Finding Triangles With Given Circum-medial Triangle
 Hans Humenberger, Vienna
 Online Appendix to a note in The Mathematical Gazette 104, 559, 164-168, March 2020 DOI: 10.1017/mag. 2020.23

A proof of Theorem 1 based on Euclidean Geometry

Abstract

Theorem 1: Given $\triangle A B C$ and a point G_{1} not on its circumcircle Σ, let $\Delta A_{1} B_{1} C_{1}$ be its circumcevian triangle w.r.t. G_{1}. Then G_{1} is the centroid of $\Delta A_{1} B_{1} C_{1}$ if, and only if, it is a focus of the Steiner inellipse of $\triangle A B C$.

In this proof we want to restrict the methods essentially to Euclidean geometry, because this is obviously the area of Theorem 1.

We found in the www a helpful statement with solution (Lemma 1) and we build on this "basis" a proof of Theorem 1 with formulating two further lemmas (2 and 3). At the first glance these lemmas have very little to do with Theorem 1, the things will be brought together at the end. The reader needs a bit of patience (especially after reading the one page proof in the printed article), because in all three following lemmas one cannot see immediately their connection to Theorem 1. I would be pleased to hear or read a shorter and more elementary proof from a reader, using only Euclidean geometry.

Lemma 1^{1} : The circumcenter O of $\triangle A B C$ is the centroid of the antipedal triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$ of the symmedian point ${ }^{2} L$ of $\triangle A B C$ (see Fig. 3).

We found this statement and a solution in (there one can find also a short proof):
https://artofproblemsolving.com/community/c6h440326

[^0]

Fig. 3: O is the centroid of $\Delta A^{\prime} B^{\prime} C^{\prime}$
Lemma 2: Let $\triangle P Q R$ be a triangle with centroid G_{1} and symmedian point L. The circummedial triangle is $\triangle A B C$ and the pedal triangle of G_{1} w.r.t. $\triangle A B C$ is $\triangle X Y Z$. Then G_{1} is the symmedian point of $\triangle X Y Z$ (see Fig. 4).

Fig. 4: G_{1} is symmedian point of $\triangle X Y Z$, centroid G of $\triangle A B C$ is circumcenter of $\triangle X Y Z$
$\triangle P Q R$ is the circumcevian triangle of $\triangle A B C$ w.r.t. G_{1}. We will show that $\triangle R P L \sim \triangle Z X G_{1}$ and $\triangle P Q L \sim \triangle X Y G_{1}$. Then we have the similarity $\triangle X Y Z \sim \triangle P Q R$ and G_{1} is the symmedian point. For $\triangle R P L \sim \triangle Z X G_{1}$ we have to prove that $\measuredangle X Z G_{1}=\measuredangle P R L$ and $\measuredangle G_{1} X Z=\measuredangle L P R$.

From the cyclic quadrilateral $Z B X G_{1}$ and the inscribed angle theorem we get $\measuredangle X Z G_{1}=\measuredangle X B G_{1}=\measuredangle C B Q=\measuredangle C R Q=\measuredangle G_{1} R Q \underset{\text { symmedian! }}{\stackrel{R L i s}{=}} \measuredangle P R L$, analogously we get $\measuredangle G_{1} X Z=\measuredangle G_{1} B Z=\measuredangle Q B A=\measuredangle Q P A=\measuredangle Q P G_{1} \stackrel{P L \text { symmedian! }}{\stackrel{P}{=}} \measuredangle L P R$.

Analogously one can prove $\triangle P Q L \sim \triangle X Y G_{1}$.
Lemma 3: It is well known and easy to see by analytical means that the locus of the points X with the property "the tangents from X onto an ellipse and the line segment from X to a focus of the ellipse are perpendicular at $X^{\prime \prime}$ is a circle with radius = semi-major axis of the ellipse and center = center of the ellipse (see Fig. 5, this circle is also called the pedal curve of the ellipse w.r.t. the focus, also pedal circle).

Fig. 5: Pedal curve w.r.t. F_{1}, pedal circle

Now we put these three lemmas - seemingly unconnected to the matter in hand - together and can prove Theorem 1: Let $\triangle P Q R$ be a ("unknown") triangle with centroid G_{1}, symmedian point L and the property "its circum-medial triangle is $\triangle A B C$ ". Then by Lemma 2 we know that G_{1} is the symmedian point of $\triangle X Y Z$ (Fig. 4). The antipedal triangle of G_{1} w.r.t. $\triangle X Y Z$ is $\triangle A B C$ by construction. Then Lemma 1 implies that the centroid G of $\triangle A B C$ is the circumcenter of $\triangle X Y Z$ (Fig. 4), i.e. the center of the pedal circle of G_{1} w.r.t. $\triangle A B C$. According to Lemma $3 G_{1}$ is a focus of an ellipse with center G and tangent to the sides $A B, A C, B C$. Therefore, it must be the Steiner inellipse of the triangle $\triangle A B C$ tangent to its sides through their midpoints (an ellipse tangent to the triangle sides with center G can be mapped by an affine transformation to the incircle of an equilateral triangle). The possible points for G_{1} are the two foci of this special ellipse. For the "unknown" triangle $\triangle P Q R$ there are two "solutions", the circumcevian triangles of G_{1} and G_{2} (see Fig. 2 in printed article, The Mathematical Gazette, March 2020, here again):

Fig. 2: G_{1}, G_{2} are the foci of the Steiner inellipse of $\triangle A B C$

Here a split up version of Lemma 1, in order to make the short solution that can be found at https://artofproblemsolving.com/community/c6h440326 more easily to follow.

Lemma 1a: A point X lies on the C-median of a triangle if, and only if, the distances to the sides $B C$ and $A C$ are reciprocal to the side lengths themselves: $\frac{a}{b}=\frac{j}{i}$ (see Fig. 6)

Fig. 6: Point on the C-median
The proof follows immediately by the fact that the median bisects the area of the triangle and $\frac{n}{m}=\frac{j}{i}$.

Lemma 1b: Given a triangle $\triangle A B C$. The pedal triangle $\triangle X Y Z$ of the centroid G and the antipedal triangle $\Delta A^{\prime} B^{\prime} C^{\prime}$ of the symmedian point L are homothetic (see Fig. 7).

Fig. 7: Homothetic triangles

This is clear because $X Z$ is perpendicular to $B L$ (see [5, p. 14f, Theorem 6], see also [6, p. 64f], therefore $X Z \| A^{\prime} C^{\prime}$ (analogous for the other sides).

Lemma 1c: Let $\triangle A B C$ be a triangle, P an arbitrary interior point and X, Y, Z the orthogonal projections of P onto the triangle sides. Then the following equation holds: $\frac{|A B|}{|A C|} \cdot \frac{|P C|}{|P B|}=\frac{|X Y|}{|X Z|}$ (see Fig. 8)

Fig. 8: Cyclic quadrilateral
$Z B X P$ is a cyclic quadrilateral, $P B$ is a diameter of the circle and the angle $\measuredangle Z B X$ is an inscribed angle to the chord $Z X$. From the inscribed angle theorem we get $\frac{|X Z|}{|P B|}=\sin (\beta)$, and analogously $\frac{|X Y|}{|P C|}=\sin (\gamma)$. According to the law of sines we have $\frac{\sin (\gamma)}{\sin (\beta)}=\frac{|A B|}{|A C|}$ and this yields the equation we want to prove.

Lemma 1d: Let G, O, L be the centroid, circumcenter and symmedian point of $\triangle A B C . E, F$ are the midpoints of $A C, A B$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the antipedal triangle of the symmedian point L of $\triangle A B C$. Then we have $\measuredangle O B A^{\prime}=\measuredangle B E A$ and $\measuredangle O C A^{\prime}=\measuredangle C F A$ (see Fig. 9).

Fig. 9: Lemma 1d
The angle bisector at B meets the perpendicular bisector of $A C$ at the point H on the circumcircle of $\triangle A B C$. Then we have

$$
\begin{aligned}
\measuredangle O B A^{\prime} & =90^{\circ}-(\measuredangle O B H+\measuredangle H B L)= \\
& =90^{\circ}-(\measuredangle O H B+\measuredangle E B H)= \\
& =90^{\circ}-\measuredangle O E B=\measuredangle B E A
\end{aligned}
$$

and analogously $\measuredangle O C A^{\prime}=\measuredangle C F A$.
Then we can prove Lemma 1 step by step: With $\mathrm{d}\left(O, A^{\prime} C^{\prime}\right)$ we denote the distance between the point O and the line segment $A^{\prime} C^{\prime}$:
$\frac{\mathrm{d}\left(O, A^{\prime} C^{\prime}\right)}{\mathrm{d}\left(O, A^{\prime} B^{\prime}\right)} \stackrel{\text { Lemma 1d }}{=} \frac{\sin (\measuredangle G E Y)}{\sin (\measuredangle G F Z)}=\frac{|G Y|}{|G Z|} \cdot \frac{|G F|}{|G E|}=\frac{|A B|}{|A C|} \cdot \frac{|G C|}{|G B|} \stackrel{\text { Lemma 1c }}{=} \frac{|X Y|}{|X Z|} \stackrel{\text { Lemma lb }}{=} \frac{\left|A^{\prime} B^{\prime}\right|}{\left|A^{\prime} C^{\prime}\right|}$
With Lemma 1a we can conclude that $A^{\prime} O$ is the A^{\prime}-median of $\Delta A^{\prime} B^{\prime} C^{\prime}$. Similarly $B^{\prime} O, C^{\prime} O$ are the medians issuing from B^{\prime}, C^{\prime}. Thus we have proven that O is the centroid of $\Delta A^{\prime} B^{\prime} C^{\prime}$.

References:

[5] Grinberg, D.: Isogonal conjugation with respect to a triangle. http://www.cip.ifi.Imu.de/~grinberg/geometry2.html
[6] Honsberger, R. (1995): Episodes in Nineteenth and Twentieth Century Euclidean Geometry. The Mathematical Association of America.

[^0]: ${ }^{1}$ For reasons of clarity one can split up this Lemma 1 into the Lemmas $1 a-1 d$ (see below for interested readers). Fig. 1 and 2 are in the printed version (The Mathematical Gazette, March 2020), therefore the list of figures here in this online appendix starts with number 3.
 ${ }^{2}$ This point is also called Lemoine point, therefore the letter L.

