „Was spricht dagegen, eine Aussage der folgenden Art zu unterrichten?: ,Für eine Folge unabhängiger Zufallsgrößen (die alle dieselbe Verteilung haben und nicht zu sehr schwanken dürfen) konvergieren die arithmetischen Mittel mit Wahrscheinlichkeit 1 gegen den gemeinsamen Erwartungswert.'" Aus der Sicht der Universitätsmathematik mag das kurz ${ }^{6}$ und kompakt ,einen beträchtlichen Teil dessen ausdrücken, worum es in der Stochastik geht" (S. 45). R. Winkler plädiert somit dafür, das sogenannte Starke Gesetz der großen Zahlen im Schulunterricht zu lehren, aber da steckt wieder sehr viel höhere Mathematik dahinter, über die Lernende i.A. nicht verfügen: Folgen (reeller Zahlen) haben im Schulunterricht nicht mehr den Stellenwert wie früher ${ }^{7}$, Folgen von Zufallsgrößen kommen im Schulunter-

[^4]richt gar nicht vor, Unabhängigkeit von Zufallsgrößen wird im Schulunterricht auch kaum unterrichtet - meist nur Unabhängigkeit von Ereignissen. Es gibt darüber hinaus bei Folgen von Zufallsgrößen verschiedene Konvergenzbegriffe ${ }^{8}$, die meist nicht einmal in einem Lehramtsstudium thematisiert werden. Es ist uns nicht klar, wie man so eine Forderung aufstellen kann, wenn man auch noch möchte, dass Lernende mit Verständnis bei der Sache sein sollen (und R. Winkler betont ja an vielen Stellen, dass ihm Verständnis wichtig ist, auch für Lernende). Der von R. Winkler vorgeschlagene Satz ist schlicht unverdaulich für Lernende in der Schule, und selbst wenn es einzelne Schüler/innen geben sollte, die diesen Satz verstehen, für die Zentralmatura und Grundkompetenzen (d.h. für alle Maturanten/innen sozusagen als „Pflichtprogramm") ist er mit Sicherheit ungeeignet ${ }^{9}$.

Resümee: Wir möchten zum Abschluss betonen, dass wir das Engagement von R. Winkler, das er in der früheren Lehramtsausbildung an der TU-Wien, in der Didaktikkommission der ÖMG, etc. an den Tag legt, schätzen. Er hat auch recht, wenn er sagt, dass die momentan im GKK stehenden GKen nicht bis zum „Jüngsten Gericht" gleich bleiben sollen, keine Frage! Und manche seiner Vorschläge halten wir auch für sinnvoll. Aber in der Einschätzung, welcher Abstraktionsgrad im Mathematikunterricht an AHS für die Allgemeinheit zumutbar ist (sodass es bei zentralen Prüfungen eine Rolle spielen sollte), unterscheidet sich unser Standpunkt doch beträchtlich.

Als Beispiel für eine u.E. zukünftig nötige Änderung wollen wir nur eines anklingen lassen, das bei R. Winkler nicht vorkam: Momentan hat die Normalverteilung im GKK die einzige Funktion: Approximation einer Binomialverteilung. Die Normalverteilung selbst als eigenständige Verteilung kommt gar nicht vor. In Zeiten von Technologie (z.B. der Wahrscheinlichkeitsrechner in GeoGebra) wird aber genau der Aspekt des Ersetzens der Binomialverteilung durch die Normalverteilung immer unwichtiger, weil alles quasi auf Knopfdruck auch mit der Binomialverteilung gerechnet werden kann. Für das Testen von Hypothesen mittels Binomialverteilung (auch für andere Verteilungen) gibt es im Wahrscheinlichkeitsrechner von GeoGebra eigene automatisierte Umgebungen, auch für klassische Konfidenzintervalle für einen unbekannten Anteil p. (Dabei wird allerdings die Approximation der Binomialverteilung durch die Normalverteilung benutzt.) Aber mittels „Probierverfahrens" oder durch näherungsweises Lösen bestimmter Gleichungen

[^5]kann man auch heutzutage schon rein bei der Binomialverteilung bleiben beim Problem eines Konfidenzintervalls für einen unbekannten Anteil p. Bei einer der nächsten Versionen von GeoGebra gibt es auch dafür sicher ein automatisiertes Tool. Es wäre also vielleicht angebracht, bei den GKen genau auf diese Verbindung zwischen Binomial- und Normalverteilung zu verzichten und stattdessen der Normalverteilung eine eigene Daseinsberechtigung zu verschaffen.

So wie der obige Absatz ein Vorschlag ist, gibt es von anderen Fachleuten sicher andere/weitere Vorschläge, die irgendwann einmal zu einem neuen GKK führen werden. Auch aus unserer Sicht wäre eine Diskussion darüber sehr zu begrüßen.

Literatur

[1] Fine, T. (1973): Theories of Probability: An Examination of Foundations. New York: Academic Press.
[2] Jaynes, E. T. (2003): Probability Theory: The Logic of Science. Cambridge: Cambridge University Press.
[3] Laub, J. u.a. (1980): Lehrbuch der Mathematik, 3. Band. Wien: Hölder-PichlerTempsky.
[4] Vollrath, H.-J. (1994): Algebra in der Sekundarstufe. Mannheim: BIWissenschaftsverlag.
[5] Winkler, R. (2018): Zentralmatura in der Sackgasse? In: IMN 237, 27-58.

Adressen der Autoren:

Christoph Ableitinger, Hans Humenberger
Universität Wien
Fakultät für Mathematik
Oskar-Morgenstern-Platz 1
A-1090 Wien
email christoph.ableitinger@univie.ac.at, hans.humenberger@univie.ac.at
Michael Oberguggenberger
Universität Innsbruck
Arbeitsbereich für Technische Mathematik
Technikerstraße 13
A-6020 Innsbruck
email michael.oberguggenberger@uibk.ac.at

[^0]: ${ }^{1}$ Der Begriff Universitätsmathematik müsste genauer als aktuell vorherrschendes Paradigma der Lehre im Mathematikstudium umschrieben werden und steht nicht für an Universitäten gelehrte Mathematik schlechthin.
 ${ }^{2}$ In weiterer Folge mit „GKK" abgekürzt.

[^1]: ${ }^{3}$ Nur in M-Olympiade-Kursen.

[^2]: ${ }^{4}$ Vielleicht wäre hier der Begriff „propädeutisch" besser als ,,intuitiv"? Jedenfalls geht es darum, zu Beginn einen formalen Grenzwertbegriff zu vermeiden.

[^3]: ${ }^{5}$ Warum hier auch die Didaktik bemüht wird, erschließt sich uns nicht.

[^4]: ${ }^{6}$ Uns ist nicht klar, warum hier gefordert wird: „nicht zu sehr schwanken dürfen", denn es wird ja ohnehin „iid" gefordert, und so scheint uns der zweite Teil der Forderung überflüssig zu sein. Es soll zwar auf dieses Detail hier nicht wirklich ankommen, aber vielleicht ist es ein zusätzlicher Hinweis, dass diese Formulierung für den Schulunterricht nicht geeignet ist.
 ${ }^{7}$ Das spiegelt sich natürlich auch im GKK wider, denn dort gibt es sie praktisch nicht mehr; im

[^5]: Lehrplan und in den Schulbüchern gibt es sie aber weiterhin.
 ${ }^{8}$ In der Formulierung von R. Winkler ist wohl die fast sichere Konvergenz angesprochen.
 ${ }^{9}$ Im Übrigen kann man gegen die Aussagekraft des Starken Gesetzes des Großen Zahlen durchaus auch inhaltliche Einwände vorbringen, Fine (1973), Abschnitt IVD. Selbst in der fachlichen Ausbildung für Lehramtsstudierende begnügt man sich oft mit dem Schwachen Gesetz der großen Zahlen, aus dem dann unmittelbar eine Präzisierung der Aussage „relative Häufigkeiten pendeln sich mit wachsendem n i.A. bei p ein" folgt (gemeint ist das Bernoulli'sche Gesetz der großen Zahlen).

